Mobility Coupled with Motivation Promotes Survival: The Evolution of Cognition as an Adaptive Strategy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Morphine and Dopamine as Signaling Molecules
2.1. Evolutionary Significance of Catecholaminergic Signaling
2.2. Role of the μ3 Opioid Receptor
2.3. Dopamine and Morphine Signaling in Plants
2.4. Reward Systems Involvement and Behavioral Responses in Animals
2.5. Mobility and Cognition
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kream, R.M.; Stefano, G.B. De novo biosynthesis of morphine in animal cells: An evidence-based model. Med. Sci. Monit. 2006, 12, RA207–RA219. [Google Scholar]
- Stefano, G.B.; Kream, R.M. Endogenous morphine synthetic pathway preceded and gave rise to catecholamine synthesis in evolution (Review). Int. J. Mol. Med. 2007, 20, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Giulivi, C.; Kato, K.; Cooper, C.E. Nitric oxide regulation of mitochondrial oxygen consumption I: Cellular physiology. Am. J. Physiol. Cell. Physiol. 2006, 291, C1225–C1231. [Google Scholar] [CrossRef] [PubMed]
- Gorren, A.C.; de Boer, E.; Wever, R. The reaction of nitric oxide with copper proteins and the photodissociation of copper-NO complexes. Biochim. Biophys. Acta 1987, 916, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Madsen, L.; Garras, A.; Asins, G.; Serra, D.; Hegardt, F.G.; Berge, R.K. Mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase and carnitine palmitoyltransferase II as potential control sites for ketogenesis during mitochondrion and peroxisome proliferation. Biochem. Pharmacol. 1999, 57, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Engelman, D.T.; Watanabe, M.; Maulik, N.; Cordis, G.A.; Engelman, R.M.; Rousou, J.A.; Flack, J.E., 3rd; Deaton, D.W.; Das, D.K. L-arginine reduces endothelial inflammation and myocardial stunning during ischemia/reperfusion. Ann. Thorac. Surg. 1995, 60, 1275–1281. [Google Scholar] [CrossRef]
- Forstermann, U.; Closs, E.I.; Pollock, J.S.; Nakane, M.; Schwarz, P.; Gath, I.; Kleinert, H. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 1994, 23, 1121–1131. [Google Scholar] [CrossRef] [Green Version]
- Hibbs, J.B.; Vavrin, Z.; Taintor, R.R. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol. 1987, 138, 550–565. [Google Scholar] [CrossRef]
- Stefano, G.B.; Goumon, Y.; Bilfinger, T.V.; Welters, I.; Cadet, P. Basal nitric oxide limits immune, nervous and cardiovascular excitation: Human endothelia express a mu opiate receptor. Prog. Neurobiol. 2000, 60, 513–530. [Google Scholar] [CrossRef]
- Zhu, W.; Mantione, K.J.; Shen, L.; Stefano, G.B. In vivo and in vitro L-DOPA exposure increases ganglionic morphine levels. Med. Sci. Monit. 2005, 11, MS1–MS5. [Google Scholar]
- Zhu, W.; Mantione, K.J.; Shen, L.; Cadet, P.; Esch, T.; Goumon, Y.; Bianchi, E.; Sonetti, D.; Stefano, G.B. Tyrosine and tyramine increase endogenous ganglionic morphine and dopamine levels in vitro and in vivo: CYP2D6 and tyrosine hydroxylase modulation demonstrates a dopamine coupling. Med. Sci. Monit. 2005, 11, BR397–BR404. [Google Scholar] [PubMed]
- Stefano, G.B. Comparative aspects of opioid-dopamine interaction. Cell. Mol. Neurobiol. 1982, 2, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Stefano, G.B. (Ed.) Norepinephrine: Presence and interaction with endogenous biogenic amines. In Neurobiology of Mytilus Edulis; Manchester University Press: Manchester, UK, 1990; pp. 93–103. [Google Scholar]
