Effects of Inducible Nitric Oxide Synthase (iNOS) Gene Knockout on the Diversity, Composition, and Function of Gut Microbiota in Adult Zebrafish
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Gut Microbiota DNA Extraction and 16S rRNA Amplicon Sequencing
2.3. Data Analysis
2.4. Measurement of Nitric Oxide Content in Zebrafish Intestine
2.5. Intestinal Pathological Tissue Preparation
2.6. Transcriptomic Analysis
2.7. Real-Time Quantitative PCR (RT-qPCR) Analysis of Immune Gene Expression
3. Results
3.1. Generation of iNOS-Deficient Zebrafish Mode
3.2. Intestinal Nitric Oxide Levels in Zebrafish with Modified iNOS Expression
3.3. Histological Analysis of iNOS-Deficient Zebrafish Intestinal Tissue
3.4. Comparative Gut Microbiome Diversity in Zebrafish with Variable iNOS Genotypes
3.5. Transcriptomic Insights from nos2−/− Models
3.6. Predictive Analysis of Correlations between Gut Microbiota and Gene Expression Profiles
3.7. Validation of Immune-Related Gene Expression Alterations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric oxide synthases: Structure, function and inhibition. Biochem. J. 2001, 357 Pt 3, 593–615. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007, 15, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Penglee, R.; Gao, L.; Huang, Y.; Liu, L.; Nimitkul, S.; Bao, B. The role of nitric oxide and neuronal nitric oxide synthase in zebrafish (Danio rerio) shoaling. J. Fish. 2021, 6, 9. [Google Scholar] [CrossRef]
- Zamora, R.; Vodovotz, Y.; Billiar, T.R. Inducible nitric oxide synthase and inflammatory diseases. Mol. Med. 2000, 6, 347–373. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, P.; Tripathi, P.; Kashyap, L.; Singh, V. The role of nitric oxide in inflammatory reactions. FEMS Immunol. Med. Microbiol. 2007, 51, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Uehara, E.U.; Shida Bde, S.; De Brito, C.A. Role of nitric oxide in immune responses against viruses: Beyond microbicidal activity. Inflamm. Res. 2015, 64, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Lanas, A. Role of nitric oxide in the gastrointestinal tract. Arthritis Res. Ther. 2008, 10 (Suppl. S2), S4. [Google Scholar] [CrossRef] [PubMed]
- Vona, R.; Pallotta, L.; Cappelletti, M.; Severi, C.; Matarrese, P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants 2021, 10, 201. [Google Scholar] [CrossRef]
- Purchiaroni, F.; Tortora, A.; Gabrielli, M.; Bertucci, F.; Gigante, G.; Ianiro, G.; Ojetti, V.; Scarpellini, E.; Gasbarrini, A. The role of intestinal microbiota and the immune system. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 323–333. [Google Scholar]
- Aggarwal, H.; Pathak, P.; Singh, V.; Kumar, Y.; Shankar, M.; Das, B.; Jagavelu, K.; Dikshit, M. Vancomycin-Induced Modulation of Gram-Positive Gut Bacteria and Metabolites Remediates Insulin Resistance in iNOS Knockout Mice. Front. Cell Infect. Microbiol. 2021, 11, 795333. [Google Scholar] [CrossRef]
- Bakke, I.; Coward, E.; Andersen, T.; Vadstein, O. Selection in the host structures the microbiota associated with developing cod larvae (Gadus morhua). Environ. Microbiol. 2015, 17, 3914–3924. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.M.; Mittge, E.; Kuhlman, J.; Baden, K.N.; Cheesman, S.E.; Guillemin, K. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev. Biol. 2006, 297, 374–386. [Google Scholar] [CrossRef]
- Robinson, C.D.; Klein, H.S.; Murphy, K.D.; Parthasarathy, R.; Guillemin, K.; Bohannan, B.J.M. Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration. PLoS Biol. 2018, 16, e2006893. [Google Scholar] [CrossRef] [PubMed]
