Padina Minor Extract Confers Resistance against Candida Albicans Infection: Evaluation in a Zebrafish Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Effects of Dietary P. minor on Growth, Survival, and Disease Resistance of Zebrafish
2.1.1. Zebrafish
2.1.2. Alga Extract
2.1.3. Feed Preparation
2.1.4. Experimental Grouping
2.1.5. Disease Resistance Experiment
2.2. Effects of Dietary P. minor Extract on Antibacterial and Immune Abilities of Zebrafish
2.2.1. Immunity Test
2.2.2. RNA Extraction
2.3. Statistical Analysis
3. Results
3.1. Effects of Dietary P. minor on Growth, Survival, and Disease Resistance of Zebrafish
3.1.1. Fish Growth and Survival
3.1.2. Disease Resistance Experiment
3.2. Effects of Dietary P. minor Extract on Antibacterial and Immune Abilities of Zebrafish
Immunity
4. Discussion
4.1. Fish Growth and Survival
4.2. Application of Algae in Disease Resistance
4.3. Immunity and Disease Resistance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, C.-Y.; Chiang, C.-Y.; Tsai, H.-J. Zebrafish and Medaka: New model organisms for modern biomedical research. J. Biomed. Sci. 2016, 23, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Harley, B.K.; Neglo, D.; Tawiah, P.; Pipim, M.A.; Mireku-Gyimah, N.A.; Tettey, C.O.; Amengor, C.D.; Fleischer, T.C.; Waikhom, S.D. Bioactive triterpenoids from Solanum torvum fruits with antifungal, resistance modulatory and anti-biofilm formation activities against fluconazole-resistant candida albicans strains. PLoS ONE 2021, 16, e0260956. [Google Scholar] [CrossRef] [PubMed]
- Benedict, K.; Jackson, B.R.; Chiller, T.; Beer, K.D. Estimation of direct healthcare costs of fungal diseases in the United States. Clin. Infect. Dis. 2019, 68, 1791–1797. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cheng, L.; Lei, Y.L.; Ren, B.; Zhou, X. The Interactions between Candida albicans and mucosal immunity. Front. Microbiol. 2021, 12, 652725. [Google Scholar] [CrossRef] [PubMed]
- Hernández, I.; Martínez-Aragón, J.; Tovar, A.; Pérez-Lloréns, J.; Vergara, J. Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters 2. Ammonium. J. Appl. Phycol. 2002, 14, 375–384. [Google Scholar] [CrossRef]
- Hernández, I.; Fernández-Engo, M.A.; Pérez-Lloréns, J.L.; Vergara, J.J. Integrated outdoor culture of two estuarine macroalgae as biofilters for dissolved nutrients from Sparus auratus waste waters. J. Appl. Phycol. 2005, 17, 557–567. [Google Scholar] [CrossRef]
- Copertino, M.d.S.; Tormena, T.; Seeliger, U. Biofiltering efficiency, uptake and assimilation rates of Ulva clathrata (Roth) J. Agardh (Clorophyceae) cultivated in shrimp aquaculture waste water. J. Appl. Phycol. 2009, 21, 31–45. [Google Scholar] [CrossRef]
- Liu, D.; Keesing, J.K.; Xing, Q.; Shi, P. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Pollut. Bull. 2009, 58, 888–895. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Nunes, S.; Carneiro, M.; Pereira, D. Nutrients’ removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass Bioenergy 2009, 33, 327–331. [Google Scholar] [CrossRef]
- López-Mosquera, M.E.; Fernández-Lema, E.; Villares, R.; Corral, R.; Alonso, B.; Blanco, C. Composting fish waste and seaweed to produce a fertilizer for use in organic agriculture. Procedia Environ. Sci. 2011, 9, 113–117. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Azevedo, C.; Trigueiro, T.; Pereira, D.; Carneiro, M.; Camara, M. Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int. Biodeterior. Biodegrad. 2011, 65, 253–257. [Google Scholar] [CrossRef]
- Macchiavello, J.; Bulboa, C. Nutrient uptake efficiency of Gracilaria chilensis and Ulva lactuca in an IMTA system with the red abalone Haliotis rufescens. Lat. Am. J. Aquat. Res. 2014, 42, 523–533. [Google Scholar] [CrossRef]