- Iversen, L.L.; Iversen, S.D.; Snyder, S.H. Biochemistry of Biogenic Amines; Plenum Press: New York, NY, USA, 1975. [Google Scholar]
- Zhu, W.; Cadet, P.; Baggerman, G.; Mantione, K.J.; Stefano, G.B. Human white blood cells synthesize morphine: CYP2D6 modulation. J. Immunol. 2005, 175, 7357–7362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefano, G.B.; Goumon, Y.; Casares, F.; Cadet, P.; Fricchione, G.L.; Rialas, C.; Peter, D.; Sonetti, D.; Guarna, M.; Welters, I.D.; et al. Endogenous morphine. Trends Neurosci. 2000, 9, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Stefano, G.B.; Kream, R.M. Dopamine, morphine, and nitric oxide: An evolutionary signaling triad. CNS Neurosci. Ther. 2010, 16, e124–e137. [Google Scholar] [CrossRef]
- Stefano, G.B.; Digenis, A.; Spector, S.; Leung, M.K.; Bilfinger, T.V.; Makman, M.H.; Scharrer, B.; Abumrad, N.N. Opiate-like substances in an invertebrate, an opiate receptor on invertebrate and human immunocytes, and a role in immunosuppression. Proc. Natl. Acad. Sci. USA 1993, 90, 11099–11103. [Google Scholar] [CrossRef] [Green Version]
- Cadet, P.; Mantione, K.J.; Zhu, W.; Kream, R.M.; Sheehan, M.; Stefano, G.B. A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J. Immunol. 2007, 179, 5839–5844. [Google Scholar] [CrossRef] [Green Version]
- Stefano, G.B.; Fricchione, G.L.; Slingsby, B.T.; Benson, H. The placebo effect and relaxation response: Neural processes and their coupling to constitutive nitric oxide. Brain Res. Rev. 2001, 35, 1–19. [Google Scholar] [CrossRef]
- Boettcher, C.; Fellermeier, M.; Boettcher, C.; Drager, B.; Zenk, M.H. How human neuroblastoma cells make morphine. Proc. Natl. Acad. Sci. USA 2005, 102, 8495–8500. [Google Scholar] [CrossRef] [Green Version]
- Bird, D.A.; Facchini, P.J. Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Planta 2001, 213, 888–897. [Google Scholar] [CrossRef]
- Facchini, P.J.; De, L.V. Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. J. Biol. Chem. 1994, 269, 26684–26690. [Google Scholar] [CrossRef] [PubMed]
- Facchini, P.J.; Park, S.U. Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry 2003, 64, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Facchini, P.J.; De, L.V. Expression in Escherichia coli and partial characterization of two tyrosine/dopa decarboxylases from opium poppy. Phytochemistry 1995, 8, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Park, S.U.; Johnson, A.G.; Penzes-Yost, C.; Facchini, P.J. Analysis of promoters from tyrosine/dihydroxyphenylalanine decarboxylase and berberine bridge enzyme genes involved in benzylisoquinoline alkaloid biosynthesis in opium poppy. Plant Mol. Biol. 1999, 40, 121–131. [Google Scholar] [CrossRef]
- Samanani, N.; Facchini, P.J. Isolation and partial characterization of norcoclaurine synthase, the first committed step in benzylisoquinoline biosynthesis, from poppy. Planta 2001, 213, 898–906. [Google Scholar] [CrossRef]
- Samanani, N.; Facchini, P.J. Purification and characterization of norcoclaurine synthase. The first committed enzyme in benzylisoquinoline alkaloid biosynthesis in plants. J. Biol. Chem. 2002, 277, 33878–33883. [Google Scholar] [CrossRef] [Green Version]
- De-Eknamkul, W.; Zenk, M.H. Enzymatic formation of (R)-reticuline from 1,2-dehydroreticuline in the opium poppy plant. Tetrahedron Lett. 1990, 31, 4855–4858. [Google Scholar] [CrossRef]
