A Bibliometric Analysis on Research Progress of Earthworms in Soil Ecosystems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Collection
2.2. Data Process and Analysis
3. Results and Discussion
3.1. Temporal Trend of Publication
3.2. Document Types, Languages, Subject Categories and Journal Analysis
3.3. Countries-, Institutions- and Authors-Based Outputs and Collaborations
3.3.1. Countries-Based Outputs and Collaborations Analysis
3.3.2. Institutions-Based Outputs and Collaborations Analysis
3.3.3. Prominent Authors and Collaborations Analysis
3.4. Research Hotspots
3.5. Term Co-Occurrence
3.6. Burst Detection
3.6.1. Emerging Hotpots
3.6.2. Active Countries/Regions, Institutions and Potential Authors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Wood, S.A.; De Mesquita, C.P.B. How microbes can, and cannot, be used to assess soil health. Soil. Biol. Biochem. 2021, 153, 108111. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, S.; Han, Y.; Bate, B.; Ke, H.; Chen, Y. Soil heavy metal pollution of industrial legacies in China and health risk assessment. Sci. Total Environ. 2022, 816, 151632. [Google Scholar] [CrossRef] [PubMed]
- Shuaib, M.; Azam, N.; Bahadur, S.; Romman, M.; Yu, Q. Variation and succession of microbial communities under the conditions of persistent heavy metal and their survival mechanism. Microb. Pathog. 2021, 150, 104713. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wang, L.; Xie, Y.; Yu, X.; Tu, L. Effects of exogenous abscisic acid on the growth and cadmium accumulation of lettuce under cadmium-stress conditions. Int. J. Environ. Anal. Chem. 2020, 100, 720–731. [Google Scholar] [CrossRef]
- Wu, J.; Song, J.; Li, W.; Zheng, M. The accumulation of heavy metals in agricultural land and the associated potential ecological risks in Shenzhen, China. Environ. Sci. Pollut. Res. 2016, 23, 1428–1440. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Huang, Y.; Zhang, W.; Shi, Z.; Yu, D.; Chen, Y.; Liu, C.; Wang, R. Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environ. Monit. Assess. 2021, 193, 20. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Zhang, G. Exploration and utilization of aluminum-tolerant barley germplasm. Explor. Identif. Util. Barley Germplasm 2016, 181–208. [Google Scholar] [CrossRef]
- Bolan, N.; Adriano, D.; Curtin, D. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv. Agron. 2003, 78, 215–272. [Google Scholar] [CrossRef]
- Schroder, J.L.; Zhang, H.; Girma, K.; Raun, W.R.; Penn, C.J.; Payton, M.E. Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil. Sci. Soc. Am. J. 2011, 75, 957–964. [Google Scholar] [CrossRef]
- Shi, W.M.; Yao, J.; Yan, F. Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in South-Eastern China. Nutr. Cycl. Agroecosys. 2009, 83, 73–84. [Google Scholar] [CrossRef]
- Lavelle, P. Soil Ecology; Kluwer Academic Publishers: New York, NY, USA, 2001. [Google Scholar]
- Zhang, W.; Chen, D.; Zhao, C. Functions of earthworm in ecosystem. Biodivers. Sci. 2007, 15, 142–153. [Google Scholar] [CrossRef]
- Chai, Y.; Zeng, X.; Shengzhe, E.; Che, Z.; Bai, L.; Su, S.; Wang, Y. The stability mechanism for organic carbon of aggregate fractions in the irrigated desert soil based on the long-term fertilizer experiment of China. Catena 2019, 173, 312–320. [Google Scholar] [CrossRef]
- Li, Y.P.; Wang, J.; Shao, M.A. Application of earthworm cast improves soil aggregation and aggregate-associated carbon stability in typical soils from Loess Plateau. J. Environ. Manag. 2021, 278, 111504. [Google Scholar] [CrossRef] [PubMed]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil. Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Marinissen, A. Biological and physico-chemical processes in excrements of soil animals. Geoderma 1993, 56, 331–347. [Google Scholar] [CrossRef]