- Liu, L.; Heinrich, M.; Myers, S.; Dworjanyn, S.A. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: A phytochemical and pharmacological review. J. Ethnopharmacol. 2012, 142, 591–619. [Google Scholar] [CrossRef]
- Bedoux, G.; Hardouin, K.; Burlot, A.S.; Bourgougnon, N. Bioactive components from seaweeds: Cosmetic applications and future development. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2014; Volume 71, pp. 345–378. [Google Scholar]
- Mirzadeh, M.; Lelekami, A.K.; Khedmat, L. Plant/algal polysaccharides extracted by microwave: A review on hypoglycemic, hypolipidemic, prebiotic, and immune-stimulatory effect. Carbohydr. Polym. 2021, 266, 118134. [Google Scholar] [CrossRef] [PubMed]
- Kent, M.; Welladsen, H.M.; Mangott, A.; Li, Y. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE 2015, 10, e0118985. [Google Scholar] [CrossRef]
- ARTS, M.; Rai, H. Effects of enhanced ultraviolet-B radiation on the production of lipid, polysaccharide and protein in three freshwater algal species. Freshw. Biol. 1997, 38, 597–610. [Google Scholar] [CrossRef]
- Rahim, S.A.; Carter, P.A.; Elkordy, A.A. Design and evaluation of effervescent floating tablets based on hydroxyethyl cellulose and sodium alginate using pentoxifylline as a model drug. Drug Des. Dev. Ther. 2015, 1843–1857. [Google Scholar]
- Demajo, J.K.; Cassar, V.; Farrugia, C.; Millan-Sango, D.; Sammut, C.; Valdramidis, V.; Camilleri, J. Effectiveness of disinfectants on antimicrobial and physical properties of dental impression materials. Int. J. Prosthodont. 2016, 29, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, J.; Bhatnagar, I.; Kim, S.-K. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar. Drugs 2014, 12, 300–316. [Google Scholar] [CrossRef]
- Agarwal, T.; Narayana, S.G.H.; Pal, K.; Pramanik, K.; Giri, S.; Banerjee, I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int. J. Biol. Macromol. 2015, 75, 409–417. [Google Scholar] [CrossRef]
- Boekhoven, J.; Zha, R.H.; Tantakitti, F.; Zhuang, E.; Zandi, R.; Newcomb, C.J.; Stupp, S.I. Alginate–peptide amphiphile core–shell microparticles as a targeted drug delivery system. RSC Adv. 2015, 5, 8753–8756. [Google Scholar] [CrossRef] [PubMed]
- Fitton, J.H.; Irhimeh, M.; Falk, N. Macroalgal fucoidan extracts: A new opportunity for marine cosmetics. Cosmet. Toilet. 2007, 122, 55. [Google Scholar]
- Cahyana, A.H.; Shuto, Y.; Kinoshita, Y. Pyropheophytin a as an antioxidative substance from the marine alga, Arame (Eisenia bicyclis). Biosci. Biotechnol. Biochem. 1992, 56, 1533–1535. [Google Scholar] [CrossRef]
- Madhavi, D.L.; Deshpande, S.; Salunkhe, D.K. Food Antioxidants: Technological: Toxicological and Health Perspectives; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Nagai, T.; Yukimoto, T. Preparation and functional properties of beverages made from sea algae. Food Chem. 2003, 81, 327–332. [Google Scholar] [CrossRef]
- Wang, B.-G.; Zhang, W.-W.; Duan, X.-J.; Li, X.-M. In vitro antioxidative activities of extract and semi-purified fractions of the marine red alga, Rhodomela confervoides (Rhodomelaceae). Food Chem. 2009, 113, 1101–1105. [Google Scholar] [CrossRef]
- Hu, T.; Liu, D.; Chen, Y.; Wu, J.; Wang, S. Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. Int. J. Biol. Macromol. 2010, 46, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Rioux, L.-E.; Turgeon, S.L.; Beaulieu, M. Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry 2010, 71, 1586–1595. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.; Dawood, M.A.; Alagawany, M.; Faggio, C.; Nowosad, J.; Kucharczyk, D. Health benefits and potential applications of fucoidan (FCD) extracted from brown seaweeds in aquaculture: An updated review. Fish Shellfish Immunol. 2022, 122, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Fernando, I.S.; Nah, J.-W.; Jeon, Y.-J. Potential anti-inflammatory natural products from marine algae. Environ. Toxicol. Pharmacol. 2016, 48, 22–30. [Google Scholar] [CrossRef]
