Early Summer Temperature Variation Recorded by Earlywood Width in the Northern Boundary of Pinus taiwanensis Hayata in Central China and Its Linkages to the Indian and Pacific Oceans
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Tree Ring Data
2.3. Climate Data
2.4. Study Methods
3. Results
3.1. Statistical Characteristics of Different Tree Chronologies
3.2. The Relationships among EWW, LWW and RW Residual Chronologies
3.3. The Correlations between RES of EWW, LWW, RW and Climatic Factors
3.4. The Effects of Temperature before Abrupt Change on Tree Radial Growth
3.5. Reconstruction of TMJ in the Tongbai Mountains
4. Discussion
4.1. The Main Limiting Factors of Radial Growth of Pinus taiwanensis Hayata in the Tongbai Mountains
4.2. TMJ Variation in the Tongbai Mountains
4.3. Spatial Representativeness
4.4. Characteristic of Periodic Variation of Reconstructed TMJ
4.5. Mechanism Analyses of Past Temperature Change
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate. In Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Malik, R.; Rossi, S.; Sukumar, R. Variations in the timing of different phenological stages of cambial activity in Abies pindrow (Royle) along an elevation gradient in the north-western Himalaya. Dendrochronologia 2020, 59, 125660. [Google Scholar] [CrossRef]
- Lara, N.D.; Silva, M.; Nogueira, A.; Marcati, C.R. Duration of cambial activity is determined by water availability while cambial stimulus is day-length dependent in a Neotropical evergreen species. Environ. Exp. Bot. 2017, 141, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.Y.; Fang, X.Q.; Wu, S.H. Recent progress of climate change research in physical geography studies from China. Prog. Geogr. 2018, 37, 16–27. [Google Scholar]
- Anhuf, D.; Schleser, G.H. Tree Ring Studies in the Tropics and Subtropics. Erdkunde 2017, 71, 1–4. [Google Scholar] [CrossRef]
- Shao, X.M. Advancements in dendrochronology. Quat. Sci. 1997, 17, 265–271. [Google Scholar]
- He, M.H.; Yang, B.; Bräuning, A.; Rossi, S.; Ljungqvist, F.C.; Shishov, V.; Grießinger, J.; Wang, J.L.; Liu, J.J.; Qin, C. Recent advances in dendroclimatology in China. Earth-Sci. Rev. 2019, 194, 521–535. [Google Scholar] [CrossRef]
- Feng, J.; Hua, L.W.; Zhang, Z.C.; Liu, K.; Liu, B.; Zhang, F. Response of the relationship between Pinus tabuliformis Carr. radial growth and climatic factors to abrupt changes in temperature in Qinling Zhen’an. Plant Sci. J. 2021, 39, 268–277. [Google Scholar]
- Cui, J.Y.; Peng, J.F.; Li, J.R.; Li, X.; Peng, M.; Yang, L. Response of tree-ring width of Pinus tabuliformis plantation to climatic factors in Songshan Mountains, central China. Chin. J. Appl. Ecol. 2021, 32, 3497–3504. [Google Scholar]
- Lin, B.; Qianqian, X.U.; Liu, W.; Zhang, G.; Qiongyao, X.U.; Liu, Q. Dendrochronology-based stand growth estimation of Larix olgensis forest in relation with climate on the eastern slope of Changbai Mountain, NE China. Front. Earth Sci. 2013, 7, 429–438. [Google Scholar] [CrossRef]
- Peng, J.F.; Yang, A.H.; Tian, Q.H. Response of radial growth Chinese pine (Pinus tabulaeformis) to climate factors in Wanxian Mountain of Henan Province. Acta Ecol. Sin. 2011, 31, 5977–5983. [Google Scholar]
- Shi, J.; Li, J.; Cook, E.R.; Zhang, X.; Lu, H. Growth response of Pinus tabulaeformis to climate along an elevation gradient in the eastern Qinling Mountains, central China. Clim. Res. 2012, 53, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Luo, C.W.; Xu, Q.Q.; Meng, S.W.; Li, J.Q.; Liu, Q.J. Radial growth of Pinus koraiensis and carbon sequastration potential of the old growth forest in Changbai Mountain, Northeast China. Acta Ecol. Sin. 2016, 36, 2626–2636. [Google Scholar]