- Lowe, C.N.; Butt, K.R. Culture techniques for soil dwelling earthworms: A review. Pedobiologia 2005, 49, 401–413. [Google Scholar] [CrossRef]
- Dong, W.; Yin, X. Transformation of Carbon and Nitrogen by Earthworms in the Decomposition Processes of Broad-leaved Litters. Chin. Geogr. Sci. 2007, 17, 166–172. [Google Scholar] [CrossRef]
- Gong, X.; Wang, S.; Wang, Z.; Jiang, Y.; Hu, Z.; Zheng, Y.; Chen, X.; Li, H.; Hu, F.; Liu, M.; et al. Earthworms modify soil bacterial and fungal communities through enhancing aggregation and buffering pH. Geoderma 2019, 347, 59–69. [Google Scholar] [CrossRef]
- Chen, X.; Gao, C.; Fu, X.; Cui, G.; Lei, X.; Huang, K. Impacts of earthworm on acidic and alkaline buffering capacity of pelletized dewatered sludge in vermicomposting. Acta Sci. Circumstantiae 2016, 36, 2941–2946. [Google Scholar] [CrossRef]
- Fernandez-Bayo, J.; Nogales, R.; Romero, E. Assessment of three vermicomposts as organic amendments used to enhance diuron sorption in soils with low organic carbon content. Eur. J. Soil. Sci. 2009, 60, 935–944. [Google Scholar] [CrossRef]
- Kul Bachko, Y.L.; Didur, O.O.; Loza, I.M.; Pakhomov, O.E.; Bezrodnova, O.V. Environmental aspects of the effect of earthworm (Lumbricidae, Oligochaeta) tropho-metabolic activity on the pH buffering capacity of remediated soil (steppe zone, Ukraine). Biol. Bull. 2015, 42, 899–904. [Google Scholar] [CrossRef]
- Ahmed, N.; Al-Mutairi, K.A. Earthworms effect on microbial population and soil fertility as well as their interaction with agriculture practices. Sustainability 2022, 14, 1–17. [Google Scholar] [CrossRef]
- Binet, F.; Fayolle, L.; Pussard, M.; Crawford, J.J.; Traina, S.J.; Tuovinen, O.H. Significance of earthworms in stimulating soil microbial activity. Biol. Fert. Soils 1998, 27, 79–84. [Google Scholar] [CrossRef]
- Lemtiri, A.; Colinet, G.; Alabi, T.; Cluzeau, D.; Francis, F. Impacts of earthworms on soil components and dynamics. A review. Biotechnol. Agron. Soc. Environ. 2014, 18, 121–133. [Google Scholar]
- Xiang, H.; Zhang, J.; Zhu, Q. Worldwide earthworm research: A scientometric analysis, 2000–2015. Scientometrics 2015, 105, 1195–1207. [Google Scholar] [CrossRef]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Xiao, F.; Li, C.; Sun, J.; Zhang, L. Knowledge domain and emerging trends in organic photovoltaic technology: A scientometric review based on citeSpace analysis. Front. Chem. 2017, 5, 67. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Ouyang, W.; Hao, F.; Lin, C. Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches. Sci. Total Environ. 2015, 536, 609–615. [Google Scholar] [CrossRef]
- Garfield, E.; Paris, S.W.; Stock, W.G. HistCite: A software tool for informetric analysis of citation linkage. Inf. Wiss. Prax. 2006, 57, 391–400. [Google Scholar]
- Yu, D.; Shi, S. Researching the development of Atanassov intuitionistic fuzzy set: Using a citation network analysis. Appl. Soft Comput. 2015, 32, 189–198. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, J.; Zhang, J.; Xiang, H.; Wei, H. A bibliometric analysis of research on acid rain. Sustainability 2019, 11, 3077. [Google Scholar] [CrossRef]
- Svensson, B.H.; Boström, U.; Klemedtson, L. Potential for higher rates of denitrification in earthworm casts than in the surrounding soil. Biol. Fertil. Soils 1986, 2, 147–149. [Google Scholar] [CrossRef]
- Krishnamoorthy, R. Mineralization of phosphorus by faecal phosphatases of some earthworms of Indian tropics. Proc. Indian. Acad. Sci. Anim. Sci. 1990, 99, 509–518. [Google Scholar] [CrossRef]
- Swaby, R.J. The influence of earthworms on soil aggregation. J. Soil. Sci. 1950, 1, 195–196. [Google Scholar] [CrossRef]
- Syers, J.K.; Springett, J.A. Earthworms and soil fertility. Plant Soil. 1984, 76, 93–104. [Google Scholar] [CrossRef]
- Qiu, J. Earthworms and their application in environment protection II. Ecotoxicology of earthworms. J. Shanghai Agric. Coll. 1999, 17, 310–318. [Google Scholar]