- Sevellec, M.; Derome, N.; Bernatchez, L. Holobionts and ecological speciation: The intestinal microbiota of lake whitefish species pairs. Microbiome 2018, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Levraud, J.P.; Rawls, J.F.; Clatworthy, A.E. Using zebrafish to understand reciprocal interactions between the nervous and immune systems and the microbial world. J. Neuroinflammation 2022, 19, 170. [Google Scholar] [CrossRef] [PubMed]
- Sree Kumar, H.; Wisner, A.S.; Refsnider, J.M.; Martyniuk, C.J.; Zubcevic, J. Small fish, big discoveries: Zebrafish shed light on microbial biomarkers for neuro-immune-cardiovascular health. Front. Physiol. 2023, 14, 1186645. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; Limbu, S.M.; Qian, Y.; Qiao, F.; Du, Z.-Y.; Zhang, M. The Responses of Germ-Free Zebrafish (Danio rerio) to Varying Bacterial Concentrations, Colonization Time Points, and Exposure Duration. Front. Microbiol. 2019, 10, 2156. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Chen, H.; Cheng, X.; Yin, M.; Yao, X.; Ma, J.; Huang, M.; Chen, G.; Liu, H. Zebrafish: An efficient vertebrate model for understanding role of gut microbiota. Mol. Med. 2022, 28, 161. [Google Scholar] [CrossRef]
- Li, P.; Zhang, J.; Liu, X.; Gan, L.; Xie, Y.; Zhang, H.; Si, J. The Function and the Affecting Factors of the Zebrafish Gut Microbiota. Front. Microbiol. 2022, 13, 903471. [Google Scholar] [CrossRef]
- Lee, J.-G.; Cho, H.-J.; Jeong, Y.-M.; Lee, J.-S. Genetic Approaches Using Zebrafish to Study the Microbiota-Gut-Brain Axis in Neurological Disorders. Cells 2021, 10, 566. [Google Scholar] [CrossRef] [PubMed]
- Kolios, G.; Valatas, V.; Ward, S.G. Nitric oxide in inflammatory bowel disease: A universal messenger in an unsolved puzzle. Immunology 2004, 113, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wessels, H.; Van Alen, T.; Jetten, M.S.M.; Kartal, B. Nitric oxide-dependent anaerobic ammonium oxidation. Nat. Commun. 2019, 10, 1244. [Google Scholar] [CrossRef] [PubMed]
- Tiso, M.; Schechter, A.N. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS ONE 2015, 10, e0119712. [Google Scholar]
- Claus, S.P.; Ellero, S.L.; Berger, B.; Krause, L.; Bruttin, A.; Molina, J.; Paris, A.; Want, E.J.; de Waziers, I.; Cloarec, O.; et al. Colonization-induced host-gut microbial metabolic interaction. mBio 2011, 2, e00271-10. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Q.-Q.; Yuan, J.; Chen, H.-X.; Wan, J. Degeneration of the intestinal microbial community in PI3Kγ-knockout mice. Microb. Pathog. 2020, 142, 104038. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Tao, Z.; Chen, C.; Chow, B.K.C. Effects of secretin gene knockout on the diversity, composition, and function of gut microbiota in adult male mice. Front. Cell Infect. Microbiol. 2023, 13, 1257857. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.S.; Thompson, J.; Kafatos, F.C.; Barillas-Mury, C. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: The time bomb theory of ookinete invasion of mosquitoes. Embo J. 2000, 19, 6030–6040. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hong, P.P.; Yang, M.C.; Zhao, X.F.; Wang, J.X. FOXO regulates the expression of antimicrobial peptides and promotes phagocytosis of hemocytes in shrimp antibacterial immunity. PLoS Pathog. 2021, 17, e1009479. [Google Scholar] [CrossRef] [PubMed]
- Tarnecki, A.M.; Burgos, F.A.; Ray, C.L.; Arias, C. Fish intestinal microbiome: Diversity and symbiosis unravelled by metagenomics. J. Appl. Microbiol. 2017, 123, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Butt, R.L.; Volkoff, H. Gut Microbiota and Energy Homeostasis in Fish. Front. Endocrinol. 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Penglee, R.; Huang, Y.; Yi, X.; Wang, X.; Liu, L.; Gong, X.; Bao, B. CRISPR/Cas9-induced nos2b mutant zebrafish display behavioral abnormalities. Genes. Brain Behav. 2021, 20, e12716. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Huang, Y.; Penglee, R.; Yi, X.; Bao, B. Regulatory roles of the nos2a gene in zebrafish growth. J. Shanghai Ocean. Univ. 2021. