A Systematic Review of Post-Work Core Temperature Cooling Rates Conferred by Passive Rest
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Screening and Selection
2.4. Quality Assessment
2.5. Data Extraction
2.6. Data Analysis and Treatment
3. Results
3.1. Search Results
3.2. Quality Assessment
3.3. Characteristics of Included Studies
3.4. Core Temperature Cooling Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kenny, G.P.; McGinn, R. Restoration of Thermoregulation after Exercise. J. Appl. Physiol. 2016, 122, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M.; Howard, N.; Lovell, N.; Cichocki, A.; Brearley, M.; Abbott, D.; Adatia, I. A Six-Step Framework on Biomedical Signal Analysis for Tackling Noncommunicable Diseases: Current and Future Perspectives. JMIR Biomed. Eng. 2016, 1, e1. [Google Scholar] [CrossRef]
- Nybo, L.; Rasmussen, P.; Sawka, M.N. Performance in the Heat-Physiological Factors of Importance for Hyperthermia-Induced Fatigue. Compr. Physiol. 2014, 4, 657–689. [Google Scholar]
- Hancock, P.A.; Ross, J.M.; Szalma, J.L. A Meta-Analysis of Performance Response under Thermal Stressors. Hum. Factors 2007, 49, 851–877. [Google Scholar] [CrossRef]
- Otteim Kampe, E.; Kovats, S.; Hajat, S. Impact of High Ambient Temperature on Unintentional Injuries in High-Income Countries: A Narrative Systematic Literature Review. BMJ Open 2016, 6, e010399. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.O. Exertional Heat Stroke and the Evolution of Field Care: A Physician’s Perspective. Temperature 2017, 4, 101–103. [Google Scholar] [CrossRef]
- McCullough, E.A.; Kenney, W.L. Thermal Insulation and Evaporative Resistance of Football Uniforms. Med. Sci. Sports Exerc. 2003, 35, 832–837. [Google Scholar] [CrossRef]
- Sawka, M.N.; Leon, L.R.; Montain, S.J.; Sonna, L.A. Integrated Physiological Mechanisms of Exercise Performance, Adaptation, and Maladaptation to Heat Stress. Compr. Physiol. 2011, 1, 1883–1928. [Google Scholar]
- Xiang, J.; Hansen, A.; Pisaniello, D.; Bi, P. Perceptions of Workplace Heat Exposure and Controls among Occupational Hygienists and Relevant Specialists in Australia. PLoS ONE 2015, 10, e01350402015. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to Selected Thermal Indices. Int. J. Biometeorol. 2011, 56, 515–535. [Google Scholar] [CrossRef]
- Yaglou, C.P.; Minard, D. Control of Heat Casualties at Military Training Centers. AMA Arch. Ind. Health 1957, 16, 302–316. [Google Scholar] [PubMed]
- ACGIH. Threshold Limit Values (TLVs) and Biological Exposure Limits (BEIs); American Conference of Governmental Industrial Hygienists (ACGIH): Washington, DC, USA, 2022. [Google Scholar]
- Ioannou, L.G.; Mantzios, K.; Tsoutsoubi, L.; Notley, S.R.; Dinas, P.C.; Brearley, M.; Epstein, Y.; Havenith, G.; Sawka, M.N.; Bröde, P.; et al. Indicators to Assess Physiological Heat Strain—Part 1: Systematic Review. Temperature 2022, 9, 227–262. [Google Scholar] [CrossRef]
- Hall, A.; Horta, A.; Khan, M.R.; Crabbe, R.A. Spatial Analysis of Outdoor Wet Bulb Globe Temperature under RCP4.5 and RCP8.5 Scenarios for 2041–2080 across a Range of Temperate to Hot Climates. Weather Clim. Extrem. 2022, 35, 100420. [Google Scholar] [CrossRef]
- Brearley, M. Cooling Methods to Prevent Heat-Related Illness in the Workplace. Workplace Health Saf. 2015, 64, 80. [Google Scholar] [CrossRef] [PubMed]
- Chicas, R.; Xiuhtecutli, N.; Dickman, N.E.; Scammell, M.L.; Steenland, K.; Hertzberg, V.S.; McCauley, L. Cooling Intervention Studies among Outdoor Occupational Groups: A Review of the Literature. Am. J. Ind. Med. 2020, 63, 988–1007. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Keene, T.; Brearley, M.; Bowen, B.; Walker, A. Accuracy of Tympanic Temperature Measurement in Firefighters Completing a Simulated Structural Firefighting Task. Prehosp. Disaster Med. 2015, 30, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Clements, J.M.; Casa, D.J.; Knight, J.; McClung, J.M.; Blake, A.S.; Meenen, P.M.; Gilmer, A.M.; Caldwell, K.A. Ice-Water Immersion and Cold-Water Immersion Provide Similar Cooling Rates in Runners With Exercise-Induced Hyperthermia. J. Athl. Train. 2002, 37, 146–150. [Google Scholar]
- Brearley, M.; Walker, A. Water Immersion for Post Incident Cooling of Firefighters; a Review of Practical Fire Ground Cooling Modalities. Extrem. Physiol. Med. 2015, 4, 15. [Google Scholar] [CrossRef]
- ASHRAE 55-2013; Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers: Peachtree Corners, GA, USA, 2013.
