Effects of Aging and Nerve Growth Factor on Neuropeptide Expression and Cholinergic Innervation of the Rat Basolateral Amygdala
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Surgical Procedures and NGF Treatment
2.3. Tissue Preparation
2.4. Immunohistochemistry and Giemsa Staining
2.5. Estimation of the Areal Densities
2.5.1. NPY- and VIP-Immunoreactive Neurons
2.5.2. VAChT-Immunoreactive Varicosities
2.6. Statistical Analyses
3. Results
3.1. Density of NPY-Immunoreactive Neurons
3.2. Density of VIP-Immunoreactive Neurons
3.3. Density of VAChT-Immunoreactive Varicosities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BFCN | basal forebrain cholinergic neurons |
BLA | basolateral amygdala |
ChAT | choline acetyltransferase |
GABA | gamma-aminobutyric acid |
NGF | nerve growth factor |
NPY | neuropeptide Y |
VAChT | vesicular acetylcholine transporter |
VIP | vasoactive intestinal polypeptide |
References
- Anton, S.D.; Woods, A.J.; Ashizawa, T.; Barb, D.; Buford, T.W.; Carter, C.S.; Clark, D.J.; Cohen, R.A.; Corbett, D.B.; Cruz-Almeida, Y.; et al. Successful aging: Advancing the science of physical independence in older adults. Ageing Res. Rev. 2015, 24, 304–327. [Google Scholar] [CrossRef]
- Cleeland, C.; Pipingas, A.; Scholey, A.; White, D. Neurochemical changes in the aging brain: A systematic review. Neurosci. Biobehav. Rev. 2019, 98, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Dickstein, D.L.; Kabaso, D.; Rocher, A.B.; Luebke, J.I.; Wearne, S.L.; Hof, P.R. Changes in the structural complexity of the aged brain. Aging Cell 2007, 6, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, M.; Okonkwo, O.C.; Resnick, S.M.; Jagust, W.J.; Benzinger, T.L.S.; Rapp, P.R. What are the threats to successful brain and cognitive aging? Neurobiol. Aging 2019, 89, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Grady, C. The cognitive neuroscience of ageing. Nat. Rev. Neurosci. 2012, 13, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Grimm, A.; Eckert, A. Brain aging and neurodegeneration: From a mitochondrial point of view. J. Neurochem. 2017, 143, 418–431. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P.; Arumugam, T.V. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states. Cell Metab. 2018, 2018, 1176–1199. [Google Scholar] [CrossRef]
- Bartus, R.T.; Dean, R.L.; Beer, B.; Lippa, A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982, 217, 408–417. [Google Scholar] [CrossRef]
- Baskerville, K.A.; Kent, C.; Nicolle, M.M.; Gallagher, M.; McKinney, M. Aging causes partial loss of basal forebrain but no loss of pontine reticular cholinergic neurons. Neuroreport 2006, 17, 1819–1823. [Google Scholar] [CrossRef]
- Fischer, W.; Wictorin, K.; Björklund, A.; Williams, L.R.; Varon, S.; Gage, F.H. Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 1987, 329, 65–68. [Google Scholar] [CrossRef]
- Niewiadomska, G.; Komorowski, S.; Baksalerska-Pazera, M. Amelioration of cholinergic neurons dysfunction in aged rats depends on the continuous supply of NGF. Neurobiol. Aging 2002, 23, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.A.; Santos, D.; Neves, J.; Madeira, M.D.; Paula-Barbosa, M.M. Nerve growth factor retrieves neuropeptide Y and cholinergic immunoreactivity in the nucleus accumbens of old rats. Neurobiol. Aging 2013, 34, 1988–1995. [Google Scholar] [CrossRef] [PubMed]
- Schliebs, R.; Arendt, T. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 2011, 221, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Gasiorowska, A.; Wydrych, M.; Drapich, P.; Zadrozny, M.; Steczkowska, M.; Niewiadomski, W.; Niewiadomska, G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front. Aging Neurosci. 2021, 13, 654931. [Google Scholar] [CrossRef] [PubMed]
- Ananth, M.R.; Rajebhosale, P.; Kim, R.; Talmage, D.A.; Role, L.W. Basal forebrain cholinergic signalling: Development, connectivity and roles in cognition. Nat. Rev. Neurosci. 2023, 24, 233–251. [Google Scholar] [CrossRef]
