The Impact of Vp-Porin, an Outer Membrane Protein, on the Biological Characteristics and Virulence of Vibrio Parahaemolyticus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains, Media and Experimental Animals
2.2. Protein Domain and Structure Analysis
2.3. Construction of ∆Vp-porin Deletion Mutant and Complement Strain
2.4. Proteolysis Activity Assay
2.5. Outer Membrane Permeabilization Assay
2.6. Morphological Observation
2.7. Antimicrobial Susceptibility Testing and Survival Assay
2.8. Motility Assay
2.9. qRT-PCR Analysis
2.10. Assessment of Strains’ Virulence Using Tetrahymena thermophila
2.11. Statistical Analysis
3. Results
3.1. Vp-porin Sequence and Structural Analysis
3.2. Construction and Characterization of the Deletion Mutant of Vp-porin Gene and Complement Strain
3.3. Permeabilization of Outer Membranes
3.4. Vp-porin Gene Deletion Affects Antimicrobial Susceptibility of V. parahaemolyticus
3.5. The Vp-porin Mutant Exhibits Lower Motility and Decreases Transcription of Polar Flagellar Genes and Lateral Flagellar Genes in V. parahaemolyticus
3.6. Assessment of Virulence of ∆Vp-porin Using Tetrahymena
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghenem, L.; Elhadi, N.; Alzahrani, F.; Nishibuchi, M. Vibrio Parahaemolyticus: A Review on Distribution, Pathogenesis, Virulence Determinants and Epidemiology. Saudi J. Med. Med. Sci. 2017, 5, 93–103. [Google Scholar] [CrossRef]
- Li, L.; Meng, H.; Gu, D.; Li, Y.; Jia, M. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis. Microbiol. Res. 2019, 222, 43–51. [Google Scholar] [CrossRef]
- Xu, X.; Cheng, J.; Wu, Q.; Zhang, J.; Xie, T. Prevalence, characterization, and antibiotic susceptibility of Vibrio parahaemolyticus isolated from retail aquatic products in North China. BMC Microbiol. 2016, 16, 32. [Google Scholar] [CrossRef]
- Lu, R.; Sun, J.; Qiu, Y.; Zhang, M.; Xue, X.; Li, X.; Yang, W.; Zhou, D.; Hu, L.; Zhang, Y. The quorum sensing regulator OpaR is a repressor of polar flagellum genes in Vibrio parahaemolyticus. J. Microbiol. 2021, 59, 651–657. [Google Scholar] [CrossRef]
- Haifa-Haryani, W.O.; Amatul-Samahah, M.A.; Azzam-Sayuti, M.; Chin, Y.K.; Zamri-Saad, M.; Natrah, I.; Amal, M.N.A.; Satyantini, W.H.; Ina-Salwany, M.Y. Prevalence, Antibiotics Resistance and Plasmid Profiling of Vibrio spp. Isolated from Cultured Shrimp in Peninsular Malaysia. Microorganisms 2022, 10, 1851. [Google Scholar] [CrossRef]
- Huang, A.; Wang, Y.; Xu, H.; Jin, X.; Yan, B.; Zhang, W. Antibiotic Resistance and Epidemiology of Vibrio parahaemolyticus from Clinical Samples in Nantong, China, 2018–2021. Infect. Drug Resist. 2023, 16, 7413–7425. [Google Scholar] [CrossRef]
- Fernandez, L.; Hancock, R.E. Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 2012, 25, 661–681. [Google Scholar] [CrossRef]
- Pazhani, G.P.; Chowdhury, G.; Ramamurthy, T. Adaptations of Vibrio parahaemolyticus to Stress During Environmental Survival, Host Colonization, and Infection. Front. Microbiol. 2021, 12, 737299. [Google Scholar] [CrossRef]
- Pages, J.M.; James, C.E.; Winterhalter, M. The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 2008, 6, 893–903. [Google Scholar] [CrossRef]