- Bernard, T.E. Prediction of Workplace Wet Bulb Global Temperature. Appl. Occup. Environ. Hyg. 1999, 14, 126–134. [Google Scholar] [CrossRef]
- Sawka, M.N.; Wenger, C.B.; Montain, S.J.; Kolka, M.A.; Bettencourt, B.; Flinn, S.; Gardner, J.; Matthew, W.T.; Lovell, M.; Scott, C. Heat Stress Control and Heat Casualty Management; Army Research Inst of Environmental Medicine: Natick, MA, USA, 2022. [Google Scholar]
- Keys, A.; Fidanza, F.; Karvonen, M.J.; Kimura, N.; Taylor, H.L. Indices of Relative Weight and Obesity. Int. J. Epidemiol. 2014, 43, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Dubois, D.; Dubois, E.F. A Formula to Estimate the Approximate Surface Area If Height and Weight Be Known. Arch. Intern. Med. 1916, 17, 863–871. [Google Scholar] [CrossRef]
- Adams, W.M.; Hosokawa, Y.; Adams, E.L.; Belval, L.N.; Huggins, R.A.; Casa, D.J. Reduction in Body Temperature Using Hand Cooling versus Passive Rest after Exercise in the Heat. J. Sci. Med. Sport 2016, 19, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Adams, W.M.; Butke, E.E.; Lee, J.; Zaplatosch, M.E. Cooling Capacity of Transpulmonary Cooling and Cold-Water Immersion After Exercise-Induced Hyperthermia. J. Athl. Train. 2021, 56, 383–388. [Google Scholar] [CrossRef]
- Brade, C.; Dawson, B.; Wallman, K.; Polglaze, T. Postexercise Cooling Rates in 2 Cooling Jackets. J. Athl. Train. 2010, 45, 164–169. [Google Scholar] [CrossRef]
- Butts, C.L.; McDermott, B.P.; Buening, B.J.; Bonacci, J.A.; Ganio, M.S.; Adams, J.D.; Tucker, M.A.; Kavouras, S.A. Physiologic and Perceptual Responses to Cold-Shower Cooling After Exercise-Induced Hyperthermia. J. Athl. Train. 2016, 51, 252–257. [Google Scholar] [CrossRef]
- Butts, C.L.; Spisla, D.L.; Adams, J.D.; Smith, C.R.; Paulsen, K.M.; Caldwell, A.R.; Ganio, M.S.; McDermott, B.P. Effectiveness of Ice-Sheet Cooling Following Exertional Hyperthermia. Mil. Med. 2017, 182, e1951–e19572017. [Google Scholar] [CrossRef]
- Casa, D.J.; Becker, S.M.; Ganio, M.S.; Brown, C.M.; Yeargin, S.W.; Roti, M.W.; Siegler, J.; Blowers, J.A.; Glaviano, N.R.; Huggins, R.A.; et al. Validity of Devices That Assess Body Temperature during Outdoor Exercise in the Heat. J. Athl. Train. 2007, 42, 333–342. [Google Scholar]
- Chalmers, S.; Siegler, J.; Lovell, R.; Lynch, G.; Gregson, W.; Marshall, P.; Jay, O. Brief In-Play Cooling Breaks Reduce Thermal Strain during Football in Hot Conditions. J. Sci. Med. Sport 2019, 22, 912–917. [Google Scholar] [CrossRef]
- Chan, A.P.C.; Yang, Y.; Song, W.-F.; Wong, D.P. Hybrid Cooling Vest for Cooling between Exercise Bouts in the Heat: Effects and Practical Considerations. J. Therm. Biol. 2017, 63, 1–9. [Google Scholar] [CrossRef]
- Chan, A.P.C.; Yang, Y.; Wong, F.K.W.; Yam, M.C.H.; Wong, D.P.; Song, W.-F. Reduction of Physiological Strain Under a Hot and Humid Environment by a Hybrid Cooling Vest. J. Strength Cond. Res. 2019, 33, 1429–1436. [Google Scholar] [CrossRef]
- Clapp, A.J.; Bishop, P.A.; Muir, I.; Walker, J.L. Rapid Cooling Techniques in Joggers Experiencing Heat Strain. J. Sci. Med. Sport 2001, 4, 160–167. [Google Scholar] [CrossRef] [PubMed]
- DeMartini, J.K.; Ranalli, G.F.; Casa, D.J.; Lopez, R.M.; Ganio, M.S.; Stearns, R.L.; McDermott, B.P.; Armstrong, L.E.; Maresh, C.M. Comparison of Body Cooling Methods on Physiological and Perceptual Measures of Mildly Hyperthermic Athletes. J. Strength Cond. Res. 2011, 25, 2065–2074. [Google Scholar] [CrossRef]
- Gagnon, D.; Jay, O.; Reardon, F.D.; Journeay, W.S.; Kenny, G.P. Hyperthermia Modifies the Nonthermal Contribution to Postexercise Heat Loss Responses. Med. Sci. Sports Exerc. 2008, 40, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, D.; Lemire, B.B.; Jay, O.; Kenny, G.P. Aural Canal, Esophageal, and Rectal Temperatures During Exertional Heat Stress and the Subsequent Recovery Period. J. Athl. Train. 2010, 45, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, B.R.; Hagin, V.; Guillot, R.; Placet, V.; Monnier-Benoit, P.; Groslambert, A. Self-Paced Cycling Performance and Recovery under a Hot and Highly Humid Environment after Cooling. J. Sport. Med. Phys. Fit. 2014, 54, 43–52. [Google Scholar]