- Gott, J.A.; Stücker, S.; Kanske, P.; Haaker, J.; Dresler, M. Acetylcholine and metacognition during sleep. Conscious. Cogn. 2024, 117, 103608. [Google Scholar] [CrossRef]
- Heidbreder, C.A.; Groenewegen, H.J. The medial prefrontal cortex in the rat: Evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci. Biobehav. Rev. 2003, 27, 555–579. [Google Scholar] [CrossRef]
- Knox, D. The role of basal forebrain cholinergic neurons in fear and extinction memory. Neurobiol. Learn. Mem. 2016, 133, 39–52. [Google Scholar] [CrossRef]
- Madeira, M.D.; Pereira, P.A.; Silva, S.M.; Cadete-Leite, A.; Paula-Barbosa, M.M. Basal forebrain neurons modulate the synthesis and expression of neuropeptides in the rat suprachiasmatic nucleus. Neuroscience 2004, 125, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Mena-Segovia, J. Structural and functional considerations of the cholinergic brainstem. J. Neural Transm. 2016, 123, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Milner, T.A.; Wiley, R.G.; Kurucz, O.S.; Prince, S.R.; Pierce, J.P. Selective changes in hippocampal neuropeptide Y neurons following removal of the cholinergic septal inputs. J. Comp. Neurol. 1997, 386, 46–59. [Google Scholar] [CrossRef]
- Pereira, P.A.; Vilela, M.; Sousa, S.; Neves, J.; Paula-Barbosa, M.M.; Madeira, M.D. Lesions of the laterodorsal tegmental nucleus alter the cholinergic innervation and neuropeptide Y expression in the medial prefrontal cortex and nucleus accumbens. Neuroscience 2015, 284, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Woolf, N.J.; Butcher, L.L. Cholinergic systems mediate action from movement to higher consciousness. Behav. Brain Res. 2011, 221, 488–498. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Lappi, D.A.; Wrenn, C.C.; Milner, T.A.; Wiley, R.G. Selective lesion of the cholinergic basal forebrain causes a loss of cortical neuropeptide Y and somatostatin neurons. Brain Res. 1998, 800, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, X.; Zhou, P.; Zhang, J.; He, W.; Yuan, T.F. Cholinergic tone in ventral tegmental area: Functional organization and behavioral implications. Neurochem. Int. 2018, 114, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.M.; Mufson, E.J.; Wainer, B.H.; Levey, A.I. Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 1983, 10, 1185–1201. [Google Scholar] [CrossRef]
- Fahnestock, M.; Shekari, A. ProNGF and Neurodegeneration in Alzheimer’s Disease. Front. Neurosci. 2019, 13, 129. [Google Scholar] [CrossRef]
- Sofroniew, M.V.; Howe, C.L.; Mobley, W.C. Nerve growth factor signaling, neuroprotection, and neural repair. Annu. Rev. Neurosci. 2001, 24, 1217–1281. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.A.; Cuello, A.C. Cortical peroxynitration of nerve growth factor in aged and cognitively impaired rats. Neurobiol. Aging 2012, 33, 1927–1937. [Google Scholar] [CrossRef]
- Kropf, E.; Fahnestock, M. Effects of Reactive Oxygen and Nitrogen Species on TrkA Expression and Signalling: Implications for proNGF in Aging and Alzheimer’s Disease. Cells 2021, 10, 1983. [Google Scholar] [CrossRef]
- Carlsen, J.; Záborszky, L.; Heimer, L. Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex: A combined retrograde fluorescent and immunohistochemical study. J. Comp. Neurol. 1985, 234, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Heckers, S.; Mesulam, M.-M. Two types of cholinergic projections to the rat amygdala. Neuroscience 1994, 60, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Heckers, S.; Ohtake, T.; Wiley, R.G.; Lappi, D.A.; Geula, C.; Mesulam, M.-M. Complete and selective cholinergic de-nervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF receptor. J. Neurosci. 1994, 14, 1271–1289. [Google Scholar] [CrossRef]