- Karmakar, P.; Pujol, C.A.; Damonte, E.B.; Ghosh, T.; Ray, B. Polysaccharides from Padina tetrastromatica: Structural features, chemical modification and antiviral activity. Carbohydr. Polym. 2010, 80, 513–520. [Google Scholar] [CrossRef]
- Younis, E.-S.M.; Al-Quffail, A.S.; Al-Asgah, N.A.; Abdel-Warith, A.-W.A.; Al-Hafedh, Y.S. Effect of dietary fish meal replacement by red algae, Gracilaria arcuata, on growth performance and body composition of Nile tilapia Oreochromis niloticus. Saudi J. Biol. Sci. 2018, 25, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Andrei, R.C.; Cristea, V.; Crețu, M.; Dediu, L.; Docan, A.I. The effect of feeding rate on growth performance and body composition of Russian sturgeon (Acipenser gueldenstaedtii) juveniles. Aquac. Aquar. Conserv. Legis. 2018, 11, 645–652. [Google Scholar]
- Pan, C.-Y.; Peng, K.-C.; Lin, C.-H.; Chen, J.-Y. Transgenic expression of tilapia hepcidin 1-5 and shrimp chelonianin in zebrafish and their resistance to bacterial pathogens. Fish Shellfish Immunol. 2011, 31, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Akbary, P.; Ajdari, A.; Ajang, B. Growth, survival, nutritional value and phytochemical, and antioxidant state of Litopenaeus vannamei shrimp fed with premix extract of brown Sargassum ilicifolium, Nizimuddinia zanardini, Cystoseira indica, and Padina australis macroalgae. Aquac. Int. 2023, 31, 681–701. [Google Scholar] [CrossRef]
- Dutta, S. Food and feeding habits of Danio rerio (Ham. Buch) inhabiting Gadigarh Stream, Jammu. J. Freshw. Biol. 1993, 5, 165–168. [Google Scholar]
- McClure, M.; McIntyre, P.; McCune, A. Notes on the natural diet and habitat of eight danionin fishes, including the zebrafish Danio rerio. J. Fish Biol. 2006, 69, 553–570. [Google Scholar] [CrossRef]
- Natrah, F.; Harah, Z.M.; Sidik, B.J.; Izzatul, N.; Syahidah, A. Antibacterial activities of selected seaweed and seagrass from port Dickson coastal water against different aquaculture pathogens. Sains Malays. 2015, 44, 1269–1273. [Google Scholar] [CrossRef]
- Salosso, Y.; Aisiah, S.; Toruan, L.N.L.; Pasaribu, W. Nutrient content, active compound and antibacterial activity of Padina australis against Aeromonas hydropilla. Act. Compd. Antibact. Act. Padina Aust. Nutr. Content 2020, 12, 771–776. [Google Scholar] [CrossRef]
- Passantino, L.; Altamura, M.; Cianciotta, A.; Patruno, R.; Tafaro, A.; Jirillo, E.; Passantino, G. Fish immunology. I. Binding and engulfment of Candida albicans by erythrocytes of rainbow trout (Salmo gairdneri Richardson). Immunopharmacol. Immunotoxicol. 2002, 24, 665–678. [Google Scholar] [CrossRef]
- Bergeron, A.C.; Seman, B.G.; Hammond, J.H.; Archambault, L.S.; Hogan, D.A.; Wheeler, R.T. Candida albicans and Pseudomonas aeruginosa interact to enhance virulence of mucosal infection in transparent zebrafish. Infect. Immun. 2017, 85, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Bottiglione, F.; Dee, C.T.; Lea, R.; Zeef, L.A.; Badrock, A.P.; Wane, M.; Bugeon, L.; Dallman, M.J.; Allen, J.E.; Hurlstone, A.F. Zebrafish IL-4—like cytokines and IL-10 suppress inflammation but only IL-10 is essential for gill homeostasis. J. Immunol. 2020, 205, 994–1008. [Google Scholar] [CrossRef] [PubMed]