- Hausswirth, C.; Duffield, R.; Pournot, H.; Bieuzen, F.; Louis, J.; Brisswalter, J.; Castagna, O. Postexercise Cooling Interventions and the Effects on Exercise-Induced Heat Stress in a Temperate Environment. Appl. Physiol. Nutr. Metab. 2012, 37, 965–975. [Google Scholar] [CrossRef]
- Kielblock, A.J.; Van Rensburg, J.P.; Franz, R.M. Body Cooling as a Method for Reducing Hyperthermia. An Evaluation of Techniques. S. Afr. Med. J. 1986, 69, 378–380. [Google Scholar]
- Kuennen, M.R.; Gillum, T.L.; Amorim, F.T.; Kwon, Y.S.; Schneider, S.M. Palm Cooling to Reduce Heat Strain in Subjects during Simulated Armoured Vehicle Transport. Eur. J. Appl. Physiol. 2009, 108, 1217–1223. [Google Scholar] [CrossRef]
- Lee, J.K.W.; Koh, A.C.H.; Koh, S.X.T.; Liu, G.J.X.; Nio, A.Q.X.; Fan, P.W.P. Neck Cooling and Cognitive Performance Following Exercise-Induced Hyperthermia. Eur. J. Appl. Physiol. 2013, 114, 375–384. [Google Scholar] [CrossRef]
- Lee, E.C.-H.; Muñoz, C.X.; McDermott, B.P.; Beasley, K.N.; Yamamoto, L.M.; Hom, L.L.; Casa, D.J.; Armstrong, L.E.; Kraemer, W.J.; Anderson, J.M.; et al. Extracellular and Cellular Hsp72 Differ as Biomarkers in Acute Exercise/Environmental Stress and Recovery. Scand. J. Med. Sci. Sport. 2015, 27, 66–74. [Google Scholar] [CrossRef]
- Lopez, R.M.; Cleary, M.A.; Jones, L.C.; Zuri, R.E. Thermoregulatory Influence of a Cooling Vest on Hyperthermic Athletes. J. Athl. Train. 2008, 43, 55–61. [Google Scholar] [CrossRef]
- Lopez, R.M.; Eberman, L.E.; Cleary, M.A. Superficial Cooling Does Not Decrease Core Body Temperature before, during, or after Exercise in an American Football Uniform. J. Strength Cond. Res. 2012, 26, 3432–3440. [Google Scholar] [CrossRef] [PubMed]
- Luhring, K.E.; Butts, C.L.; Smith, C.R.; Bonacci, J.A.; Ylanan, R.C.; Ganio, M.S.; McDermott, B.P. Cooling Effectiveness of a Modified Cold-Water Immersion Method After Exercise-Induced Hyperthermia. J. Athl. Train. 2016, 51, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Maroni, T.; Dawson, B.; Barnett, K.; Guelfi, K.; Brade, C.; Naylor, L.; Brydges, C.; Wallman, K. Effectiveness of Hand Cooling and a Cooling Jacket on Post-Exercise Cooling Rates in Hyperthermic Athletes. Eur. J. Sport Sci. 2018, 18, 441–449. [Google Scholar] [CrossRef]
- Miller, K.C.; Di Mango, T.A.; Katt, G.E. Cooling Rates of Hyperthermic Humans Wearing American Football Uniforms When Cold-Water Immersion Is Delayed. J. Athl. Train. 2018, 53, 1200–1205. [Google Scholar] [CrossRef]
- Minett, G.M.; Duffield, R.; Billaut, F.; Cannon, J.; Portus, M.R.; Marino, F.E. Cold-Water Immersion Decreases Cerebral Oxygenation but Improves Recovery after Intermittent-Sprint Exercise in the Heat. Scand. J. Med. Sci. Sport. 2013, 24, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, D.; Muraishi, K.; Hasegawa, H.; Yasumatsu, M.; Takahashi, H. Effect of a Cooling Strategy Combining Forearm Water Immersion and a Low Dose of Ice Slurry Ingestion on Physiological Response and Subsequent Exercise Performance in the Heat. J. Therm. Biol. 2020, 89, 102530. [Google Scholar] [CrossRef]
- Otani, H.; Kaya, M.; Goto, H.; Tamaki, A. Rising vs. Falling Phases of Core Temperature on Endurance Exercise Capacity in the Heat. Eur. J. Appl. Physiol. 2020, 120, 481–491. [Google Scholar] [CrossRef]
- Pointon, M.; Duffield, R.; Cannon, J.; Marino, F.E. Cold Water Immersion Recovery Following Intermittent-Sprint Exercise in the Heat. Eur. J. Appl. Physiol. 2011, 112, 2483–2494. [Google Scholar] [CrossRef]
- Reynolds, K.A.; Evanich, J.J.; Eberman, L.E. Reflective Blankets Do Not Effect Cooling Rates after Running in Hot, Humid Conditions. Int. J. Exerc. Sci. 2015, 8, 97–103. [Google Scholar] [PubMed]