- Haque, A.; Ebing, W. Toxicity determination of pesticides to earthworms in the soil substrate. Z. Für Pflanzenkrankh. Und Pflanzenschutz/J. Plant Dis. Prot. 1983, 90, 395–408. [Google Scholar]
- van Gestel, C.A.M.; Ma, W. An approach to quantitative structure-activity relationships (QSARs) in earthworm toxicity studies. Chemosphere 1990, 21, 1023–1033. [Google Scholar] [CrossRef]
- Gordon, M.D. Influence of Earthworms on Soil Microorganisms. Soil. Sci. 1950, 69, 175–184. [Google Scholar] [CrossRef]
- Lavelle, P. Earthworm activities and the soil system. Biol. Fertil. 1988, 6, 237–251. [Google Scholar] [CrossRef]
- Singer, A.C.; Jury, W.; Luepromchai, E.; Yahng, C.S.; Crowley, D.E. Contribution of earthworms to PCB bioremediation. Soil. Biol. Biochem. 2001, 33, 765–776. [Google Scholar] [CrossRef]
- Lukkari, T.; Taavitsainen, M.; Väisänen, A.; Haimi, J. Effects of heavy metals on earthworms along contamination gradients in organic rich soils. Ecotox Environ. Safe 2004, 59, 340–348. [Google Scholar] [CrossRef]
- Lukkari, T.; Haimi, J. Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species. Ecotox Environ. Safe 2005, 62, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.W. The Earthworms (Lumbricidae and Sparganophilidae) of Ontario; The Hunter Rose Company: Toronto, ON, Canada, 1977; p. 7. [Google Scholar]
- Gates, G.E. Farewell to north american megadriles. Megadrilogica 1982, 4, 12–77. [Google Scholar]
- Hendrix, P.; Bohlen, P. Exotic earthworm invasions in North America: Ecological and policy implications. Bioscience 2002, 52, 801–811. [Google Scholar] [CrossRef]
- Bohlen, P.J.; Scheu, S.; Hale, C.M.; Mclean, M.A.; Migge, S.; Groffman, P.M.; Parkinson, D. Non-native invasive earthworms as agents of change in northern temperate forests. Front. Ecol. Environ. 2004, 2, 427–435. [Google Scholar] [CrossRef]
- Hendrix, P.; Callaham, M.; Drake, J.; Huang, C.; James, S.; Snyder, B.; Zhang, W. Pandora’s box contained bait: The global problem of introduced earthworms. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 593–613. [Google Scholar] [CrossRef]
- Migge-Kleian, S.; McLean, M.A.; Maerz, J.C.; Heneghan, L. The influence of invasive earthworms on indigenous fauna in ecosystems previously uninhabited by earthworms. Biol. Invasions 2006, 8, 1275–1285. [Google Scholar] [CrossRef]
- Frelich, L.E.; Hale, C.M.; Scheu, S.; Holdsworth, A.R.; Heneghan, L.; Bohlen, P.J.; Reich, P.B. Earthworm invasion into previously earthworm-free temperate and boreal forests. Biol. Invasions 2006, 8, 1235–1245. [Google Scholar] [CrossRef]
- McLean, M.A.; Migge-Kleian, S.; Parkinson, D. Earthworm invasions of ecosystems devoid of earthworms: Effects on soil microbes. Biol. Invasions 2006, 8, 1257–1273. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, Y.; Duan, Z.; Xie, R. Biblimetric analysis of bioaccessibility of heavy metals on CiteSpace. J. Agro-Environ. Sci. 2020, 39, 11. [Google Scholar] [CrossRef]
- Ehlers, W. Observations on earthworm channels and infiltration on tilled and untilled loess soil. Soil. Sci. 1975, 119, 242–249. [Google Scholar] [CrossRef]
- Lee, K.; Foster, R. Soil fauna and soil structure. Aust. J. Soil. Res. 1991, 29, 745–775. [Google Scholar] [CrossRef]
- Martin, A. Short- and long-term effects of the endogeic earthworm Millsonia anomala (Omodeo) (Megascolecid, Oligochta) of tropical savannas, on soil organic matter. Biol. Fert. Soils 1991, 11, 234–238. [Google Scholar] [CrossRef]
- Brown, G.G.; Baroisa, I.; Lavelle, P. Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur. J. Soil. Biol. 2000, 36, 177–198. [Google Scholar] [CrossRef]
- Lavelle, P.; Martin, A. Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics. Soil. Biol. Biochem. 1992, 24, 1491–1498. [Google Scholar] [CrossRef]