- Hellendall, R.P.; Godfrey, D.A.; Ross, C.D.; Armstrong, D.M.; Price, J.L. The distribution of choline acetyltransferase in the rat amygdaloid complex and adjacent cortical areas, as determined by quantitative micro-assay and immunohistochemistry. J. Comp. Neurol. 1986, 249, 486–498. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Kimura, H.; Maeda, T.; McGeer, P.L.; Peng, F.; McGeer, E.G. Cholinergic projections from the basal forebrain of rat to the amygdala. J. Neurosci. 1982, 2, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, J.H. Basal Forebrain Cholinergic-induced Activation of Cholecystokinin Inhibitory Neurons in the Basolateral Amygdala. Exp. Neurobiol. 2019, 28, 320–328. [Google Scholar] [CrossRef]
- McDonald, A.J. Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 1998, 55, 257–332. [Google Scholar] [CrossRef]
- McDonald, A.J. Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits. Handb. Behav. Neurosci. 2020, 26, 1–38. [Google Scholar] [CrossRef]
- Sah, P.; Faber, E.S.; Lopez De Armentia, M.; Power, J. The amygdaloid complex: Anatomy and physiology. Physiol. Rev. 2003, 83, 803–834. [Google Scholar] [CrossRef]
- Canteras, N.S.; Resstel, L.B.; Bertoglio, L.J.; Carobrez Ade, P.; Guimaraes, F.S. Neuroanatomy of anxiety. Curr. Top. Behav. Neurosci. 2010, 2, 77–96. [Google Scholar] [CrossRef]
- Janak, P.H.; Tye, K.M. From circuits to behaviour in the amygdala. Nature 2015, 517, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F. Brain stress systems in the amygdala and addiction. Brain Res. 2009, 1293, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Lalumiere, R.T. Optogenetic dissection of amygdala functioning. Front. Behav. Neurosci. 2014, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- Perumal, M.B.; Sah, P. Inhibitory Circuits in the Basolateral Amygdala in Aversive Learning and Memory. Front. Neural Circuits 2021, 15, 633235. [Google Scholar] [CrossRef] [PubMed]
- Dulka, B.N.; Trask, S.; Helmstetter, F.J. Age-related memory impairment and sex-specific alterations in phosphorylation of the Rpt6 proteasome subunit and polyubiquitination in the basolateral amygdala and medial prefrontal cortex. Front. Aging Neurosci. 2021, 13, 656944. [Google Scholar] [CrossRef] [PubMed]
- Rubinow, M.J.; Drogos, L.L.; Juraska, J.M. Age-related dendritic hypertrophy and sexual dimorphism in rat basolateral amygdala. Neurobiol. Aging 2009, 30, 137–146. [Google Scholar] [CrossRef] [PubMed]
- García-Amado, M.; Prensa, L. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex. PLoS ONE 2012, 7, e38692. [Google Scholar] [CrossRef]
- Hájos, N. Interneuron Types and Their Circuits in the Basolateral Amygdala. Front. Neural Circuits 2021, 15, 687257. [Google Scholar] [CrossRef]
- Spampanato, J.; Polepalli, J.; Sah, P. Interneurons in the basolateral amygdala. Neuropharmacology 2011, 60, 765–773. [Google Scholar] [CrossRef]
- Muller, J.F.; Mascagni, F.; McDonald, A.J. Cholinergic innervation of pyramidal cells and parvalbumin-immunoreactive interneurons in the rat basolateral amygdala. J. Comp. Neurol. 2011, 519, 790–805. [Google Scholar] [CrossRef]
- Borbély, É.; Scheich, B.; Helyes, Z. Neuropeptides in learning and memory. Neuropeptides 2013, 47, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Decressac, M.; Barker, R.A. Neuropeptide Y and its role in CNS disease and repair. Exp. Neurol. 2012, 238, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Dyzma, M.; Boudjeltia, K.Z.; Faraut, B.; Kerkhofs, M. Neuropeptide Y and sleep. Sleep. Med. Rev. 2010, 14, 161–165. [Google Scholar] [CrossRef]
- Mustafa, T.; Eiden, L.E. Secretin superfamily: PACAP, VIP, and related neuropeptides. In Handbook of Neurochemistry and Molecular Neurobiology, Neuroactive Proteins and Peptides; Lim, R., Lajtha, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 463–498. [Google Scholar]
- Thorsell, A.; Ehlers, C.L. Neuropeptide Y in brain function. In Handbook of Neurochemistry and Molecular Neurobiology, Neuroactive Proteins and Peptides; Lim, R., Lajtha, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 523–543. [Google Scholar]
