The Structure of Digestive Tract Coordinating Digestion and Respiration in an Air-Breathing Weatherloach, Misgurnus anguillicaudatus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Histology
2.3. X-ray Study of the Intestinal Contents
2.4. Measurement of the Intestinal Evacuation Rate
2.5. Statistical Analysis
3. Results
3.1. Morphological and Histological Observation
3.1.1. Esophagus
3.1.2. Anterior Intestine
3.1.3. Middle Intestine
3.1.4. Posterior Intestine
3.1.5. Rectum
3.2. The Digesta and Ventilation in the Intestine
3.3. Characteristics of Intestinal Evacuation
4. Discussion
4.1. Intestinal Modifications for Different Functions
4.2. Coordination between Digestion and Respiration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GAB | Gastrointestinal Air Breathing |
LM | Light Microscopy |
SEM | Scanning Electron Microscopy |
GI | Gastrointestinal |
ES | Esophagus |
AI | Anterior Intestine |
MI | Middle Intestine |
PI | Posterior Intestine |
R | Rectum |
References
- Nelson, J.A.; Dehn, M. The GI tract in air-breathing. In The Multifunctional Gut of Fish; Grosell, M., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: London, UK, 2011; pp. 395–434. [Google Scholar]
- Chen, S.W.; Ji, H.; Zhu, W.D.; Xiong, C.X.; Cao, F.Y. Digestive Tract Index and Distribution of Digestive Enzymes in Oriental Weatherfish (Misgurnus anguillicaudatus). Fish. Sci. 2009, 28, 272–275. [Google Scholar]
- Mcmahon, B.R.; Burggren, W.W. Respiratory Physiology of Intestinal Air Breathing in the Teleost Fish Misgurnus anguillicaudatus. J. Exp. Biol. 1987, 133, 371–393. [Google Scholar] [CrossRef]
- Gonçalves, A.F.; Castro LF, C.; Pereira-Wilson, C.; Coimbra, J.; Wilson, J.M. Is there a compromise between nutrient uptake and gas exchange in the gut of Misgurnus anguillicaudatus, an intestinal air-breathing fish? Comp. Biochem. Physiol. Part D Genom. Proteom. 2007, 2, 345–355. [Google Scholar] [CrossRef]
- Persaud, D.I.; Ramnarine, I.W.; Agard, J.B. Trade-off between digestion and respiration in two airbreathing callichthyid catfishes Holposternum littorale (Hancock) and Corydoras aeneus (Gill). Environ. Biol. Fishes 2006, 76, 159–165. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, R.; Yang, X.; Fan, Q.; Wei, K.; Wang, W. Ontogeny of the digestive tract in mud loach Misgurnus anguillicaudatus larvae. Aquac. Res. 2014, 47, 1180–1190. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, I.S.; Kim, S.Y. Structure and mucous histochemistry of the intestinal respiratory tract of the mud weatherloach, Misgurnus anguillicaudatus (Cantor). J. Appl. Ichthyol. 2003, 19, 215–219. [Google Scholar] [CrossRef]
- Xu, J. Electrochemical Solid-Phase Microextraction and Fluorescence Spectroscopy Study of Free Barium Ions in Barium Meals by Rosmarinic Acid Salts. Master’s Thesis, Shenyang Normal University, Shenyang, China, 2012. [Google Scholar]
- Dias, J.; Yúfera, M.; Luísa, M.P.; Valente; Rema, P. Feed transit and apparent protein, phosphorus and energy digestibility of practical feed ingredients by senegalese sole (Solea senegalensis). Aquaculture 2010, 302, 94–99. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, I.S. Histology and mucin histochemistry of the gastrointestinal tract of the mud loach, in relation to respiration. J. Fish Biol. 2001, 58, 861–872. [Google Scholar] [CrossRef]