- Frenzel, T.; Zenk, M.H. S-Adenosyl-L-methionine: 3’-hydroxy-N-methyl-(S)-coclaurine 4’-O-methyltransferase, a regio- and stereoselective enzyme of the (S)-reticuline pathway. Phytochemistry 1990, 29, 3505–3511. [Google Scholar] [CrossRef]
- Gerady, R.; Zenk, M.H. Formation of salutaridine from (R)-reticuline by a membrane-bound cytochrome P-450 enzyme from Papaver somniferum. Phytochemistry 1992, 32, 79–86. [Google Scholar] [CrossRef]
- Herbert, R.B. The biosynthesis of isoquinoline alkaloids. In The Chemistry and Biology of Isoquinoline Alkaloids; Phillipson, J.D., Roberts, M.F., Zenk, M.H., Eds.; Springer: Berlin, Germany, 1985; pp. 213–228. [Google Scholar]
- Lenz, R.; Zenk, M.H. Closure of the oxide bridge in morphine biosynthesis. Tetrahedron Lett. 1994, 35, 3897–3900. [Google Scholar] [CrossRef]
- Lenz, R.; Zenk, M.H. Stereospecific reduction of codeinone, the penultimate enzymatic step during morphine biosynthesis in Papaver somniferum. Tetrahedron Lett. 1995, 36, 2449–2452. [Google Scholar] [CrossRef]
- Lenz, R.; Zenk, M.H. Purification and properties of codeinone reductase (NADPH) from Papaver somniferum cell cultures. Eur. J. Biochem. 1995, 233, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, S.; Zenk, M.H. The hydroxylation step in the biosynthesis pathway leading from norcoclaurine to reticuline. Phytochemistry 1990, 29, 3499–3503. [Google Scholar] [CrossRef]
- Zhu, W.; Ma, Y.; Bell, A.; Esch, T.; Guarna, M.; Bilfinger, T.V.; Bianchi, E.; Stefano, G.B. Presence of morphine in rat amygdala: Evidence for the mu3 opiate receptor subtype via nitric oxide release in limbic structures. Med. Sci. Monit. 2004, 10, BR433–BR439. [Google Scholar]
- Stefano, G.B.; Aiello, E. Histoflourescent localization of serotonin and dopamine in the nervous system and gill of Mytilus edulis (Bivalvia). Biol. Bull. 1975, 148, 141–156. [Google Scholar] [CrossRef]
- Stefano, G.B.; Catapane, E.J.; Aiello, E. Dopaminergic agents: Influence on serotonin in the molluscan nervous system. Science 1976, 194, 539–541. [Google Scholar] [CrossRef]
- Stefano, G.B.; Scharrer, B. Endogenous morphine and related opiates, a new class of chemical messengers. Adv. Neuroimmunol. 1994, 4, 57–68. [Google Scholar] [CrossRef]
- Stefano, G.B. Autoimmunovascular regulation: Morphine and anandamide stimulated nitric oxide release. J. Neuroimmunol. 1998, 83, 70–76. [Google Scholar] [CrossRef]
- Stefano, G.B.; Fricchione, G.L. The biology of deception: The evolution of cognitive coping as a denial-like process. Med. Hypotheses 1995, 44, 311–314. [Google Scholar] [CrossRef]
- Stefano, G.B.; Fricchione, G.L. The biology of deception: Emotion and morphine. Med. Hypotheses 1995, 49, 51–54. [Google Scholar] [CrossRef]
- Esch, T. The ABC model of happiness—Neurobiological aspects of motivation and positive mood, and their dynamic changes through practice, the course of life. Biology 2022, 11, 843. [Google Scholar] [CrossRef] [PubMed]
- Stefano, G.B.; Scharrer, B.; Smith, E.M.; Hughes, T.K., Jr.; Magazine, H.I.; Bilfinger, T.V.; Hartman, A.R.; Fricchione, G.L.; Liu, Y.; Makman, M.H. Opioid and opiate immunoregulatory processes. Crit. Rev. Immunol. 1996, 16, 109–144. [Google Scholar] [CrossRef]
- Stefano, G.B.; Liu, Y. Opiate antagonism of opioid actions on immunocyte activation and nitric oxide release. Anim. Biol. 1996, 1, 11–16. [Google Scholar]