- MacLean, R.C.; San Millan, A. The evolution of antibiotic resistance. Science 2019, 365, 1082–1083. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Q.; Wang, Y.; Wen, X.; Peng, H.; Peng, R.; Shi, Q.; Xie, X.; Li, L. Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria. Microorganisms 2023, 11, 1690. [Google Scholar] [CrossRef] [PubMed]
- Koebnik, R.; Locher, K.P.; Van Gelder, P. Structure and function of bacterial outer membrane proteins: Barrels in a nutshell. Mol. Microbiol. 2000, 37, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Schulz, G.E. The structure of bacterial outer membrane proteins. Biochim. Biophys. Acta 2002, 1565, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Choi, U.; Lee, C.R. Distinct Roles of Outer Membrane Porins in Antibiotic Resistance and Membrane Integrity in Escherichia coli. Front. Microbiol. 2019, 10, 953. [Google Scholar] [CrossRef]
- Bornet, C.; Davin-Regli, A.; Bosi, C.; Pages, J.M.; Bollet, C. Imipenem resistance of enterobacter aerogenes mediated by outer membrane permeability. J. Clin. Microbiol. 2000, 38, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Ziervogel, B.K.; Roux, B. The binding of antibiotics in OmpF porin. Structure 2013, 21, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Moya-Torres, A.; Mulvey, M.R.; Kumar, A.; Oresnik, I.J.; Brassinga, A.K.C. The lack of OmpF, but not OmpC, contributes to increased antibiotic resistance in Serratia marcescens. Microbiology 2014, 160, 1882–1892. [Google Scholar] [CrossRef]
- Meng, X.; Huang, D.; Zhou, Q.; Ji, F.; Tan, X.; Wang, J.; Wang, X. The Influence of Outer Membrane Protein on Ampicillin Resistance of Vibrio parahaemolyticus. Can. J. Infect. Dis. Med. Microbiol. 2023, 2023, 8079091. [Google Scholar] [CrossRef]
- Grant, T.A.; Lopez-Perez, M.; Haro-Moreno, J.M.; Almagro-Moreno, S. Allelic diversity uncovers protein domains contributing to the emergence of antimicrobial resistance. PLoS Genet. 2023, 19, e1010490. [Google Scholar] [CrossRef]
- Confer, A.W.; Ayalew, S. The OmpA family of proteins: Roles in bacterial pathogenesis and immunity. Vet. Microbiol. 2013, 163, 207–222. [Google Scholar] [CrossRef]
- Hirakawa, H.; Suzue, K.; Takita, A.; Kamitani, W.; Tomita, H. Roles of OmpX, an Outer Membrane Protein, on Virulence and Flagellar Expression in Uropathogenic Escherichia coli. Infect. Immun. 2021, 89, e00721-20. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.H.; Chang, C.L.; Huang, H.H.; Lin, Y.T.; Li, L.H.; Yang, T.C. Interplay between OmpA and RpoN Regulates Flagellar Synthesis in Stenotrophomonas maltophilia. Microorganisms 2021, 9, 1216. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Wang, J.; Gao, H.; Wang, Z.; Dong, N.; Ma, Q.; Shan, A. Antimicrobial properties and membrane-active mechanism of a potential alpha-helical antimicrobial derived from cathelicidin PMAP-36. PLoS ONE 2014, 9, e86364. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Tech. Bull. Regist. Med. Technol. 1966, 36, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.; Xie, X.; Dong, Y.; Du, H.; Wang, N.; Lu, C.; Liu, Y. Identification of novel virulence-related genes in Aeromonas hydrophila by screening transposon mutants in a Tetrahymena infection model. Vet. Microbiol. 2017, 199, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Siu, L.K.; Fung, C.P.; Lin, J.C.; Yeh, K.M.; Chen, T.L.; Tsai, Y.K.; Chang, F.Y. Contribution of outer membrane protein K36 to antimicrobial resistance and virulence in Klebsiella pneumoniae. J. Antimicrob. Chemother. 2010, 65, 986–990. [Google Scholar] [CrossRef] [PubMed]