- Drake, H.; Horn, M. As the worm turns: The earthworm gut as a transient habitat for soil microbial biomes. Annu. Rev. Microbiol. 2007, 61, 169–189. [Google Scholar] [CrossRef] [PubMed]
- Horn, M.; Schramm, A.; Drake, H. The earthworm gut: An ideal habitat for ingested N2O-producing microorganisms. Appl. Environ. Microb. 2003, 69, 1662–1669. [Google Scholar] [CrossRef] [PubMed]
- Lubbers, I.M.; Groenigen, K.V.; Fonte, S.J.; Six, J.; Brussaard, L.; Groenigen, J.V. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Chang. 2013, 3, 187–194. [Google Scholar] [CrossRef]
- Lavelle, P.; Bignell, D.; Lepage, M.; Wolters, V.; Roger, P. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil. Biol. 1997, 33, 159–193. [Google Scholar]
- Lavelle, P. Faunal activities and soil processes: Adaptive strategies that determine ecosystem function. Adv. Ecol. Res. 1997, 27, 93–132. [Google Scholar] [CrossRef]
- Lavelle, P.; Deca Ns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.P. Soil invertebrates and ecosystem services. Eur. J. Soil. Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Peres, G.; Tondoh, J.E.; et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil. Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Chan, K.Y. An overview of some tillage impacts on earthworm population abundance and diversity—Implications for functioning in soils. Soil. Tillage Res. 2001, 57, 179–191. [Google Scholar] [CrossRef]
- Pulleman, M.M.; Six, J.; Uyl, A.; Marinissen, J.; Jongmans, A.G. Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils. Appl. Soil. Ecol. 2005, 29, 1–15. [Google Scholar] [CrossRef]
- Bertrand, M.; Barot, S.; Blouin, M.; Whalen, J.; Oliveira, T.D.; Roger-Estrade, J. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 2015, 35, 553–567. [Google Scholar] [CrossRef]
- Yao, Y.; Li, J.; He, C.; Hu, X.; Yin, L.; Zhang, Y.; Zhang, J.; Huang, H.; Yang, S.; He, H.; et al. Distribution characteristics and relevance of heavy metals in soils and colloids around a mining area in Nanjing, China. Bull. Environ. Contam. Toxicol. 2021, 107, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.E.; Morgan, A.J. Earthworms as biological monitors of cadmium, copper, lead and zinc in metalliferous soils. Environ. Pollut. 1988, 54, 123–138. [Google Scholar] [CrossRef]
- Morgan, J.E.; Morgan, A.J. The accumulation of metals (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): Implications for ecotoxicological testing. Appl. Soil. Ecol. 1999, 13, 9–20. [Google Scholar] [CrossRef]
- Spurgeon, D.J.; Hopkin, S.P.; Jones, D.T. Effects of cadmium, copper, lead and zinc on growth, reproduction and survival of the earthworm Eisenia fetida (Savigny):Assessing the environmental impact of point-source metal contamination in terrestrial ecosystems. Environ. Pollut. 1994, 84, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Spurgeon, D.J.; Hopkin, S.P. Extrapolation of the laboratory-based OECD earthworm toxicity test to metal-contaminated field sites. Ecotoxicology 1995, 4, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Spurgeon, D.J.; Weeks, J.M.; Van Gestel, C.A.M. A summary of eleven years progress in earthworm ecotoxicology. Pedobiologia 2003, 47, 588–606. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, L.S.; Wang, J.; Wang, J.H.; Liu, W.; Xie, H. DNA damage and effects on antioxidative enzymes in earthworm (Eisenia foetida) induced by atrazine. Soil. Biol. Biochem. 2009, 41, 905–909. [Google Scholar] [CrossRef]
- Nahmani, J.; Hodson, M.E.; Black, S. A review of studies performed to assess metal uptake by earthworms. Environ. Pollut. 2007, 145, 402–424. [Google Scholar] [CrossRef] [PubMed]
- Polce, C.; Cardoso, A.C.; Deriu, I.; Gervasini, E.; Tsiamis, K.; Vigiak, O.; Zulian, G.; Maes, J. Invasive alien species of policy concerns show widespread patterns of invasion and potential pressure across European ecosystems. Sci. Rep. 2023, 13, 8124. [Google Scholar] [CrossRef] [PubMed]