- Selkirk, G.A.; McLellan, T.M. Physical Work Limits for Toronto Firefighters in Warm Environments. J. Occup. Environ. Hyg. 2004, 1, 199–212. [Google Scholar] [CrossRef]
- Selkirk, G.A.; McLellan, T.M.; Wong, J. Active versus Passive Cooling during Work in Warm Environments While Wearing Firefighting Protective Clothing. J. Occup. Environ. Hyg. 2004, 1, 521–531. [Google Scholar] [CrossRef]
- Smith, C.R.; Butts, C.L.; Adams, J.D.; Tucker, M.A.; Moyen, N.E.; Ganio, M.S.; McDermott, B.P. Effect of a Cooling Kit on Physiology and Performance Following Exercise in the Heat. J. Sport Rehabil. 2018, 27, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Wang, F. The Hybrid Personal Cooling System (PCS) Could Effectively Reduce the Heat Strain While Exercising in a Hot and Moderate Humid Environment. Ergonomics 2015, 59, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.M.S.; Teo, E.Y.N.; Ali, N.B.; Ang, B.C.H.; Iskandar, I.; Law, L.Y.L.; Lee, J.K.W. Evaluation of Various Cooling Systems After Exercise-Induced Hyperthermia. J. Athl. Train. 2017, 52, 108–116. [Google Scholar] [CrossRef]
- Yi, W.; Zhao, Y.; Chan, A.P.C.; Lam, E.W.M. Optimal Cooling Intervention for Construction Workers in a Hot and Humid Environment. Build. Environ. 2017, 118, 91–100. [Google Scholar] [CrossRef]
- Zhang, Y.; Bishop, P.A.; Casaru, C.; Davis, J.K. A New Hand-Cooling Device to Enhance Firefighter Heat Strain Recovery. J. Occup. Environ. Hyg. 2009, 6, 283–288. [Google Scholar] [CrossRef]
- Zhao, Y.; Yi, W.; Chan, A.P.C.; Wong, F.K.W.; Yam, M.C.H. Evaluating the Physiological and Perceptual Responses of Wearing a Newly Designed Cooling Vest for Construction Workers. Ann. Work. Expo. Health 2017, 61, 883–901. [Google Scholar] [CrossRef]
- Hosokawa, Y.; Belval, L.N.; Adams, W.M.; Vandermark, L.W.; Casa, D.J. Chemically Activated Cooling Vest’s Effect on Cooling Rate Following Exercise-Induced Hyperthermia: A Randomized Counter-Balanced Crossover Study. Medicina 2020, 56, 539. [Google Scholar] [CrossRef]
- Muir, I.H.; Bishop, P.A.; Ray, P. Effects of a Novel Ice-Cooling Technique on Work in Protective Clothing at 28 Degrees C, 23 Degrees C, and 18 Degrees C WBGTs. Am. Ind. Hyg. Assoc. J. 1999, 60, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, D.; Lynn, A.G.; Binder, K.; Boushel, R.C.; Kenny, G.P. Mean Arterial Pressure Following Prolonged Exercise in the Heat: Influence of Training Status and Fluid Replacement. Scand. J. Med. Sci. Sport. 2012, 22, e99–e1072012. [Google Scholar] [CrossRef] [PubMed]
- Flouris, A.D.; Friesen, B.J.; Carlson, M.J.; Casa, D.J.; Kenny, G.P. Effectiveness of Cold Water Immersion for Treating Exertional Heat Stress When Immediate Response Is Not Possible. Scand. J. Med. Sci. Sport. 2015, 25 (Suppl. S1), 229–239. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, Y.; Adams, W.M.; Belval, L.N.; Vandermark, L.W.; Casa, D.J. Tarp-Assisted Cooling as a Method of Whole-Body Cooling in Hyperthermic Individuals. Ann. Emerg. Med. 2016, 69, 347–352. [Google Scholar] [CrossRef]
- Sefton, J.M.; McAdam, J.S.; Pascoe, D.D.; Lohse, K.R.; Banda, R.L.; Henault, C.B.; Cherrington, A.R.; Adams, N.E. Evaluation of 2 Heat-Mitigation Methods in Army Trainees. J. Athl. Train. 2016, 51, 936–945. [Google Scholar] [CrossRef]
- Yi, W.; Zhao, Y.; Chan, A.P.C. Evaluating the Effectiveness of Cooling Vest in a Hot and Humid Environment. Ann. Work. Expo. Health 2017, 61, 481–494. [Google Scholar] [CrossRef]
- Brearley, M.B.; Norton, I.; Rush, D.; Hutton, M.; Smith, S.; Ward, L.; Fuentes, H. Influence of Chronic Heat Acclimatization on Occupational Thermal Strain in Tropical Field Conditions. J. Occup. Environ. Med. 2016, 58, 1250–1256. [Google Scholar] [CrossRef]
- Brearley, M.; Harrington, P.; Lee, D.; Taylor, R. Working in Hot Conditions--a Study of Electrical Utility Workers in the Northern Territory of Australia. J. Occup. Environ. Hyg. 2015, 12, 156–162. [Google Scholar] [CrossRef]