- Stewart, B.J.; McCarter, L.L. Lateral flagellar gene system of Vibrio parahaemolyticus. J. Bacteriol. 2003, 185, 4508–4518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Osei-Adjei, G.; Zhang, Y.; Gao, H.; Yang, W.; Zhou, D.; Huang, X.; Yang, H.; Zhang, Y. CalR is required for the expression of T6SS2 and the adhesion of Vibrio parahaemolyticus to HeLa cells. Arch. Microbiol. 2017, 199, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Garcia, F.; Ruiz-Perez, F.; Cataldi, A.; Larzabal, M. Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition. Front. Microbiol. 2019, 10, 1965. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Zhang, Y.; Wang, K.; Li, M.; Jiao, X. Characterization of the RpoN regulon reveals the regulation of motility, T6SS2 and metabolism in Vibrio parahaemolyticus. Front. Microbiol. 2022, 13, 1025960. [Google Scholar] [CrossRef]
- Lainhart, W.; Stolfa, G.; Koudelka, G.B. Shiga toxin as a bacterial defense against a eukaryotic predator, Tetrahymena thermophila. J. Bacteriol. 2009, 191, 5116–5122. [Google Scholar] [CrossRef] [PubMed]
- Ly, T.M.; Muller, H.E. Ingested Listeria monocytogenes survive and multiply in protozoa. J. Med. Microbiol. 1990, 33, 51–54. [Google Scholar] [CrossRef]
- Jacobs, M.E.; DeSouza, L.V.; Samaranayake, H.; Pearlman, R.E.; Siu, K.W.; Klobutcher, L.A. The Tetrahymena thermophila phagosome proteome. Eukaryot. Cell 2006, 5, 1990–2000. [Google Scholar] [CrossRef]
- Cassidy-Hanley, D.M. Tetrahymena in the laboratory: Strain resources, methods for culture, maintenance, and storage. Methods Cell Biol. 2012, 109, 237–276. [Google Scholar] [CrossRef] [PubMed]
- Durichen, H.; Siegmund, L.; Burmester, A.; Fischer, M.S.; Wostemeyer, J. Ingestion and digestion studies in Tetrahymena pyriformis based on chemically modified microparticles. Eur. J. Protistol. 2016, 52, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Leitao, J.H. Microbial Virulence Factors. Int. J. Mol. Sci. 2020, 21, 5320. [Google Scholar] [CrossRef]
- Schmitt, B.L.; Leal, B.F.; Leyser, M.; de Barros, M.P.; Trentin, D.S.; Ferreira, C.A.S.; de Oliveira, S.D. Increased ompW and ompA expression and higher virulence of Acinetobacter baumannii persister cells. BMC Microbiol. 2023, 23, 157. [Google Scholar] [CrossRef]
- Ganie, H.A.; Choudhary, A.; Baranwal, S. Structure, regulation, and host interaction of outer membrane protein U (OmpU) of Vibrio species. Microb. Pathog. 2022, 162, 105267. [Google Scholar] [CrossRef]
- Haiko, J.; Westerlund-Wikstrom, B. The role of the bacterial flagellum in adhesion and virulence. Biology 2013, 2, 1242–1267. [Google Scholar] [CrossRef]
Strains | Genotype and Characteristics | Source |
---|---|---|
V. parahaemolyticus 17802 | Cms, Kms, Ampr, wild-type strain, | ATCC |
∆Vp-porin | V. parahaemolyticus strain in-frame deletion in Vp-porin | This study |
∆Vp-porin-C | The complement of ∆Vp-porin | This study |
Escherichia coli | ||
CC118 | λpir lysogen of CC118 (Δ(ara-leu) araD ΔlacX74galEgalKphoA20 thi-1rpsE rpoB argE (Am) recA1 | Our lab |
CC118/pHelper | CC118 λpir harboring plasmid pHelper | Our lab |
Plasmids | ||