- Harder, W. The digestive tract. In Anatomy of Fishes; Harder, W., Ed.; E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 1975. [Google Scholar]
- Chen, G.H.; Wang, Y.B.; Wang, J.; Luo, J.; Lin, B.; Zhang, B. Histology of the digestive system in Cheilinus undulates rüppell. Acta Hydrobiol. Sin. 2010, 34, 685–693. [Google Scholar] [CrossRef]
- Jaroszewska, M.; Dabrowski, K.; Wilczyńska, B.; Kakareko, T. Structure of the gut of the racer goby Neogobius gymnotrachelus (Kessler, 1857). J. Fish Biol. 2008, 72, 1773–1786. [Google Scholar] [CrossRef]
- Ozaki, H. Fish Digestive Physiology; Wu Shangzhong, trans; Shanghai Science and Technology Press: Shanghai, China, 1983; p. 22. [Google Scholar]
- Kariya, T.; Hotta, H.; Takahashi, M. Relation between the condition of the stomach mucous folds and the stomach content in the mackerel. Bull. Jap. Soc. Sci. Fish. 1969, 35, 441–445. [Google Scholar] [CrossRef]
- Wetherbee, B.M.; Gruber, S.H. Absorption efficiency of the lemon shark Negaprion brevirostris at varying rates of energy intake. Copeia 1993, 2, 416–425. [Google Scholar] [CrossRef]
- Parker TJ, V. On the Intestinal Spiral Valve in the genus Raia. Trans. Zool. Soc. Lond. 1880, 11, 49–61. [Google Scholar] [CrossRef]
- Hara, M.; Washioka, H.; Tonosaki, A. Innervation and gap junctions of intestinal striated and smooth muscle cells in the loach. Thin section and freeze-fracture study. Cell Tissue Res. 1989, 257, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Osada, M.; Watanabe, A. Cytologic and electron microscopic studies on the intestinal respiration of the loach (Misgurnus anguillicaudatus). Arch. Histol. Jpn. 1963, 23, 431–446. [Google Scholar] [CrossRef] [PubMed]
- Sperry, D.G.; Wassersug, R.J. A proposed function for microridges on epithelial cells. Anat. Rec. 1976, 185, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Lupu, H. Nouvelles contributions a l’etude dusang de Cobitis fossilis. Ann Sci. Univ. Fassy 1925, 14, 60–114. [Google Scholar]
- Graham, J.B. Chapter 3—Respiratory organs. In Air-Breathing Fishes; Academic Press: San Diego, CA, USA, 1997; pp. 65–133. [Google Scholar]
- Crawford, R.H. Aquatic and Aerial Respiration in the Bowfin, Longnose Gar and Alaska Blackfish. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 1971; p. 202. [Google Scholar]
- Da, C.A.; Pedretti, A.C.; Fernandes, M.N. Stereological estimation of the surface area and oxygen diffusing capacity of the respiratory stomach of the air-breathing armored catfish Pterygoplichthys anisitsi (teleostei: Loricariidae). J. Morphol. 2009, 270, 601. [Google Scholar]
- Maina, J.N. Structure, function and evolution of the gas exchangers: Comparative perspectives. J. Anat. 2002, 201, 281–304. [Google Scholar] [CrossRef]
- Powwow, D.; Goniakowska-Witalińska, L. Morphology of the air-breathing stomach of the catfish Hypostomus plecostomus. J. Morphol. 2003, 257, 147–163. [Google Scholar]