- Alban, D.H.; Berry, E.C. Effects of earthworm invasion on morphology, carbon, and nitrogen of a forest soil. Appl. Soil. Ecol. 1994, 1, 243–249. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Partsch, S.; Parkinson, D.; Scheu, S. Invasion of a deciduous forest by earthworms: Changes in soil chemistry, microflora, microarthropods and vegetation. Soil. Biol. Biochem. 2007, 39, 1099–1110. [Google Scholar] [CrossRef]
- Hale, C.; Frelich, L.; Reich, P. Changes in hardwood forest understory plant communities in response to European earthworm invasions. Ecology 2006, 87, 1637–1649. [Google Scholar] [CrossRef]
- Bohlen, P.J.; Groffman, P.M.; Fahey, T.J.; Fisk, M.C.; Suarez, E.; Pelletier, D.M.; Fahey, R.T. Ecosystem consequences of exotic earthworm invasion of north temperate forests. Ecosystems 2004, 7, 1–12. [Google Scholar] [CrossRef]
- Hale, C.M.; Frelich, L.E.; Reich, P.B.; Pastor, J. Effects of European earthworm invasion on soil characteristics in northern hardwood forests of minnesota, USA. Ecosystems 2005, 8, 911–927. [Google Scholar] [CrossRef]
- Ouyang, W.; Wang, Y.; Lin, C.; He, M.; Hao, F.; Liu, H.; Zhu, W. Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Sci. Total Environ. 2018, 637–638, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Hoeffner, K.; Monard, C.; Santonja, M.; Cluzeau, D. Feeding behaviour of epi-anecic earthworm species and their impacts on soil microbial communities. Soil. Biol. Biochem. 2018, 125, 1–9. [Google Scholar] [CrossRef]
- Araujo, Y.; Luizao, F.J.; Barros, E. Effect of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mesocosms. Biol. Fert. Soils 2004, 39, 146–152. [Google Scholar] [CrossRef]
- Scheu, S.; Wolters, V. Influence of fragmentation and bioturbation on the decomposition of 14C-labelled beech leaf litter. Soil. Biol. Biochem. 1991, 23, 1029–1034. [Google Scholar] [CrossRef]
- Houdeshell, C.; Graham, R.C.; Peterson, A.C.; Hendrix, P.E.; Quideau, S.A. Morphology and Genesis of Humus Profiles under Chaparral Shrubs in Southern California. Soil. Sci. Soc. Am. J. 2017, 81, 369–379. [Google Scholar] [CrossRef]
- Scheu, S.; Jones, A.T.H. Links between the detritivore and the herbivore system: Effects of earthworms and Collembola on plant growth and aphid development. Oecologia 1999, 119, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Wurst, S.; Jones, T.H. Indirect effects of earthworms (Aporrectodea caliginosa) on an above-ground tritrophic interaction. Pedobiologia 2003, 47, 91–97. [Google Scholar] [CrossRef]
- Topoliantz, S.; Ponge, J.F.O.; Viaux, P. Earthworm and enchytraeid activity under different arable farming systems, as exemplified by biogenic structures. Plant Soil. 2000, 225, 39–51. [Google Scholar] [CrossRef]
- Daniels, T.L. America’s Conservation Reserve Program: Rural planning or just another subsidy? J. Rural. Stud. 1988, 4, 405–411. [Google Scholar] [CrossRef]
- Joschko, M.; Gebbers, R.; Barkusky, D.; Rogasik, J.; Höhn, W.; Hierold, W.; Fox, C.A.; Timmer, J. Location-dependency of earthworm response to reduced tillage on sandy soil. Soil. Till Res. 2009, 102, 55–66. [Google Scholar] [CrossRef]
- Moos, J.H.; Schrader, S.; Paulsen, H.M. Reduced tillage enhances earthworm abundance and biomass in organic farming: A meta-analysis. Landbauforsch.-J. Sustain. Org. Agric. Syst. 2017, 67, 123–128. [Google Scholar] [CrossRef]
- Cuendet, G. Effect of pedestrian activity on earthworm populations of two forests in Switzerland. Soil. Biol. Biochem. 1992, 24, 1467–1470. [Google Scholar] [CrossRef]
- Pizl, V.; Schlaghamersky, J. The impact of pedestrian activity on soil annelids in urban greens. Eur. J. Soil. Biol. 2007, 43, S68–S71. [Google Scholar] [CrossRef]