- Wang, T.; Li, C.; Zhang, H.; Ren, S.Y.; Li, L.X.; Pan, N.; Yuan, Z.L.; Ye, Y.Z. Response of conifer trees radial growth to climate change in Baotianman National Nature Reserve, central China. Acta Ecol. Sin. 2016, 36, 5324–5332. [Google Scholar]
- Wang, L.L.; Shao, X.M.; Huang, L.; Liang, E.Y. Tree-ring characteristics of Larix gmelinii and Pinus sylvestris Var. Mongolica and their response to climate in Mohe, China. Acta Phytoecol. Sin. 2005, 29, 380–385. [Google Scholar]
- Yang, J.W.; Zhang, Q.L.; Song, W.Q.; Zhang, X.; Li, Z.S.; Zhang, Y.D.; Wang, X.C. Response differences of radial growth of Larix gmelinii and Pinus sylvestris var. mongolica to climate change in Daxing’an Mountains, Northeast China. Chin. J. Appl. Ecol. 2021, 32, 3415–3427. [Google Scholar]
- Zhang, X.; Gao, L.S.; Qiu, Y.; Guo, J. Characteristics of Korean pine (Pinus koraiensis) radial growth at different heights and its response to climate change on Changbai Mountain. Acta Ecol. Sin. 2015, 35, 2978–2984. [Google Scholar]
- Liu, N.Y.; Zhou, Q.; Bao, G. Droughts and broad-scale climate variability reflected by temperature-sensitive tree growth in the Qinling Mountains, central China. Int. J. Biometeorol. J. Int. Soc. Biometeorol. 2013, 57, 169–177. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.H.; Cai, Q.F.; Song, H.M.; Ma, Y.Y.; Mei, R.C. The tree-ring width based seasonal minimum temperature reconstruction at Shiren Mountains, Henan, China since 1850 AD and its record of 20th century warming. J. Earth Environ. 2015, 6, 393–406. [Google Scholar]
- Lu, S.N.; Wang, X.C. Growth-climate response and winter precipitation reconstruction of Pinus sylvestris var. mongolica in A’li River of Greater Khingan Range. J. Northeast Norm. Univ. 2014, 46, 110–116. [Google Scholar]
- Peng, J.; Sun, Y.; Chen, M.; He, X.; Davi, N.K.; Zhang, X.; Chen, Z. Tree-ring based precipitation variability since AD 1828 in northwestern Liaoning, China. Quat. Int. 2013, 283, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.F.; Li, J.B.; Yang, L.; Li, J.R.; Huo, J.X. A 216-year tree-ring reconstruction of April–July relative humidity from Mt. Shiren, central China. Int. J. Climatol. 2020, 40, 6055–6066. [Google Scholar] [CrossRef]
- Peng, J.F.; Liu, Y.Z.; Wang, T. A tree-ring record of 1920’s—1940’s droughts and mechanism analyses in Henan Province. Acta Ecol. Sin. 2014, 34, 3509–3518. [Google Scholar]
- Ran, Y.L.; Chen, Y.P.; Chen, F.; Zhang, H.L.; Jia, X.B. May-July NDVI variation for the middle Qinling Mountains over the past 194 years indicated by tree rings of Pinus tabuliformis. Chin. J. Appl. Ecol. 2021, 32, 3661–3670. [Google Scholar]
- Shi, J.; Lu, H.; Wan, J.D.; Li, S.F.; Nie, H.S. Winter-half year temperature reconstruction of the last century using Pinus armandii franch tree-ring width chronology in the eastern Qinling Mountains. Quat. Sci. 2009, 29, 831–836. [Google Scholar]
- Sun, Y.; Wang, L.; Chen, J.; Duan, J. Reconstructing mean maximum temperatures of May–August from tree-ring maximum density in North Da Hinggan Mountains, China. Chin. Sci. Bull. 2012, 57, 2007–2014. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.H.; Liu, Y.; Cai, Q.F.; Bao, G.; Wang, W.P.; Xue, W.L.; Zhu, W.J.; Song, H.M.; Lei, Y. The maximum temperature of May-July inferred from tree-ring in Funiu Mountain since 1874 AD. Acta Geogr. Sin. 2009, 64, 879–887. [Google Scholar]
- Tian, Q.H.; Zhou, X.J.; Liu, Y.; Zhao, P. Historical late spring to early summer temperature at Qinling Mountain range inferred from multi-site tree-ring chronologies, and their relationship with northern hemisphere sea surface temperature. Quat. Sci. 2011, 31, 864–872. [Google Scholar]