- Paula-Barbosa, M.M.; Pereira, P.A.; Cardoso, A.; Madeira, M.D.; Cadete-Leite, A. The effects of nerve growth factor upon the neuropeptide content of the suprachiasmatic nucleus of rats withdrawn from ethanol are mediated by the nucleus basalis magnocellularis. J. Neurocytol. 2004, 33, 453–463. [Google Scholar] [CrossRef]
- Cardoso, A.; Paula-Barbosa, M.M.; Lukoyanov, N.V. Reduced density of neuropeptide Y neurons in the somatosensory cortex of old male and female rats: Relation to cholinergic depletion and recovery after nerve growth factor treatment. Neuroscience 2006, 137, 937–948. [Google Scholar] [CrossRef]
- Cardoso, A.; Silva, D.; Magano, S.; Pereira, P.A.; Andrade, J.P. Old-onset caloric restriction effects on neuropeptide Y- and somatostatin-containing neurons and on cholinergic varicosities in the rat hippocampal formation. Age 2014, 36, 9737. [Google Scholar] [CrossRef]
- Pereira, P.A.; Cardoso, A.; Paula-Barbosa, M.M. Nerve growth factor restores the expression of vasopressin and vasoactive intestinal polypeptide in the suprachiasmatic nucleus of aged rats. Brain Res. 2005, 1048, 123–130. [Google Scholar] [CrossRef]
- Pereira, P.A.; Millner, T.; Vilela, M.; Sousa, S.; Cardoso, A.; Madeira, M.D. Nerve growth factor-induced plasticity in medial prefrontal cortex interneurons of aged Wistar rats. Exp. Gerontol. 2016, 85, 59–70. [Google Scholar] [CrossRef]
- Paula-Barbosa, M.M.; Silva, S.M.; Andrade, J.P.; Cadete-Leite, A.; Madeira, M.D. Nerve growth factor restores mRNA levels and the expression of neuropeptides in the suprachiasmatic nucleus of rats submitted to chronic ethanol treatment and withdrawal. J. Neurocytol. 2001, 30, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Paula-Barbosa, M.M.; Pereira, P.A.; Cadete-Leite, A.; Madeira, M.D. NGF and NT-3 exert differential effects on the expression of neuropeptides in the suprachiasmatic nucleus of rats withdrawn from ethanol treatment. Brain Res. 2003, 983, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Cadete-Leite, A.; Pereira, P.A.; Madeira, M.D.; Paula-Barbosa, M.M. Nerve growth factor prevents cell death and induces hypertrophy of basal forebrain cholinergic neurons in rats withdrawn from prolonged ethanol intake. Neuroscience 2003, 119, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- DeKosky, S.T.; Abrahamson, E.E.; Taffe, K.M.; Dixon, C.E.; Kochanek, P.M.; Ikonomovic, M.D. Effects of post-injury hypothermia and nerve growth factor infusion on antioxidant enzyme activity in the rat: Implications for clinical therapies. J. Neurochem. 2004, 90, 998–1004. [Google Scholar] [CrossRef] [PubMed]
- Lukoyanov, N.V.; Pereira, P.A.; Paula-Barbosa, M.M.; Cadete-Leite, A. Nerve growth factor improves spatial learning and restores hippocampal cholinergic fibers in rats withdrawn from chronic treatment with ethanol. Exp. Brain Res. 2003, 148, 88–94. [Google Scholar] [CrossRef]
- Williams, L.R.; Rylett, R.J. Exogenous nerve growth factor increases the activity of high-affinity choline uptake and choline acetyltransferase in brain of Fisher 344 male rats. J. Neurochem. 1990, 55, 1042–1049. [Google Scholar] [CrossRef]
- Pereira, P.A.; Rocha, J.P.; Cardoso, A.; Vilela, M.; Sousa, S.; Madeira, M.D. Effects of chronic alcohol consumption, withdrawal and nerve growth factor on neuropeptide Y expression and cholinergic innervation of the rat dentate hilus. Neurotoxicology 2016, 54, 153–160. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 4th ed.; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Gundersen, H.J.; Jensen, E.B. The efficiency of systematic sampling in stereology and its prediction. J. Microsc. 1987, 147, 229–263. [Google Scholar] [CrossRef]
- Gundersen, H.J.; Jensen, E.B.; Kiêu, K.; Nielsen, J. The efficiency of systematic sampling in stereology—Reconsidered. J. Microsc. 1999, 193, 199–211. [Google Scholar] [CrossRef]