- Correia, F.; Moreira, J. Effects of glyphosate and 2,4-D on earthworms (Eisenia foetida) in laboratory tests. Bull. Environ. Contam. Toxicol. 2010, 85, 264–268. [Google Scholar] [CrossRef]
- Gao, M.; Song, W.; Zhang, J.; Guo, J. Effect on enzymes and histopathology in earthworm (Eisenia foetida) induced by triazole fungicides. Environ. Toxicol. Pharmacol. 2013, 35, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.B.; Lim, M.P.M.; Noor, Z.M.; Abdullah, N. Vermiremoval of heavy metal in sewage sludge by utilising Lumbricus rubellus. Ecotox Environ. Safe 2013, 90, 13–20. [Google Scholar] [CrossRef]
- Gundale, M.J. Influence of exotic earthworms on the soil organic horizon and the rare fern Botrychium mormo. Conserv. Biol. 2002, 16, 1555–1561. [Google Scholar] [CrossRef]
- Liu, Z.G.; Zou, X.M. Exotic earthworms accelerate plant litter decomposition in a Puerto Rican pasture and a wet forest. Ecol. Appl. 2002, 12, 1406–1417. [Google Scholar] [CrossRef]
- Hendrix, P.F.; Baker, G.H.; Callaham, M.A.; Damoff, G.A.; Fragoso, C.; González, G.; James, S.W.; Lachnicht, S.L.; Winsome, T.; Zou, X. Invasion of exotic earthworms into ecosystems inhabited by native earthworms. Biol. Invasions 2006, 8, 1287–1300. [Google Scholar] [CrossRef]
- Chen, C.; Dubin, R.; Kim, M.C. Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert. Opin. Biol. Ther. 2014, 14, 1295–1317. [Google Scholar] [CrossRef]
- Yu, D.; Xu, C. Mapping research on carbon emissions trading: A co-citation analysis. Renew. Sustain. Energy Rev. 2017, 74, 1314–1322. [Google Scholar] [CrossRef]
- Ducasse, V.; Capowiez, Y.; Peigné, J. Vermicomposting of municipal solid waste as a possible lever for the development of sustainable agriculture. A review. A review. Agron. Sustain. Dev. 2022, 42, 89. [Google Scholar] [CrossRef]
- Litskas, V.D.; Karamanlis, X.N.; Prousali, S.P.; Koveos, D.S. The xenobiotic doxycycline affects nitrogen transformations in soil and impacts earthworms and cultivated plants. J. Environ. Sci. Health Part A 2019, 54, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Wellnitz, T.; Barlow, J.L.; Dick, C.M.; Shaurette, T.R.; Weiher, E. Campsites, forest fires, and entry point distance affect earthworm abundance in the Boundary Waters Canoe Area Wilderness. Peerj 2020, 8, e8656. [Google Scholar] [CrossRef] [PubMed]
- Vri, S.; Breznik, M.; Pulko, B.; Rodrigo-Comino, J. Earthworm abundance changes depending on soil management practices in Slovenian vineyards. Agronomy 2021, 11, 1241. [Google Scholar] [CrossRef]
- Plaas, E.; Meyer-Wolfarth, F.; Banse, M.; Bengtsson, J.; Bergmann, H.; Faber, J.; Potthoff, M.; Runge, T.; Schrader, S.; Taylor, A. Towards valuation of biodiversity in agricultural soils: A case for earthworms. Ecol. Econ. 2019, 159, 291–300. [Google Scholar] [CrossRef]
- Thounaojam, R.S.; Thingbaijam, B.S. Biodiversity of ecologically important earthworms in subtropical forest ecosystems of East and West Imphal districts of Manipur. J. Environ. Biol. 2020, 41, 951–956. [Google Scholar] [CrossRef]
- Ferlian, O.; Eisenhauer, N.; Aguirrebengoa, M.; Camara, M.; Ramirez-Rojas, I.; Santos, F.; Tanalgo, K.; Thakur, M.P. Invasive earthworms erode soil biodiversity: A meta-analysis. J. Anim. Ecol. 2018, 87, 162–172. [Google Scholar] [CrossRef]
- Dumack, K.; Ferlian, O.; Morselli Gysi, D.; Degrune, F.; Jauss, R.T.; Walden, S.; Ztoprak, H.; Wubet, T.; Bonkowski, M.; Eisenhauer, N. Contrasting protist communities (Cercozoa: Rhizaria) in pristine and earthworm-invaded North American deciduous forests. Biol. Invasions 2022, 24, 1345–1357. [Google Scholar] [CrossRef]
- Song, K.; Sun, Y.; Qin, Q.; Sun, L.; Xue, Y. The Effects of Earthworms on Fungal Diversity and Community Structure in Farmland Soil with Returned Straw. Front. Microbiol. 2020, 11, 594265. [Google Scholar] [CrossRef] [PubMed]