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Chen, H.P.; Liao, Z.P.; Huang, Q.R.; He, M. Sodium ferulate attenuates anoxia/reoxygenation-induced calcium overload in neonatal rat cardiomyocytes by NO/cGMP/PKG pathway. Eur. J. Pharmacol. 2009, 603, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, M.; Bedu-Ferrari, C.; Etienne-Mesmin, L.; Mariadassou, M.; Lebreuilly, L.; Tran, S.-L.; Brazeau, L.; Mayeur, C.; Delmas, J.; Rué, O.; et al. Nitric Oxide Impacts Human Gut Microbiota Diversity and Functionalities. mSystems 2021, 6, e0055821. [Google Scholar] [CrossRef] [PubMed]
- Tekedar, H.C.; Arick, M.A., 2nd; Hsu, C.Y.; Thrash, A.; Blom, J.; Lawrence, M.L.; Abdelhamed, H. Identification of Antimicrobial Resistance Determinants in Aeromonas veronii Strain MS-17-88 Recovered from Channel Catfish (Ictalurus punctatus). Front. Cell Infect. Microbiol. 2020, 10, 348. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.L. Nitric oxide in the gastrointestinal tract: Opportunities for drug development. Br. J. Pharmacol. 2019, 176, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Hyde, E.; Sangwan, N.; Gilbert, J.A.; Viirre, E.; Knight, R. Migraines Are Correlated with Higher Levels of Nitrate-, Nitrite-, and Nitric Oxide-Reducing Oral Microbes in the American Gut Project Cohort. mSystems 2016, 1, e00105-16. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, X.; Zeng, L.; Wang, Z.; Deng, N.; Huang, P.; Hou, J.; Jian, S.; Zhao, D. Molecular mechanism of the NOS/NOX regulation of antibacterial activity in Eriocheir sinensis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2024, 271, 110945. [Google Scholar] [CrossRef]
- Fang, F.C. Perspectives series: Host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J. Clin. Investig. 1997, 99, 2818–2825. [Google Scholar] [CrossRef] [PubMed]
- Hong, P.P.; Zhu, X.X.; Yuan, W.J.; Niu, G.J.; Wang, J.X. Nitric Oxide Synthase Regulates Gut Microbiota Homeostasis by ERK-NF-κB Pathway in Shrimp. Front. Immunol. 2021, 12, 778098. [Google Scholar] [CrossRef] [PubMed]
- Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 2010, 11, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Byndloss, M.X.; Olsan, E.E.; Rivera-Chávez, F.; Tiffany, C.R.; Cevallos, S.A.; Lokken, K.L.; Torres, T.P.; Byndloss, A.J.; Faber, F.; Gao, Y.; et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 2017, 357, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.Y.P.; Visvalingam, V.; Wahli, W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology. Faseb J. 2019, 33, 9706–9730. [Google Scholar] [CrossRef] [PubMed]
- El-Sherbeni, A.A.; El-Kadi, A.O. Microsomal cytochrome P450 as a target for drug discovery and repurposing. Drug Metab. Rev. 2017, 49, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. Cytochrome P450 research and The Journal of Biological Chemistry. J. Biol. Chem. 2019, 294, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. Inhibition of Cytochrome P450 Enzymes by Drugs-Molecular Basis and Practical Applications. Biomol. Ther. 2022, 30, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Anavi, S.; Tirosh, O. iNOS as a metabolic enzyme under stress conditions. Free Radic. Biol. Med. 2020, 146, 16–35. [Google Scholar] [CrossRef]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef]
- Wu, J.; Wang, K.; Wang, X.; Pang, Y.; Jiang, C. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell 2021, 12, 360–373. [Google Scholar] [CrossRef] [PubMed]
- Jahagirdar, S.; Morris, L.; Benis, N.; Oppegaard, O.; Hyldegaard, O.; Skrede, S.; Norrby-Teglund, A.; Bruun, T.; Rath, E.; Nedrebø, T.; et al. Analysis of host-pathogen gene association networks reveals patient-specific response to streptococcal and polymicrobial necrotising soft tissue infections. BMC Med. 2022, 20, 173. [Google Scholar] [CrossRef] [PubMed]