- Andrade, J.P.; Pereira, P.A.; Silva, S.M.; Sá, S.I.; Lukoyanov, N.V. Timed hypocaloric food restriction alters the synthesis and expression of vasopressin and vasoactive intestinal peptide in the suprachiasmatic nucleus. Brain Res. 2004, 1022, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.P.; Debeir, T.; Duff, K.; Cuello, A.C. Reorganization of cholinergic terminals in the cerebral cortex and hippocampus in transgenic mice carrying mutated presenilin-1 and amyloid precursor protein transgenes. J. Neurosci. 1999, 19, 2706–2716. [Google Scholar] [CrossRef] [PubMed]
- Rubinow, M.J.; Juraska, J.M. Neuron and glia numbers in the basolateral nucleus of the amygdala from preweaning through old age in male and female rats: A stereological study. J. Comp. Neurol. 2009, 512, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Kmiec, Z. Aging and peptide control of food intake. Curr. Protein Pept. Sci. 2011, 12, 271–279. [Google Scholar] [CrossRef]
- Gruenewald, D.A.; Marck, B.T.; Matsumoto, A.M. Fasting-induced increases in food intake and neuropeptide Y gene expression are attenuated in aging male Brown Norway rats. Endocrinology 1996, 137, 4460–4467. [Google Scholar] [CrossRef]
- Sohn, E.H.; Wolden-Hanson, T.; Matsumoto, A.M. Testosterone (T)-induced changes in arcuate nucleus cocaine-amphetamine regulated transcript and NPY mRNA are attenuated in old compared to young male Brown Norway rats: Contribution of T to age related changes in cocaine amphetamine-regulated transcript and NPY gene expression. Endocrinology 2002, 143, 954–963. [Google Scholar] [CrossRef]
- Wolden-Hanson, T.; Marck, B.T.; Matsumoto, A.M. Troglitazone treatment of aging Brown Norway rats improves food intake and weight gain after fasting without increasing hypothalamic NPY gene expression. Exp. Gerontol. 2002, 37, 679–691. [Google Scholar] [CrossRef]
- Shetty, A.K.; Turner, D.A. Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats. J. Comp. Neurol. 1998, 394, 252–569. [Google Scholar] [CrossRef]
- Lolova, I.; Davidoff, M. Histo- and immunohistochemical changes in acetylcholinesterase and choline acetyltransferase activities in the amygdaloid complex in aged rats. Acta Histochem. 1990, 89, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Emre, M.; Heckers, S.; Mash, D.C.; Geula, C.; Mesulam, M.-M. Cholinergic innervation of the amygdaloid complex in the human brain and its alterations in old age and Alzheimer’s disease. J. Comp. Neurol. 1993, 336, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Allard, S.; Scardochio, T.; Cuello, A.C.; Ribeiro-da-Silva, A. Correlation of cognitive performance and morphological changes in neocortical pyramidal neurons in aging. Neurobiol. Aging 2012, 33, 1466–1480. [Google Scholar] [CrossRef] [PubMed]
- Vaz, R.P.; Pereira, P.A.; Madeira, M.D. Age effects on the nucleus of the lateral olfactory tract of the rat. J. Comp. Neurol. 2016, 524, 759–771. [Google Scholar] [CrossRef]
- Pereira, P.A.; Coelho, J.; Silva, A.; Madeira, M.D. Effects of aging on the cholinergic innervation of the rat ventral tegmental area: A stereological study. Exp. Gerontol. 2021, 148, 111298. [Google Scholar] [CrossRef]
- Mesulam, M.-M. The cholinergic innervation of the human cerebral cortex. Prog. Brain Res. 2004, 145, 67–78. [Google Scholar] [CrossRef]
- Garofalo, L.; Ribeiro-da-Silva, A.; Cuello, A.C. Nerve growth factor-induced synaptogenesis and hypertrophy of cortical cholinergic terminals. Proc. Natl. Acad. Sci. USA 1992, 89, 2639–2643. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.M.; Black, S.A.; Prado, V.F.; Rylett, R.J.; Ferguson, S.S.; Prado, M.A. The “ins” and “outs” of the high-affinity choline transporter CHT1. J. Neurochem. 2006, 97, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sarter, M.; Parikh, V. Choline transporters, cholinergic transmission and cognition. Nat. Rev. Neurosci. 2005, 6, 48–56. [Google Scholar] [CrossRef]
- Curti, D.; Dagani, F.; Galmozzi, M.R.; Marzatico, F. Effect of aging and acetyl-Lcarnitine on energetic and cholinergic metabolism in rat brain regions. Mech. Ageing Dev. 1989, 47, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Forloni, G.; Angeretti, N. Decreased [3H]hemicholinium binding to high-affinity choline uptake sites in aged rat brain. Brain Res. 1992, 570, 354–357. [Google Scholar] [CrossRef]