- Hunt, A.P.; Billing, D.C.; Patterson, M.J.; Caldwell, J.N. Heat Strain during Military Training Activities: The Dilemma of Balancing Force Protection and Operational Capability. Temperature 2016, 3, 307–317. [Google Scholar] [CrossRef]
- Larose, J.; Boulay, P.; Wright-Beatty, H.E.; Sigal, R.J.; Hardcastle, S.; Kenny, G.P. Age-Related Differences in Heat Loss Capacity Occur under Both Dry and Humid Heat Stress Conditions. J. Appl. Physiol. 2014, 117, 69–79. [Google Scholar] [CrossRef]
- Stapleton, J.M.; Poirier, M.P.; Flouris, A.D.; Boulay, P.; Sigal, R.J.; Malcolm, J.; Kenny, G.P. Aging Impairs Heat Loss, but When Does It Matter? J. Appl. Physiol. 2015, 118, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Poirier, M.P.; Gagnon, D.; Friesen, B.J.; Hardcastle, S.G.; Kenny, G.P. Whole-Body Heat Exchange during Heat Acclimation and Its Decay. Med. Sci. Sports Exerc. 2015, 47, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Cheuvront, S.N.; Kenefick, R.W. Dehydration: Physiology, Assessment, and Performance Effects. Compr. Physiol. 2014, 4, 257–285. [Google Scholar] [PubMed]
- Friesen, B.J.; Carter, M.R.; Poirier, M.P.; Kenny, G.P. Water Immersion in the Treatment of Exertional Hyperthermia: Physical Determinants. Med. Sci. Sport. Exerc. 2014, 46, 1727–1735. [Google Scholar] [CrossRef] [PubMed]
- McDermott, B.P.; Casa, D.J.; Ganio, M.S.; Lopez, R.M.; Yeargin, S.W.; Armstrong, L.E.; Maresh, C.M. Acute Whole-Body Cooling for Exercise-Induced Hyperthermia: A Systematic Review. J. Athl. Train. 2009, 44, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Brearley, M.B. Are Recommended Heat Stroke Treatments Adequate for Australian Workers? Ann. Work Expo. Health 2019, 63, 263–266. [Google Scholar] [CrossRef]
- Walker, A.; Driller, M.; Brearley, M.; Argus, C.; Rattray, B. Cold-Water Immersion and Iced-Slush Ingestion Are Effective at Cooling Firefighters Following a Simulated Search and Rescue Task in a Hot Environment. Appl. Physiol. Nutr. Metab. 2014, 39, 1159–1166. [Google Scholar] [CrossRef]
- Kenny, G.P.; Reardon, F.D.; Thoden, J.S.; Giesbrecht, G.G. Changes in Exercise and Post-Exercise Core Temperature under Different Clothing Conditions. Int. J. Biometeorol. 1999, 43, 8–13. [Google Scholar] [CrossRef]
- Heinzerling, A.; Laws, R.L.; Frederick, M.; Jackson, R.; Windham, G.; Materna, B.; Harrison, R. Risk Factors for Occupational Heat-Related Illness among California Workers, 2000-2017. Am. J. Ind. Med. 2020, 63, 1145–1154. [Google Scholar] [CrossRef]
- Holmér, I.; Nilsson, H.; Havenith, G.; Parsons, K. Clothing Convective Heat Exchange--Proposal for Improved Prediction in Standards and Models. Ann. Occup. Hyg. 1999, 43, 329–337. [Google Scholar] [CrossRef]
- Havenith, G.; Holmér, I.; den Hartog, E.A.; Parsons, K.C. Clothing Evaporative Heat Resistance--Proposal for Improved Representation in Standards and Models. Ann. Occup. Hyg. 1999, 43, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Morris, N.B.; Levi, M.; Morabito, M.; Messeri, A.; Ioannou, L.G.; Flouris, A.D.; Samoutis, G.; Pogačar, T.; Bogataj, L.K.; Piil, J.F.; et al. Health vs. Wealth: Employer, Employee and Policy-Maker Perspectives on Occupational Heat Stress across Multiple European Industries. Temperature 2020, 8, 284–301. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, K.; King, J.; Wallman, K.; Taggart, S.; Dugan, C.; Girard, O. The Influence of Rest Break Frequency and Duration on Physical Performance and Psychophysiological Responses: A Mining Simulation Study. Eur. J. Appl. Physiol. 2022, 122, 2087–2097. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, D.; Kenny, G.P. Exercise-Rest Cycles Do Not Alter Local and Whole Body Heat Loss Responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R958–R968. [Google Scholar] [CrossRef]