- Marichal, T.; Starkl, P.; Reber, L.L.; Kalesnikoff, J.; Oettgen, H.C.; Tsai, M.; Metz, M.; Galli, S.J. A beneficial role for immunoglobulin E in host defense against honeybee venom. Immunity 2013, 39, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Junttila, I.S. Tuning the cytokine responses: An update on interleukin (IL)-4 and IL-13 receptor complexes. Front. Immunol. 2018, 9, 888. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, C.; Thornton, D.; Grencis, R. A sticky end for gastrointestinal helminths; the role of the mucus barrier. Parasite Immunol. 2018, 40, e12517. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Clark, M.S.; Secombes, C.J. Characterisation, expression and promoter analysis of an interleukin 10 homologue in the puffer fish, Fugu rubripes. Immunogenetics 2003, 55, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-C.; Shao, Y.-Q.; Huang, Y.-Q.; Jiang, S.-G. Cloning, characterization and expression analysis of interleukin-10 from the zebrafish (Danio rerion). BMB Rep. 2005, 38, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Pelegrín, P.; García-Castillo, J.; Mulero, V.; Meseguer, J. Interleukin-1β isolated from a marine fish reveals up-regulated expression in macrophages following activation with lipopolysaccharide and lymphokines. Cytokine 2001, 16, 67–72. [Google Scholar] [CrossRef]
- Jun, W.; Yu-Hong, S.; Zhang, X.-H.; Chang-Hong, L.; Ming-Yun, L.; Jiong, C. Molecular characterization of an IL-1β gene from the large yellow croaker (Larimichthys crocea) and its effect on fish defense against Vibrio alginolyticus infection. Zool. Res. 2015, 36, 133. [Google Scholar]
Water Quality | Numerical Value | Water Quality | Numerical Value |
---|---|---|---|
Temperature (°C) | 28.00 ± 0.5 | Dissolved oxygen (ppm) | 5.00 ± 0.05 |
pH | 7.3 ± 0.5 | Ammonia nitrogen (ppm) | 0.01 ± 0.05 |
Nitrite (ppm) | 0.02 ± 0.05 | Nitrate (ppm) | 0.03 ± 0.05 |
Treatment | ||||
---|---|---|---|---|
Ingredients (g) | Control | 1% | 5% | 10% |
Fishmeal | 42 | 42 | 42 | 42 |
Soy flour | 20 | 20 | 20 | 20 |
Squid powder | 5 | 5 | 5 | 5 |
Cellulose | 6.1 | 6 | 5.6 | 5.1 |
Starch | 16.6 | 16.6 | 16.6 | 16.6 |
Fish oil | 3.3 | 3.3 | 3.3 | 3.3 |
Shrimp powder | 3 | 3 | 3 | 3 |
Mineral mix a | 2 | 2 | 2 | 2 |
Vitamin mix b | 2 | 2 | 2 | 2 |
Padina minor extract | 0 | 0.1 | 0.5 | 1 |
Feed basic ingredients | ||||
Crude protein | 34.7 | 34.3 | 35.0 | 34.0 |
Fat | 14 | 14 | 14 | 14 |
Ash content | 11.8 | 11.8 | 11.8 | 13.7 |
Moisture | 0.5 | 0.5 | 0.5 | 0.5 |
Number | Gene Name | Primer Sequence (5′→3′) |
---|---|---|
1 | β-actinf (z) | AGAGCTATGAGCTGCCTGACG |
2 | β-actinr (z) | CCGCAAGATTCCATACCCA |
3 | TNF-α (z) | TGACTGAGGAACAAGTGCTTATGAG |
4 | TNF-α (z) | GCAGCGCCGAGGTAAATAGTG |
5 | IL-1β (z) | ATGGCAGAAGTACCTAAGCTC |
6 | IL- 1β (z) | TTAGGAAGACACAAATTGCATGGTGAACTCAGT |
7 | IL-10 (z) | CGCTTCTTCTTTGCGACTGTGCT |
8 | IL-10 (z) | TCACCATATCCCGCTTGAGTTCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-C.; Ding, D.-S.; Lo, Y.-H.; Pan, C.-Y.; Wen, Z.-H. Padina Minor Extract Confers Resistance against Candida Albicans Infection: Evaluation in a Zebrafish Model. Biology 2024, 13, 384. https://doi.org/10.3390/biology13060384
Wu C-C, Ding D-S, Lo Y-H, Pan C-Y, Wen Z-H. Padina Minor Extract Confers Resistance against Candida Albicans Infection: Evaluation in a Zebrafish Model. Biology. 2024; 13(6):384. https://doi.org/10.3390/biology13060384
Chicago/Turabian StyleWu, Chang-Cheng, De-Sing Ding, Yi-Hao Lo, Chieh-Yu Pan, and Zhi-Hong Wen. 2024. "Padina Minor Extract Confers Resistance against Candida Albicans Infection: Evaluation in a Zebrafish Model" Biology 13, no. 6: 384. https://doi.org/10.3390/biology13060384
APA StyleWu, C. -C., Ding, D. -S., Lo, Y. -H., Pan, C. -Y., & Wen, Z. -H. (2024). Padina Minor Extract Confers Resistance against Candida Albicans Infection: Evaluation in a Zebrafish Model. Biology, 13(6), 384. https://doi.org/10.3390/biology13060384