- Mazzon, E.; Cuzzocrea, S. Role of iNOS in hepatocyte tight junction alteration in mouse model of experimental colitis. Cell. Mol. Biol. 2003, 49, 45–57. [Google Scholar]
- Kalbermatter, C.; Trigo, N.F.; Christensen, S.; Ganal-Vonarburg, S.C. Maternal Microbiota, Early Life Colonization and Breast Milk Drive Immune Development in the Newborn. Front. Immunol. 2021, 12, 683022. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target Ther. 2021, 6, 94. [Google Scholar] [CrossRef] [PubMed]
- Cross, R.K.; Wilson, K.T. Nitric oxide in inflammatory bowel disease. Inflamm Bowel Dis 2003, 9, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Jemielita, M.; Taormina, M.J.; Burns, A.R.; Hampton, J.S.; Rolig, A.S.; Guillemin, K.; Parthasarathy, R. Spatial and temporal features of the growth of a bacterial species colonizing the zebrafish gut. mBio 2014, 5, e01751-14. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Primer Sequence 5′-3′ | Amplification Length |
---|---|---|
cfd-F | GACTGTATCACGGGAGGGC | >NM_001020532.1 |
cfd-R | CGGCTCCAGACAACGAGT | |
ier2a-F | ATCTGTCACAGAGGAGAGCAC | >NM_001142583.3 |
ier2a-R | GGGCTGCAGTTTTCTTTGTCC | |
rgs13-F | GAGAAGTGGCGGTTTCGTTG | >NM_001089512.1 |
rgs13-R | CTTGAAATCTTCGCAGGCCAG | |
card-F | GCCATGAAGCCCTCAACAC | >XM_021466485.1 |
card-R | ACCTCATGCTCATGACTGATCT | |
CD26-F | CGGAATCCTCATCCCGGTG | >NM_001002363.1 |
CD26-R | CTGCACCAACACAGGTTTGG | |
ikbke-F | GTGGCTCATGGAATGAACCAC | >NM_001002751.2 |
ikbke-R | TCCGGATGCAGATATTCCTCTG | |
CD28-F | CTGGGATTCGCTCTGGTTGT | >XM_005167519.4 |
CD28-R | GCGAAGTAGGGCTCTGAGAG | |
adgrf6-F | TGTCTAAAGTCACCTGAGGTCTG | >XM_017352625.2 |
adgrf6-R | CCTCAGCTGATCAGTGATCCT | |
trafd1-F | TGTGAAGTGTGCCAGGAGC | >NM_001089515.1 |
trafd1-R | AGGAGGCCAGCTCTAGATCA | |
CD109-F | GTCTGAAGTTCTGCGCTGTG | >XM_692420.9 |
CD109-R | CTCCACATTCAGCTGATACGGA | |
c3a.1-F | GTGTGACCCGCTATATGTGC | >NM_131242.1 |
c3a.1-R | AGAACAAGTTCTGATCATCAGG | |
cfb-F | TCAATTTGGAGTCTGGACCCC | >NM_131338.2 |
cfb-R | GTTGGCAAACCCGGACTTTC | |
igsf9ba-F | TGTGGAGTGGTTCAAATTCGG | >XM_009291702.3 |
igsf9ba-R | AAGGTATCGTACTGTTGCTCCAG | |
c8g-F | TTCGCTTCTGGCTGTATTTGTT | >NM_200863.1 |
c8g-R | CCACTTGCCACTCATCTGATC | |
c6-F | TCCCACTATGGGGTGTTTCTG | >XM_017352961.2 |
c6-R | GCAGGCCTCAACATTACACA | |
IL26-F | CAGGAGGAATGTTTGAAGCGG | >NM_001020799.1 |
IL26-R | TCCAGGACACGCTTGAAGTC | |
IL13-F | CTCGCCTGCACTGTATTCG | >NM_001199905.1 |
IL13-R | AATCATGCTCACACTTCAGGC | |
c5-F | TGTCTGCTTCACCGTTCAGG | >XM_001919191.8 |
c5-R | GCGTTGAGCTTCAGGGATTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Chen, Y.; Xie, H.; Feng, Y.; Chen, S.; Bao, B. Effects of Inducible Nitric Oxide Synthase (iNOS) Gene Knockout on the Diversity, Composition, and Function of Gut Microbiota in Adult Zebrafish. Biology 2024, 13, 372. https://doi.org/10.3390/biology13060372
Huang Y, Chen Y, Xie H, Feng Y, Chen S, Bao B. Effects of Inducible Nitric Oxide Synthase (iNOS) Gene Knockout on the Diversity, Composition, and Function of Gut Microbiota in Adult Zebrafish. Biology. 2024; 13(6):372. https://doi.org/10.3390/biology13060372
Chicago/Turabian StyleHuang, Yajuan, Yadong Chen, Haisheng Xie, Yidong Feng, Songlin Chen, and Baolong Bao. 2024. "Effects of Inducible Nitric Oxide Synthase (iNOS) Gene Knockout on the Diversity, Composition, and Function of Gut Microbiota in Adult Zebrafish" Biology 13, no. 6: 372. https://doi.org/10.3390/biology13060372
APA StyleHuang, Y., Chen, Y., Xie, H., Feng, Y., Chen, S., & Bao, B. (2024). Effects of Inducible Nitric Oxide Synthase (iNOS) Gene Knockout on the Diversity, Composition, and Function of Gut Microbiota in Adult Zebrafish. Biology, 13(6), 372. https://doi.org/10.3390/biology13060372