- Hintz, C.; Presley, D.M.; Butler, C.R. Heat Stroke Burden and Validity of Wearable-Derived Core Temperature Estimation during Elite Military Training. Phys. Sportsmed. 2023, 28, 1–6. [Google Scholar] [CrossRef]
- Goods, P., Sr.; Maloney, P.; Miller, J.; Jennings, D.; Fahey-Gilmour, J.; Peeling, P.; Galna, B. Concurrent Validity of the CORE Wearable Sensor with BodyCap Temperature Pill to Assess Core Body Temperature during an Elite Women’s Field Hockey Heat Training Camp. Eur. J. Sport Sci. 2023, 16, 1–9. [Google Scholar] [CrossRef]
- Walker, A.; Rattray, B.; Brearley, M. Perception or Reality: Can Thermal Perceptions Inform Management of Firefighters in the Heat? J. Occup. Environ. Hyg. 2017, 14, 306–312. [Google Scholar] [CrossRef]
- Oppermann, E.; Strengers, Y.; Maller, C.; Rickards, L.; Brearley, M. Beyond Threshold Approaches to Extreme Heat: Repositioning Adaptation as Everyday Practice. Wea. Clim. Soc. 2018, 10, 885–898. [Google Scholar] [CrossRef]
- Rogerson, S.; Brearley, M.; Meir, R.; Brooks, L. Influence of Age, Geographical Region and Work Unit on Heat Strain Symptoms: A Cross-Sectional Survey of Electrical Utility Workers. J. Occup. Environ. Hyg. 2020, 17, 515–522. [Google Scholar] [CrossRef]
- Carter, S.; Field, E.; Oppermann, E.; Brearley, M. The Impact of Perceived Heat Stress Symptoms on Work-Related Tasks and Social Factors: A Cross-Sectional Survey of Australia’s Monsoonal North. Appl. Ergon. 2020, 82, 102918. [Google Scholar] [CrossRef]
- Hunt, A.P.; Parker, A.W.; Stewart, I.B. Symptoms of Heat Illness in Surface Mine Workers. Int. Arch. Occup. Environ. Health 2013, 86, 519–527. [Google Scholar] [CrossRef]
- Mirabelli, M.C.; Quandt, S.A.; Crain, R.; Grzywacz, J.G.; Robinson, E.N.; Vallejos, Q.M.; Arcury, T.A. Symptoms of Heat Illness among Latino Farm Workers in North Carolina. Am. J. Prev. Med. 2010, 39, 468–471. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, M.; Ramalingam, P.; Perumal, K.; Kamalakannan, L.P.; Chinnadurai, J.; Shanmugam, R.; Srinivasan, K.; Venugopal, V. Occupational Heat Stress Impacts on Health and Productivity in a Steel Industry in Southern India. Saf. Health Work 2017, 8, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Newth, D.; Gunasekera, D. Projected Changes in Wet-Bulb Globe Temperature under Alternative Climate Scenarios. Atmosphere 2018, 9, 187. [Google Scholar] [CrossRef]
- Hunt, A.P.; Brearley, M.; Hall, A.; Pope, R. Climate Change Effects on the Predicted Heat Strain and Labour Capacity of Outdoor Workers in Australia. Int. J. Environ. Res. Public Health 2023, 20, 5675. [Google Scholar] [CrossRef]
- Anderson, C.A.J.; Stewart, I.B.; Stewart, K.L.; Linnane, D.M.; Patterson, M.J.; Hunt, A.P. Sex-Based Differences in Body Core Temperature Response across Repeat Work Bouts in the Heat. Appl. Ergon. 2022, 98, 103586. [Google Scholar] [CrossRef] [PubMed]
WBGT Category | WBGT Index (°C) |
---|---|
1 | <27.7 |
2 | 27.8–29.4 |
3 | 29.5–31.1 |
4 | 31.2–32.2 |
5 | >32.2 |
WBGT Heat Category | WBGT(°C) | n | Mean Age (Years) | Mean Height (m) | Mean Body Mass (kg) | Mean Body Fat (%) | Mean BMI (kg/m2) | Mean BSA (m2) | Clothing | Clothing Insulation Factor (clo) | Time to Passive Rest (min) | Rest Duration (min) | Mean Pre Tc | Mean Rate of ΔTc (°C min−1) | Mean Time to Lower Tc 1 °C (mins) | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<0.4 | ≥0.4 | ||||||||||||||||
1 | 16.5 | 8M | 24.8 | 1.81 | 73.0 | 14.1 | 22.4 | 1.93 | Bunker Pants | ● | - | 40.0 | 38.8 | −0.015 | 66.7 | [61] | |
1 | 17.0 | 9M | 24.1 | 1.80 | 79.5 | - | 24.5 | 1.99 | Athletic attire | ● | 0 | 25.0 | 38.6 | 0.028 | - | [40] | |
1 | 17.6 | 12M | 21.8 | 1.84 | 80.1 | - | 23.7 | 2.03 | Athletic attire | ● | <5 | 30.0 | 38.8 | −0.042 | 23.8 | [48] | |
1 | 19.5 | 12M | 21.3 | 1.83 | 76.2 | - | 22.8 | 1.98 | Athletic attire | ● | <5 | 30.0 | 38.5 | −0.031 | 32.3 | [28] | |
1 | ~21.0 | 5M | 29.0 | 1.73 | 67.3 | - | 22.4 | 1.81 | Underwear | ● | - | 75.0 | 39.0 | −0.027 | 37.0 | [41] | |