- Pryor, S.C.; Zhu, W.; Cadet, P.; Bianchi, E.; Guarna, M.; Stefano, G.B. Endogenous morphine: Opening new doors for the treatment of pain and addiction. Expert Opin. Biol. Ther. 2005, 5, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Giulivi, C. Critical overview of mitochondrial nitric-oxide synthase. Front. Biosci. 2006, 11, 2725–2738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riobo, N.A.; Melani, M.; Sanjuan, N.; Fiszman, M.L.; Gravielle, M.C.; Carreras, M.C.; Cadenas, E.; Poderoso, J.J. The modulation of mitochondrial nitric-oxide synthase activity in rat brain development. J. Biol. Chem. 2002, 277, 42447–42455. [Google Scholar] [CrossRef] [Green Version]
- Cadet, P.; Mantione, K.J.; Stefano, G.B. Molecular identification and functional expression of mu3, a novel alternatively spliced variant of the human mu opiate receptor gene. J. Immunol. 2003, 170, 5118–5123. [Google Scholar] [CrossRef] [Green Version]
- Kream, R.M.; Sheehan, M.; Cadet, P.; Mantione, K.J.; Zhu, W.; Casares, F.M.; Stefano, G.B. Persistence of evolutionary memory: Primordial six-transmembrane helical domain mu opiate receptors selectively linked to endogenous morphine signaling. Med. Sci. Monit. 2007, 13, SC5–SC6. [Google Scholar]
- Liu, Q.; Gao, T.; Liu, W.; Liu, Y.; Zhao, Y.; Liu, Y.; Li, W.; Ding, K.; Ma, F.; Li, C. Functions of dopamine in plants: A review. Plant Signal. Behav. 2020, 15, 1827782. [Google Scholar] [CrossRef]
- Soares, A.R.; Marchiosi, R.; de Siqueira-Soares, R.C.; Barbosa de Lima, R.; Dantas dos Santos, W.; Ferrarese-Filho, O. The role of L-DOPA in plants. Plant Signal. Behav. 2014, 9, e28275. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, S.; Suemori, K.; Moriwaki, J.; Taura, F.; Tanaka, H.; Aso, M.; Tanaka, M.; Suemune, H.; Shimohigashi, Y.; Shoyama, Y. Morphine metabolism in the opium poppy and its possible physiological function. Biochemical characterization of the morphine metabolite, bismorphine. J. Biol. Chem. 2001, 276, 38179–38184. [Google Scholar] [CrossRef] [PubMed]
- Bozarth, M.A. Pleasure systems in the brain. In Pleasure: The Politics and the Reality; Wartburton, D.M., Ed.; Wiley & Sons: New York, NY, USA, 1994; pp. 5–14. [Google Scholar]
- Nestler, E.J.; Malenka, R.C. The addicted brain. Sci. Am. 2004, 290, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Hui, K.K.S.; Liu, J.; Makris, N.; Gollub, R.L.; Chen, A.J.; Moore, C.I.; Kennedy, D.N.; Rosen, B.R.; Kwong, K.K. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: Evidence from fMRI studies in normal subjects. Hum. Brain Mapp. 2000, 9, 13–25. [Google Scholar] [CrossRef]
- Esch, T.; Stefano, G.B.; Fricchione, G.L.; Benson, H. The role of stress in neurodegenerative diseases and mental disorders. Neuroendocrinol. Lett. 2002, 23, 199–208. [Google Scholar] [PubMed]
- Davidson, R.J.; Irwin, W. The functional neuroanatomy of emotion and affective style. Trends Cogn. Sci. 1999, 3, 11–21. [Google Scholar] [CrossRef]
- Esch, T. Music medicine: Music in association with harm and healing. Musikphysiol. Musikermed. 2003, 10, 213–224. [Google Scholar]
- Nestler, E.J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2001, 2, 119–128. [Google Scholar] [CrossRef]
- Nestler, E.J.; Malenka, R.C.; Hyman, S.E. Molecular Basis of Neuropharmacology; McGraw-Hill: Columbus, OH, USA, 2001. [Google Scholar]
- Bianchi, E.; Guarna, M.; Tagliamonte, A. Immunocytochemical localization of endogenous codeine and morphine. Adv. Neuroimmunol. 1994, 4, 83–92. [Google Scholar] [CrossRef]