- Cope, C.G.; Eysenbach, S.R.; Faidiga, A.S.; Hausman, C.E.; Medeiros, J.S.; Murphy, J.E.; Burns, J.H. Potential interactive effects between invasive Lumbricus terrestris earthworms and the invasive plant Alliaria petiolata on a native plant Podophyllum peltatum in northeastern Ohio, USA. Aob Plants 2020, 13, a73. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Lian, B.; Wu, C.; Guo, P. A comparative study of gut microbiota profiles of earthworms fed in three different substrates. Symbiosis 2018, 74, 21–29. [Google Scholar] [CrossRef]
- Dani, V.D.; Lankadurai, B.P.; Nagato, E.G.; Simpson, A.J.; Simpson, M.J. Comparison of metabolomic responses of earthworms to sub-lethal imidacloprid exposure in contact and soil tests. Environ. Sci. Pollut. Res. 2019, 26, 18846–18855. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Qiao, Y.; Li, H.; Huang, C. Use of integrated biomarker response for studying the resistance strategy of the earthworm Metaphire californica in Cd-contaminated field soils in Hunan Province, South China. Environ. Pollut. 2020, 260, 114056. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ma, X.; Wang, Y.; Saleem, M.; Yang, Y.; Zhang, Q. Ecotoxicity of herbicide carfentrazone-ethyl towards earthworm Eisenia fetida in soil. Comp. Biochem. Physiol. Part C 2022, 253, 109250. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.B.; Wang, X.; Sun, Z.J. Ecotoxicological effects of petroleum-contaminated soil on the earthworm Eisenia fetida. J. Hazard. Mater. 2020, 393, 122384. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, H.; O’Connor, G.; Ogram, A.; Kumar, K. Bioavailability of biosolids-borne ciprofloxacin and azithromycin to terrestrial organisms: Microbial toxicity and earthworm responses. Sci. Total Environ. 2019, 650, 18–26. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, R.; Li, R.; Amjad, A.; Zhang, Z. Bioremediation of Cd-contaminated soil by earthworms (Eisenia fetida): Enhancement with EDTA and bean dregs. Environ. Pollut. 2020, 266, 115191. [Google Scholar] [CrossRef]
Identifier | Subject Categories | Percentage/% | Journals | Percentage/% |
---|---|---|---|---|
1 | Environmental Science | 37.51 | Soil Biology & Biochemistry | 7.06 |
2 | Soil Science | 33.87 | Applied Soil Ecology | 5.72 |
3 | Ecology | 17.82 | Pedobiologia | 4.65 |
4 | Toxicology | 10.28 | Environmental Pollution | 3.47 |
5 | Engineering Environmental | 4.96 | Ecotoxicology and Environmental Safety | 3.39 |
6 | Agronomy | 4.53 | Chemosphere | 3.38 |
7 | Plant Sciences | 3.42 | Science of the Total Environment | 3.01 |
8 | Agriculture Multidisciplinary | 3.41 | Biology and Fertility of Soils | 2.99 |
9 | Zoology | 3.33 | European Journal of Soil Biology | 2.74 |
10 | Biodiversity Conservation | 2.88 | Environmental Toxicology and Chemistry | 2.57 |
Identifier | Countries/Regions | Records | Countries/Regions | Centrality |
---|---|---|---|---|
1 | United States | 1303 | Denmark | 0.90 |
2 | People’s Republic of China | 1186 | England | 0.88 |
3 | France | 897 | Brazil | 0.86 |
4 | Germany | 783 | Scotland | 0.85 |
5 | England | 643 | Colombia | 0.84 |
6 | Netherlands | 473 | Mexico | 0.81 |
7 | Spain | 421 | Sweden | 0.62 |
8 | India | 419 | Portugal | 0.61 |
9 | Canada | 414 | Spain | 0.60 |
10 | Brazil | 328 | New Zealand | 0.53 |
Identifier | Institutionss | Records | Institutions | Centrality |
---|---|---|---|---|
1 | Chinese Acad Sci | 317 | Cornell Univ | 0.34 |
2 | Wageningen Univ | 197 | INRA | 0.33 |
3 | INRA | 180 | Univ Montpellier | 0.26 |
4 | Russian Acad Sci | 122 | Univ Florida | 0.22 |
5 | Univ Chinese Acad Sci | 110 | Ctr Ecol & Hydrol | 0.16 |
6 | Vrije Univ Amsterdam | 90 | Univ Leipzig | 0.16 |
7 | Univ Gottingen | 87 | Nankai Univ | 0.15 |
8 | China Agr Univ | 80 | Rice Univ | 0.15 |
9 | Univ Vigo | 73 | Chinese Acad Sci | 0.14 |
10 | Aarhus Univ | 71 | Univ Gottingen | 0.14 |
Identifier | Authors | Records | TLCS |
---|---|---|---|
1 | Lavelle P | 140 | 4817 |