1 | 22.6 | 10M | 25.6 | - | 80.3 | - | - | - | Athletic attire | ● | - | 30.0 | 38.7 | −0.028 | 35.7 | [45] | |
1 | 22.8 | 7M 5F | 24.0 | 1.71 | 71.4 | 19 | 24.4 | 1.83 | Athletic attire | ● | 2 | 60.0 | 38.5 | −0.016 | 62.5 | [38] | |
1 | 23.0 | 6M | 22.1 | 1.80 | 80.6 | - | 24.9 | 2.00 | Encapsulated suit | ● | 0 | 30.0 | 38.7 | −0.002 | 500.0 | [64] | |
1 | 23.3 | 9M 9F | 24.6 | 1.71 | 67.6 | 19 | 23.1 | 1.79 | Athletic attire | ● | 2 | 60.0 | 38.5 | −0.019 | 52.6 | [37] | |
1 | 23.8 | 22M | 24.0 | 1.76 | 70.7 | - | 22.8 | 1.86 | Underwear | ● | 5 | 30.0 | 39.5 | −0.060 | 16.7 | [59] | |
1 | 24.7 | 15M 10F | 26.5 | 1.74 | 72.7 | 16.2 | 23.9 | 1.87 | Athletic attire | ● | <5 | 60.0 | 38.8 | −0.018 | 55.6 | [31] | |
1 | 24.9 | 10M 7F | - | 1.75 | 70.4 | - | 23.0 | 1.85 | Athletic attire | ● | 3 | 15.0 | 39.0 | −0.040 | 25.0 | [29] | |
1 | 25.0 | 5 | 25.0 | 1.77 | 76.8 | - | 24.5 | 1.94 | Athletic attire | ● | 0 | 62.0 | 39.4 | −0.029 | 34.5 | [54] | |
1 | 25.8 | 9M | 21.0 | 1.83 | 78.7 | - | 23.5 | 2.01 | Athletic attire | ● | <10 | 20.0 | 38.5 | −0.020 | 50.0 | [50] | |
1 | 26.0 | 10M | 21.0 | 1.76 | 76.0 | - | 24.5 | 1.92 | Athletic attire | ● | 0 | 30.0 | 38.6 | −0.019 | 52.6 | [52] | |
1 | 26.2 | 9M 7F | 24.0 | 1.82 | 74.0 | 17.1 | 22.3 | 1.95 | Athletic attire | ● | - | 30.0 | 38.8 | −0.034 | 29.4 | [36] | |
1 | 26.5 | 5M 4F | 25.1 | 1.74 | 75.4 | - | 24.9 | 1.90 | Gridiron uniform | ● | 0 | 30.0 | 38.7 | −0.032 | 31.3 | [46] | |
1 | 27.0 | 14M 3F | 28.0 | 1.80 | 68.5 | 11.2 | 21.1 | 1.87 | Athletic attire | ● | 2–4 | 27.0 | 39.3 | −0.060 | 16.7 | [19] | |
1 | 27.3 | 10M | 19.9 | 1.80 | 78.9 | - | 24.5 | 1.98 | Athletic attire | ● | <10 | 20.0 | 38.9 | −0.070 | 14.3 | [53] | |
1 | 27.4 | 6M | 23.0 | 1.75 | 83.0 | - | 27.1 | 1.99 | Athletic attire | ● | 0 | 60.0 | 38.8 | −0.018 | 55.6 | [44] | |
1 | 27.5 | 12M | 24.0 | 1.72 | - | 11.7 | - | - | Athletic attire | ● | 0 | 53.0 | 39.5 | −0.040 | 25.0 | [43] | |
2 | 28.0 | 10M | 21.4 | 1.79 | 71.6 | 15.0 | 22.3 | 1.90 | Athletic attire | ● | 0 | 30.0 | 38.9 | −0.033 | 30.3 | [39] | |
2 | 28.0 | 6M | 22.1 | 1.80 | 80.6 | - | 24.9 | 2.00 | Encapsulated suit | ● | 0 | 30.0 | 38.8 | 0.010 | NA | [64] | |
2 | 28.8 | 9M 7F | 26.0 | 1.76 | 72.5 | 20.7 | 23.4 | 1.88 | Athletic attire | ● | 5 | 15.0 | 39.3 | −0.040 | 25.0 | [47] | |
2 | 29.0 | 15M | 40.7 | 1.81 | 86.9 | 17.5 | 26.5 | 2.08 | Firefighting uniform (lower body) | ● | 5.0 | 50.0 | 39.2 | 0.010 | NA | [55] | |
2 | 29.1 | 8M | 30.0 | 1.80 | 79.6 | 13.4 | 24.6 | 1.99 | Athletic attire | ● | 0 | 20.0 | 39.9 | −0.010 | 100.0 | [66] | |
2 | 29.1 | 8M | 30.0 | 1.80 | 79.6 | 13.4 | 24.6 | 1.99 | Athletic attire | ● | 0 | 40.0 | 39.6 | −0.012 | 83.3 | [66] | |
2 | 29.4 | 8M | 27.0 | 1.78 | 75.6 | 13.9 | 23.9 | 1.93 | Athletic attire | ● | 1 | 90.0 | 39.2 | −0.018 | 55.6 | [65] | |
2 | 29.4 | 8M | 23.0 | 1.77 | 81.4 | 14.7 | 26.0 | 1.99 | Athletic attire | ● | 1 | 90.0 | 38.7 | −0.008 | 125.0 | [65] | |
3 | 29.5 | 15M | 40.7 | 1.81 | 86.9 | 17.5 | 26.5 | 2.08 | Firefighting uniform | ● | 5 | 20.0 | 38.2 | 0.010 | NA | [56] | |
3 | 29.6 | 17M | 23.8 | 1.77 | 79.4 | - | 25.3 | 1.97 | Military uniform (lower body) | ● | 0 | 20.0 | 38.6 | 0.013 | NA | [68] | |
3 | 29.7 | 18M | 22.6 | 1.78 | 78.0 | - | 24.6 | 1.96 | Military uniform (lower body) | ● | 0 | 20.0 | 38.6 | 0.008 | NA | [68] | |
3 | 30.1 | 12 | 24.0 | 1.79 | 75.0 | - | 23.4 | 1.93 | Athletic attire | ● | 0 | 20.0 | 38.8 | −0.019 | 52.6 | [32] | |
3 | 30.5 | 10M | 22.0 | 1.71 | 65.0 | - | 22.2 | 1.76 | Athletic attire | ● | 10 | 30.0 | 38.5 | −0.013 | 76.9 | [34] | |
3 | 31.1 | 8M | 22.0 | 1.72 | 67.0 | - | 22.6 | 1.79 | Athletic attire | ● | - | 15.0 | 38.6 | 0.000 | NA | [51] | |
4 | 31.2 | 9M | 24.0 | 1.77 | 76.7 | 14.7 | 24.4 | 1.94 | Athletic attire | ● | - | 20.0 | 39.5 | −0.014 | 71.4 | [26] | |