- Guarna, M.; Bianchi, E.; Bartolini, A.; Ghelardini, C.; Galeotti, N.; Bracci, L.; Neri, C.; Sonetti, D.; Stefano, G. Endogenous morphine modulates acute thermonociception in mice. J. Neurochem. 2002, 80, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, D.F.; Navarro, M. Role of the limbic system in dependence on drugs. Ann. Med. 1998, 30, 397–405. [Google Scholar]
- Weiss, F.; Koob, G.F. Drug addiction: Functional neurotoxicity of the brain reward systems. Neurotox. Res. 2001, 3, 145–156. [Google Scholar] [CrossRef]
- Esch, T.; Stefano, G.B. The neurobiology of pleasure, reward processes, addiction and their health implications. Neuroendocrinol. Lett. 2004, 25, 235–251. [Google Scholar] [PubMed]
- Zhu, W.; Mantione, K.; Kream, R.M.; Stefano, G.B. Alcohol-, nicotine-, and cocaine-evoked release of morphine from human white blood cells: Substances of abuse actions converge on endogenous morphine release. Med. Sci. Monit. 2006, 12, BR350–BR354. [Google Scholar]
- Bozarth, M.A. Ventral tegmental reward system. In Brain Reward Systems and Abuse; Oreland, L., Engel, J., Eds.; Raven Press: New York, NY, USA, 1987; pp. 1–17. [Google Scholar]
- Mitchell, J.B.; Stewart, J. Facilitation of sexual behaviors in the male rat associated with intra-VTA injections of opiates. Pharmacol. Biochem. Behav. 1990, 35, 643–650. [Google Scholar] [CrossRef]
- Hamilton, M.E.; Bozarth, M.A. Feeding elicited by dynorphin (1–13) microinjections into the ventral tegmental area in rats. Life Sci. 1988, 43, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.G. (Ed.) Pleasure response of human subjects to direct stimulation of the brain. In The Role of Pleasure in Human Behavior; Hoeber: New York, NY, USA, 1964; pp. 219–243. [Google Scholar]
- Stefano, G.B.; Scharrer, B.; Bilfinger, T.V.; Salzet, M.; Fricchione, G.L. A novel view of opiate tolerance. Adv. Neuroimmunol. 1996, 6, 265–277. [Google Scholar] [CrossRef] [PubMed]
- McClung, C.A.; Nestler, E.J. Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat. Neurosci. 2003, 6, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lou, D.; Jiao, H.; Zhang, D.; Wang, X.; Xia, Y.; Zhang, J.; Xu, M. Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1 and D3 receptors. J. Neurosci. 2004, 24, 3344–3354. [Google Scholar] [CrossRef] [Green Version]
- Murphy, C.A.; Russig, H.; Pezze, M.A.; Ferger, B.; Feldon, J. Amphetamine withdrawal modulates FosB expression in mesolimbic dopaminergic target nuclei: Effects of different schedules of administration. Neuropharmacology 2003, 44, 926–939. [Google Scholar] [CrossRef]
- Robinson, T.E.; Berridge, K.C. Incentive-sensitization and addiction. Addiction 2001, 96, 103–114. [Google Scholar] [CrossRef]
- Bozarth, M.A. New perspectives on cocaine addiction: Recent findings from animal research. Can. J. Physiol. Pharmacol. 1989, 67, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, Z.L.; Hmaidan, Y.; Gessa, G.L. Marked inhibition of mesolimbic dopamine release: A common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur. J. Pharmacol. 1992, 221, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Wise, R.A.; Bozarth, M.A. A psychomotor stimulant theory of addiction. Psychol. Rev. 1987, 94, 469–492. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.C.; Kristal, M.B. Opioids in the ventral tegmental area facilitate the onset of maternal behavior in the rat. Soc. Neurosci. Abstr. 1992, 18, 539. [Google Scholar]
- Stefano, G.B.; Kream, R.M. Prebiotic formation of protoalkaloids within alkaline oceanic hydrothermal vents in the Hadean seafloor as a prerequisite for evolutionary biodiversity. Med. Sci. Monit. 2020, 26, e928415. [Google Scholar] [CrossRef]