- Jasinski, A. Air-blood barrier in the respiratory intestine of the pond-loach, Migurnus fossilis L. Acta Anat. 1973, 86, 376–393. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Cao, X.; Tian, X. Transcriptomic analysis of compromise between air-breathing and nutrient uptake of posterior intestine in loach (Misgurnus anguillicaudatus), an air-breathing fish. Mar. Biotechnol. 2016, 18, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Kramer, D.L.; Braun, E.A. Short term effects of food availability on air-breathing frequency in the fish, Corydoras aeneus (Callichthyidae). Can. J. Zool. 1983, 61, 1964–1967. [Google Scholar] [CrossRef]
- Carter, G.S.; Beadle, L.C. The fauna of the swamps of the Paraguayan Chaco in relation to its environment. II. Respiratory adaptations in the fishes. J. Linn. Soc. Lond. Zool. 1931, 37, 327–368. [Google Scholar] [CrossRef]
- Boujard, T.; Moreau, Y.; Luquet, P. Diel cycles in Hoplosternum littorale, (teleostei): Entrainment of feeding activity by low intensity colored light. Environ. Biol. Fishes 1992, 35, 301–309. [Google Scholar] [CrossRef]
Mucosal Folds Height (μm) | Submucosa Thick (μm) | Circular Muscle Thick (μm) | Longitudinal Muscle Thick (μm) | Serosa Thick (μm) | |
---|---|---|---|---|---|
Esophagus | 94.32 ± 18.87 a | 14.22 ± 5.43 a | 36.65 ± 5.88 c | 18.64 ± 7.99 b | 4.89 ± 1.00 a |
Anterior intestine | 459.26 ± 100.68 b | 29.98 ± 7.49 b | 148.08 ± 17.29 e | 86.92 ± 11.90 c | 5.22 ± 1.01 a |
Middle intestine | 197.58 ± 20.32 c | 24.96 ± 5.74 b | 88.52 ± 12.61 d | 35.94 ± 5.87 d | 4.39 ± 1.12 a |
Posterior intestine (Dorsal) | - | 53.83 ± 8.34 c | 17.23 ± 3.16 a | 31.68 ± 4.5 d | 4.23 ± 1.23 a |
Posterior intestine (Ventral) | - | 24.98 ± 5.49 b | 24.83 ± 3.34 b | 19.32 ± 4.18 b | 4.96 ± 0.99 a |
Rectum | - | 12.23 ± 3.21 a | 20.42 ± 3.41 ab | 6.90 ± 1.71 a | 4.23 ± 0.82 a |
Digestive Tract | No. of Mucous Cells per 100 μm | No. of Erythrocyte per 100 μm (Blood Capillaries) |
---|---|---|
Esophagus | 25.1 ± 3.16 e | - |
Anterior intestine | 9.6 ± 1.85 c | - |
Middle intestine | 4.8 ± 1.17 b | 2.6 ± 0.38 a (+) |
Posterior intestine (Dorsal) | 16.0 ± 1.72 d | 10.2 ± 1.40 b (+++) |
Posterior intestine (Ventral) | 12.3 ± 1.50 c | 3.9 ± 0.60 a (++) |
Rectum | 2.3 ± 0.8 a | 17.3 ± 1.88 c (++++) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Z.; Ma, H.; Ma, L.; Yang, X. The Structure of Digestive Tract Coordinating Digestion and Respiration in an Air-Breathing Weatherloach, Misgurnus anguillicaudatus. Biology 2024, 13, 381. https://doi.org/10.3390/biology13060381
Qi Z, Ma H, Ma L, Yang X. The Structure of Digestive Tract Coordinating Digestion and Respiration in an Air-Breathing Weatherloach, Misgurnus anguillicaudatus. Biology. 2024; 13(6):381. https://doi.org/10.3390/biology13060381
Chicago/Turabian StyleQi, Zixin, Hongbo Ma, Li Ma, and Xuefen Yang. 2024. "The Structure of Digestive Tract Coordinating Digestion and Respiration in an Air-Breathing Weatherloach, Misgurnus anguillicaudatus" Biology 13, no. 6: 381. https://doi.org/10.3390/biology13060381
APA StyleQi, Z., Ma, H., Ma, L., & Yang, X. (2024). The Structure of Digestive Tract Coordinating Digestion and Respiration in an Air-Breathing Weatherloach, Misgurnus anguillicaudatus. Biology, 13(6), 381. https://doi.org/10.3390/biology13060381