4 | 31.3 | 11M 2F | 23.0 | 1.77 | 78.6 | 19.6 | 25.2 | 1.95 | Athletic attire | ● | ~5 | 15.0 | 39.1 | −0.050 | 20.0 | [30] | |
4 | 31.4 | 8M | 21.4 | 1.72 | 61.8 | - | 20.9 | 1.74 | Industrial Uniform | ● | 0 | 20.0 | 38.5 | −0.010 | 100.0 | [58] | |
4 | 31.5 | 13M 13F | 23.8 | - | 71.2 | 19.4 | - | - | Athletic attire | ● | 1 | 15.0 | 38.6 | −0.053 | 18.9 | [57] | |
4 | 31.7 | 10M | 22.0 | 1.83 | 78.9 | 9 | 23.6 | 2.01 | Gridiron uniform | ● | 0 | 30.0 | 39.8 | −0.008 | 125.0 | [49] | |
4 | 31.7 | 8M | 25.0 | 1.81 | 86.7 | 16.5 | 26.5 | 2.07 | Underwear | ● | 53.1 | 39.6 | −0.030 | 33.3 | [67] | ||
4 | 31.7 | 6F | 22.0 | 1.64 | 61.3 | 22.8 | 22.9 | 1.66 | Underwear | ● | 1.7 | 29.0 | 39.5 | −0.040 | 25.0 | [67] | |
4 | 31.9 | 8M | 25.0 | 1.81 | 86.7 | 16.5 | 26.5 | 2.07 | Underwear | ● | 0 | 53.1 | 39.7 | −0.030 | 33.3 | [63] | |
4 | 31.9 | 6F | 22.0 | 1.64 | 61.3 | 22.8 | 22.9 | 1.66 | Underwear | ● | 1.7 | 29.0 | 39.5 | −0.040 | 25.0 | [63] | |
5 | 32.4 | 7M5F | 26.0 | 1.71 | 76.0 | 18.5 | 26.1 | 1.88 | Athletic attire | ● | 0 | 54.5 | 39.8 | −0.028 | 35.7 | [27] | |
5 | 32.5 | 12M | 22.0 | 1.70 | 61.0 | - | 21.1 | 1.71 | Industrial Uniform | ● | 0 | 30.0 | 38.6 | −0.017 | 58.8 | [33] | |
5 | 33.4 | 10M | 22.0 | 1.71 | 62.0 | - | 21.2 | 1.73 | Athletic attire | ● | 6 | 30.0 | 38.5 | −0.018 | 55.6 | [69] | |
5 | 34.1 | 10M | 24.1 | 1.79 | 74.8 | 9.0 | 23.3 | 1.93 | Military uniform | ● | 3 | 50.0 | 38.8 | 0.000 | NA | [42] | |
5 | 36.1 | 10M | 23.0 | 1.69 | 60.0 | - | 21.0 | 1.69 | Industrial Uniform | ● | 6 | 30.0 | 38.5 | −0.013 | 76.9 | [60] | |
5 | 39.0 | 5M | 25.0 | 1.77 | 82.4 | - | 26.2 | 2.00 | Athletic attire | ● | - | 30.0 | 38.8 | −0.014 | 71.4 | [35] |
WBGT Category | WBGT Index (°C) | n | Mean Rest Duration (min) | Mean Pre-Rest Tc (°C) | Mean Rate of ΔTc (°C min−1) | Estimated Mean Time to Lower Tc 1 °C (min) |
---|---|---|---|---|---|---|
1 | <27.8 | 21 | 38.1 | 38.9 | −0.027 | 37.0 |
2 | 27.8–29.4 | 8 | 42.9 | 39.2 | −0.014 | 71.4 |
3 | 29.5–31.1 | 6 | 20.8 | 38.5 | +0.002 | Mean heating effect |
4 | 31.2–32.2 | 9 | 25.8 | 39.2 | −0.035 | 28.6 |
5 | >32.2 | 6 | 38.4 | 38.9 | −0.016 | 62.5 |
WBGT Category | WBGT Index (°C) | n | Mean Rest Duration (min) | Mean Pre-Rest Tc (°C) | Mean Rate of ΔTc (°C min−1) | Estimated Mean Time to Lower Tc 1 °C (min) |
---|---|---|---|---|---|---|
1 | <27.8 | 18 | 38.6 | 38.9 | −0.033 | 33.3 |
2 | 27.8–29.4 | 6 | 42.4 | 39.3 | −0.023 | 43.5 |
3 | 29.5–31.1 | 3 | 22.0 | 38.6 | −0.012 | 83.3 |
4 | 31.2–32.2 | 7 | 25.8 | 39.2 | −0.041 | 24.4 |
5 | >32.2 | 3 | 40.9 | 39.1 | −0.022 | 45.5 |
WBGT Category | WBGT Index (°C) | n | Mean Rest Duration (min) | Mean Pre-Rest Tc (°C) | Mean Rate of ΔTc (°C min−1) | Estimated Mean Time to Lower Tc 1 °C (min) |
---|---|---|---|---|---|---|
1 | <27.8 | 3 | 33.5 | 38.7 | −0.018 | 55.6 |
2 | 27.8–29.4 | 2 | 44.3 | 39.1 | +0.010 | Mean heating effect |
3 | 29.5–31.1 | 3 | 20.0 | 38.5 | +0.010 | Mean heating effect |
4 | 31.2–32.2 | 2 | 25.6 | 39.2 | −0.009 | 111.1 |
5 | >32.2 | 3 | 36.3 | 38.6 | −0.010 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brearley, M.; Berry, R.; Hunt, A.P.; Pope, R. A Systematic Review of Post-Work Core Temperature Cooling Rates Conferred by Passive Rest. Biology 2023, 12, 695. https://doi.org/10.3390/biology12050695
Brearley M, Berry R, Hunt AP, Pope R. A Systematic Review of Post-Work Core Temperature Cooling Rates Conferred by Passive Rest. Biology. 2023; 12(5):695. https://doi.org/10.3390/biology12050695
Chicago/Turabian StyleBrearley, Matt, Rachel Berry, Andrew P. Hunt, and Rodney Pope. 2023. "A Systematic Review of Post-Work Core Temperature Cooling Rates Conferred by Passive Rest" Biology 12, no. 5: 695. https://doi.org/10.3390/biology12050695
APA StyleBrearley, M., Berry, R., Hunt, A. P., & Pope, R. (2023). A Systematic Review of Post-Work Core Temperature Cooling Rates Conferred by Passive Rest. Biology, 12(5), 695. https://doi.org/10.3390/biology12050695