2 | Scheu S | 130 | 3258 |
3 | Decaens T | 89 | 1863 |
4 | Morgan AJ | 78 | 1766 |
5 | Spurgeon DJ | 56 | 1753 |
6 | Capowiez Y | 90 | 1708 |
7 | Bohlen PJ | 32 | 1667 |
8 | Cluzeau D | 55 | 1577 |
9 | Hodson ME | 67 | 1505 |
10 | Butt KR | 66 | 1395 |
Identifier | Size | Silhouette | Mean (Year) | Representative Terms (LLR) |
---|---|---|---|---|
0 | 21 | 0.80 | 1995 | 14C-labeled beech leaf litter; sarophagous invertebrate; soil structure |
1 | 19 | 0.99 | 2006 | Eisenia fetida; heavy metal; sewage sludge |
2 | 16 | 0.78 | 1996 | aphid development; herbivore system; tropical sugarcane ecosystem |
3 | 15 | 0.79 | 1999 | chisel-tilled soil; earthworm community structure; triazole fungicide |
4 | 15 | 0.79 | 1996 | microbial biomass; faunal interaction; hordelymus europaen |
5 | 13 | 0.81 | 1993 | biogenic structure; different arable farming system; enchytraeid activity |
6 | 12 | 0.88 | 1995 | pedestrian activity; reproduction test; recycled water source |
7 | 11 | 0.88 | 1993 | microbial communities; organic arable farming; reduced tillage |
8 | 11 | 0.96 | 1996 | stabilizing principle; contrasting chemical composition; humid tropical condition |
9 | 10 | 0.98 | 2009 | soil invertebrate; tropical soil; Eisenia andrei |
10 | 5 | 0.96 | 1995 | exotic earthworm; laboratory condition; barley straw |
Keywords | Strength | Begin | End | 1980–2022 |
---|---|---|---|---|
Impact | 78.99 | 2018 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃ |
Biodiversity | 11.14 | 2018 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂ |
Oxidative stress | 59 | 2018 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃ |
Diversity | 4.06 | 2018 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂ |
Response | 54.31 | 2019 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ |
Eisenia fetida | 23.43 | 2020 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
Exposure | 53.43 | 2020 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
Countries/Regions | Strength | Begin | End | 1980–2022 |
---|---|---|---|---|
People’s Republic of China | 123.65 | 2018 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃ |
Australia | 29.27 | 1991 | 1999 | ▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
United Stated | 25.76 | 1980 | 1996 | ▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Scotland | 24.55 | 1996 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Finland | 21.77 | 1990 | 2005 | ▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Iran | 14.51 | 2020 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
South Africa | 13.09 | 2007 | 2012 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂ |
Austria | 12.24 | 2017 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂ |
England | 12.07 | 1998 | 2005 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Japan | 11.64 | 2012 | 2015 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂▂ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Chen, S.; Liu, Z.; Wu, L.; Xiang, H.; Zhang, J.; Wei, H. A Bibliometric Analysis on Research Progress of Earthworms in Soil Ecosystems. Biology 2024, 13, 385. https://doi.org/10.3390/biology13060385
Chen J, Chen S, Liu Z, Wu L, Xiang H, Zhang J, Wei H. A Bibliometric Analysis on Research Progress of Earthworms in Soil Ecosystems. Biology. 2024; 13(6):385. https://doi.org/10.3390/biology13060385
Chicago/Turabian StyleChen, Jiayi, Shufang Chen, Ziqiang Liu, Lizhu Wu, Huimin Xiang, Jiaen Zhang, and Hui Wei. 2024. "A Bibliometric Analysis on Research Progress of Earthworms in Soil Ecosystems" Biology 13, no. 6: 385. https://doi.org/10.3390/biology13060385
APA StyleChen, J., Chen, S., Liu, Z., Wu, L., Xiang, H., Zhang, J., & Wei, H. (2024). A Bibliometric Analysis on Research Progress of Earthworms in Soil Ecosystems. Biology, 13(6), 385. https://doi.org/10.3390/biology13060385