- Sherman, K.A.; Friedman, E. Pre- and post-synaptic cholinergic dysfunction in aged rodent brain regions: New findings and an interpretative review. Int. J. Dev. Neurosci. 1990, 8, 689–708. [Google Scholar] [CrossRef]
- Sherman, K.A.; Kuster, J.E.; Dean, R.L.; Bartus, R.T.; Friedman, E. Presynaptic cholinergic mechanisms in brain of aged rats with memory impairments. Neurobiol. Aging 1981, 2, 99–104. [Google Scholar] [CrossRef]
- Yufu, F.; Egashira, T.; Yamanaka, Y. Age-related changes of cholinergic markers in the rat brain. Jpn. J. Pharmacol. 1994, 66, 247–255. [Google Scholar] [CrossRef]
- Narang, N. In situ determination of M1 and M2 muscarinic receptor binding sites and mRNAs in young and old rat brains. Mech. Ageing Dev. 1995, 78, 221–239. [Google Scholar] [CrossRef]
- Dozio, E.; Ruscica, M.; Feltrin, D.; Motta, M.; Magni, P. Cholinergic regulation of neuropeptide Y synthesis and release in human neuroblastoma cells. Peptides 2008, 29, 491–495. [Google Scholar] [CrossRef]
- Magni, P.; Maggi, R.; Pimpinelli, F.; Motta, M. Cholinergic muscarinic mechanisms regulate neuropeptide Y gene expression via protein kinase C in human neuroblastoma cells. Brain Res. 1998, 798, 75–82. [Google Scholar] [CrossRef]
- Sobreviela, T.; Clary, D.O.; Reichardt, L.F.; Brandabur, M.M.; Kordower, J.H.; Mufson, E.J. TrkA-immunoreactive profiles in the central nervous system: Colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin. J. Comp. Neurol. 1994, 350, 587–611. [Google Scholar] [CrossRef]
- Pioro, E.P.; Cuello, A.C. Distribution of nerve growth factor receptor-like immunoreactivity in the adult rat central nervous system. Effect of colchicine and correlation with the cholinergic system—I. Forebrain. Neuroscience 1990, 34, 57–87. [Google Scholar] [CrossRef]
- Moises, H.C.; Womble, M.D.; Washburn, M.S.; Williams, L.R. Nerve growth factor facilitates cholinergic neurotransmission between nucleus basalis and the amygdala in rat: An electrophysiological analysis. J. Neurosci. 1995, 15, 5131–8142. [Google Scholar] [CrossRef]
- Mascagni, F.; McDonald, A.J. Parvalbumin-immunoreactive neurons and GABAergic neurons of the basal forebrain project to the rat basolateral amygdala. Neuroscience 2009, 160, 805–812. [Google Scholar] [CrossRef]
- Wu, C.K.; Yeh, H.H. Nerve growth factor rapidly increases muscarinic tone in mouse medial septum/diagonal band of Broca. J. Neurosci. 2005, 25, 4232–4242. [Google Scholar] [CrossRef]
- Blöchl, A.; Sirrenberg, C. Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75Lntr receptors. J. Biol. Chem. 1996, 271, 21100–21107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, P.A.; Tavares, M.; Laires, M.; Mota, B.; Madeira, M.D.; Paula-Barbosa, M.M.; Cardoso, A. Effects of Aging and Nerve Growth Factor on Neuropeptide Expression and Cholinergic Innervation of the Rat Basolateral Amygdala. Biology 2024, 13, 155. https://doi.org/10.3390/biology13030155
Pereira PA, Tavares M, Laires M, Mota B, Madeira MD, Paula-Barbosa MM, Cardoso A. Effects of Aging and Nerve Growth Factor on Neuropeptide Expression and Cholinergic Innervation of the Rat Basolateral Amygdala. Biology. 2024; 13(3):155. https://doi.org/10.3390/biology13030155
Chicago/Turabian StylePereira, Pedro A., Marta Tavares, Miguel Laires, Bárbara Mota, Maria Dulce Madeira, Manuel M. Paula-Barbosa, and Armando Cardoso. 2024. "Effects of Aging and Nerve Growth Factor on Neuropeptide Expression and Cholinergic Innervation of the Rat Basolateral Amygdala" Biology 13, no. 3: 155. https://doi.org/10.3390/biology13030155
APA StylePereira, P. A., Tavares, M., Laires, M., Mota, B., Madeira, M. D., Paula-Barbosa, M. M., & Cardoso, A. (2024). Effects of Aging and Nerve Growth Factor on Neuropeptide Expression and Cholinergic Innervation of the Rat Basolateral Amygdala. Biology, 13(3), 155. https://doi.org/10.3390/biology13030155