pSR47S | Bacterial allelic exchange vector with sacB, KanR | Our lab |
pSR47S-∆Vp-porin | A 1689 bp fragment containing the upstream and downstream sequences of the ∆Vp-porin gene in pSR47S, KanR | This study |
pSR47S-Vp-porin-C | A 2634 bp fragment containing the Vp-porin sequences in pSR47S, KanR | This study |
Primer Name | Primer Sequence (5′ to 3′) | Purpose |
---|---|---|
UP-F | CGAGCTCCTTGATGGACTTCGCCAAC | Creation of ∆Vp-porin deletion fusion fragment |
UP-R | CAACATTCGGTACTCAAGCAGCACTTGGTGCACGTTACTAC | |
DOWN-F | GTAGTAACGTGCACCAAGTGCTGCTTGAGTACCGAATGTTG | |
DOWN-R | GACTAGTGTACACACCGAATGCAGAC | |
Vp-porin-T1 | GAACAACACTAGAACGCGC | Confirmation of ∆Vp-porin deletion |
Vp-porin-T2 | TCGGTTACCGAAGAGTCTTC |
Primer Name | Primer Sequence (5′ to 3′) | Target |
---|---|---|
flgB-F | ACAAGGCACTAGGCATCC | polar flagellar cluster I genes |
flgB-R | GACCATCTGTTCGGCTAAG | |
flgC-F | GCGTCATGCTGTATTTGGTG | |
flgC-R | AACCTGCACATTCGTTTGGT | |
flgM-F | ATTCAAGTGCGACATCAAG | |
flgM-R | CGGAGAAGCTGCCATATC | |
flgK-F | GCCGTCAGTCAGTGATTC | |
flgK-R | GTAGAGGACAGGTTGAGTTC | |
fliE-F | CACTGTGCCCGTTTGCTTAC | polar flagellar cluster II genes |
fliE-R | TCCGGCGGATGCTTCTATTC | |
fliK-F | GTCGAGAAGAATGGCGAGAG | |
fliK-R | CCAACTGAGCCTCTGACTCC | |
flgA-F | TACCGACTGGCAAAGGTTGG | |
flgA-R | TACCGACTGGCAAAGGTTGG | lateral flagellar cluster I genes |
flgB-F | GCAGGTTCAGGCCCAGTATT | |
flgB-R | TCATGTTGAGAAACGTCAGGCT | |
flgG-F | AGATCTAGCGGTAATGGGGC | |
flgG-R | GAGAAAGAGGTCGCGTTGTC | |
lafA-F | GCTGGTGGCCTTATCGAAGA | |
lafA-R | TACTGCGAAGTCTGCATCCAT | |
motY-F | ATTAGTGAGGGTGCGCCTTT | |
motY-R | GGTGAAGGGAAGGAATGGCA | |
fliE-F | CGCTTGAGAAAACGACAGTGG | lateral flagellar cluster I genes |
fliE-R | CCTACTAATGCGGTCTCGGC | |
VPA1043-F | TCGAACAGCACGTAGAATCG | T6SS2 genes |
VPA1043-R | GTGGCACTTCAGTTTCGTGA | |
VPA1044-F | TCCTCAACCAAATCCTCGAC | |
VPA1044-R | GCGTAGTTAGGCGTGTAGCC | |
VPA1045-F | CCGATGCTCAATGGCTTAAT | |
VPA1045-R | GCTGCTCTTTACCCAACTGC | |
rpoN-F | GAGTGCACGGATTGCTGTTG | rpoN gene |
rpoN-R | CGGTGGACATGCATGAATCC | |
16s rRNA-F | TTAAGTAGACCGCCTGGGGA | qPCR of 16s rRNA |
16s rRNA-R | GCAGCACCTGTCTCAGAGTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, J.; Fang, Q.; Hu, S.; Liu, B.; Wang, L.; Fang, X.; Li, L.; Luo, T.; Bao, B. The Impact of Vp-Porin, an Outer Membrane Protein, on the Biological Characteristics and Virulence of Vibrio Parahaemolyticus. Biology 2024, 13, 485. https://doi.org/10.3390/biology13070485
Che J, Fang Q, Hu S, Liu B, Wang L, Fang X, Li L, Luo T, Bao B. The Impact of Vp-Porin, an Outer Membrane Protein, on the Biological Characteristics and Virulence of Vibrio Parahaemolyticus. Biology. 2024; 13(7):485. https://doi.org/10.3390/biology13070485
Chicago/Turabian StyleChe, Jinyuan, Qitong Fang, Shaojie Hu, Binghong Liu, Lei Wang, Xiu Fang, Lekang Li, Tuyan Luo, and Baolong Bao. 2024. "The Impact of Vp-Porin, an Outer Membrane Protein, on the Biological Characteristics and Virulence of Vibrio Parahaemolyticus" Biology 13, no. 7: 485. https://doi.org/10.3390/biology13070485
APA StyleChe, J., Fang, Q., Hu, S., Liu, B., Wang, L., Fang, X., Li, L., Luo, T., & Bao, B. (2024). The Impact of Vp-Porin, an Outer Membrane Protein, on the Biological Characteristics and Virulence of Vibrio Parahaemolyticus. Biology, 13(7), 485. https://doi.org/10.3390/biology13070485