- Esch, T.; Guarna, M.; Bianchi, E.; Zhu, W.; Stefano, G.B. Commonalities in the central nervous system’s involvement with complementary medical therapies: Limbic morphinergic processes. Med. Sci. Monit. 2004, 10, MS6–MS17. [Google Scholar]
- Esch, T.; Stefano, G.B. The neurobiology of love. Neuroendocrinol. Lett. 2005, 26, 175–192. [Google Scholar]
- Salamon, E.; Esch, T.; Stefano, G.B. The role of the amygdala in mediating sexual and emotional behavior via coupled nitric oxide release. Acta Pharmacol. Sin. 2005, 26, 389–395. [Google Scholar] [CrossRef]
- Stefano, G.B.; Fricchione, G.L.; Esch, T. Relaxation: Molecular and physiological significance. Med. Sci. Monit. 2006, 12, HY21–HY31. [Google Scholar]
- Stefano, G.B.; Benson, H.; Fricchione, G.L.; Esch, T. The Stress Response: Always Good and When It Is Bad; Medical Science International: New York, NY, USA, 2005. [Google Scholar]
- Leisman, G.; Moustafa, A.A.; Tal, S. Thinking, walking, talking: Integratory motor and cognitive brain function. Front. Public Health 2016, 4, 94. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, Y.; Hikishima, K.; Saiki, M.; Inada, M.; Sasaki, E.; Lemon, R.N.; Price, C.J.; Okano, H.; Iriki, A. Neural changes in the primate brain correlated with the evolution of complex motor skills. Sci. Rep. 2016, 6, 31084. [Google Scholar] [CrossRef] [PubMed]
- Herculano-Houzel, S.; Kaas, J.H.; de Oliveira-Souza, R. Corticalization of motor control in humans is a consequence of brain scaling in primate evolution. J. Comp. Neurol. 2016, 524, 448–455. [Google Scholar] [CrossRef]
- Suryanarayana, S.M.; Robertson, B.; Grillner, S. The neural bases of vertebrate motor behaviour through the lens of evolution. Phil. Trans. R. Soc. 2022, 377, 20200521. [Google Scholar] [CrossRef] [PubMed]
- Bakken, T.E.; Jorstad, N.L.; Hu, Q.; Lake, B.B.; Tian, W.; Kalmbach, B.E.; Crow, M.; Hodge, R.D.; Krienen, F.M.; Sorensen, S.A.; et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 2021, 598, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Ioffe, M.E. Brain mechanisms for the formation of new movements during learning: The evolution of classical concepts. Neurosci. Behav. Physiol. 2004, 34, 5–18. [Google Scholar] [CrossRef]
- Michaelsen, M.M.; Esch, T. Motivation and reward mechanisms in health behavior change processes. Brain Res. 2021, 1757, 147309. [Google Scholar] [CrossRef]
- Michaelsen, M.M.; Esch, T. Functional mechanisms of health behavior change techniques: A conceptual review. Front. Psychol. 2022, 13, 725644. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefano, G.B.; Kream, R.M.; Esch, T. Mobility Coupled with Motivation Promotes Survival: The Evolution of Cognition as an Adaptive Strategy. Biology 2023, 12, 80. https://doi.org/10.3390/biology12010080
Stefano GB, Kream RM, Esch T. Mobility Coupled with Motivation Promotes Survival: The Evolution of Cognition as an Adaptive Strategy. Biology. 2023; 12(1):80. https://doi.org/10.3390/biology12010080
Chicago/Turabian StyleStefano, George B., Richard M. Kream, and Tobias Esch. 2023. "Mobility Coupled with Motivation Promotes Survival: The Evolution of Cognition as an Adaptive Strategy" Biology 12, no. 1: 80. https://doi.org/10.3390/biology12010080
APA StyleStefano, G. B., Kream, R. M., & Esch, T. (2023). Mobility Coupled with Motivation Promotes Survival: The Evolution of Cognition as an Adaptive Strategy. Biology, 12(1), 80. https://doi.org/10.3390/biology12010080