- Wang, Y.J.; Zhang, Y.; Shao, X.M. Variation in relative humidity from May to July during the past 167 years in the Southern Taihang Mountains in Hebei Province. Acta Ecol. Sin. 2019, 39, 4570–4578. [Google Scholar]
- Yang, L.; Li, J.R.; Peng, J.F.; Huo, J.X.; Chen, L. Temperature variation and influence mechanism of Pinus tabulaeformis ring width recorded since 1801 at Yao Mountain, Henan Province. Acta Ecol. Sin. 2021, 41, 79–91. [Google Scholar]
- Zhang, Y.H.; Liu, Y.; Song, H.M.; Lei, Y.; Ma, Y.Y.; Wang, Y.C. Tree-ring-based seasonal precipitation reconstruction in Mt. Shennong at the last 162 years. J. Earth Environ. 2013, 4, 1450–1460. [Google Scholar]
- Zhao, Y.; Shi, J.; Shi, S.; Ma, X.; Bruning, A. Warm-season hydroclimate variability in Central China since 1866 AD and its relations with the East Asian Summer Monsoon: Evidence from tree-ring earlywood width. Clim. Past Discuss. 2018, 141, 1–27. [Google Scholar]
- Li, L.L.; Shi, J.F.; Hou, X.Y.; Ye, J.S.; Mao, H.B.; Zhao, X.W.; Lu, H.Y. High altitude Pinus taiwanensis Hayata growth response to climate in Jiulongshan and Guniujiang, Southeastern China. Chin. J. Appl. Ecol. 2014, 25, 1849–1856. [Google Scholar]
- Zhao, Y.S.; Shang, Z.Y.; Wang, J.; Guo, H.T.; Zhou, D.S.; Ding, M. Regional Disparities about the Relationships between Tree-Ring Width of Pinus massoniana Lamb. and Climatic Factors: A Case Study in Jiuling Mountain and Jiulian Mountain. J. Subtrop. Resour. Environ. 2014, 9, 1–8. [Google Scholar]
- Dong, Z.P.; Zheng, H.Z.; Fang, K.Y.; Yan, R.; Zheng, L.W.; Yang, Y.S. Responses of Tree-ring Width of Pinus massiniana to Climate Change in Sanming, Fujian Province. J. Subtrop. Resour. Environ. 2014, 9, 1–7. [Google Scholar]
- Li, J.Y.; Huang, J.G.; Liang, H.X.; Jiang, S.W.; Zhou, P.; Guo, X.L.; Li, J.T. Elevational Heterogeneity in Radial Growth-climate Association of Pinus massoniana in Southeastern China. J. Trop. Subtrop. Bot. 2019, 27, 633–641. [Google Scholar]
- Qiao, J.J.; Wang, T.; Pan, L.; Sun, Y.J. Responses of radial growth to climate change in Pinus massoniana at different altitudes and slopes. Chin. J. Appl. Ecol. 2019, 30, 2231–2240. [Google Scholar]
- Qiao, L.; Wang, B.; Guo, H.; Xichang, W.U.; Zhou, M.; Wang, Z.; Liu, X.; Xia, L. Reconstruction and analysis of July-September precipitation in Mt.Dagangshan, China. Acta Ecol. Sin. 2011, 31, 2272–2280. [Google Scholar]
- Duan, J.; Zhang, Q.B.; Lv, L.; Zhang, C. Regional-scale winter-spring temperature variability and chilling damage dynamics over the past two centuries in southeastern China. Clim. Dyn. 2011, 39, 919–928. [Google Scholar] [CrossRef]
- Yuan, S.; Zheng, Y.H.; Wu, S.B.; Xu, P.; Zhang, F.F. March SST reconstruction in the South China Sea based on Pinus massoniana tree-ring widths from Changting, Fujian, in Southeast China since 1893 CE. Mar. Micropaleontol. 2018, 145, 21–27. [Google Scholar] [CrossRef]
- Manuel, S.H.; Vicente, R.; Ignacio, G.G. Earlywood vessels and latewood width explain the role of climate on wood formation of Quercus pyrenaica Willd. across the Atlantic-Mediterranean boundary in NW Iberia. For. Ecol. Manag. 2018, 425, 126–137. [Google Scholar]
- Cabral-Alemán, C.; Pompa-García, M.; Acosta-Hernández, A.C.; Zúñiga-Vásquez, J.M.; Camarero, J.J. Earlywood and Latewood Widths of Picea chihuahuana Show Contrasting Sensitivity to Seasonal Climate. Forests 2017, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Stahle, D.W.; Cleaveland, M.K.; Grissino-Mayer, H.D.; Griffin, R.D.; Fye, F.K.; Therrell, M.; Burnette, D.J.; Meko, D.M.; Diaz, J.V. Cool- and Warm-Season Precipitation Reconstructions over Western New Mexico. J. Clim. 2016, 22, 3729–3750. [Google Scholar] [CrossRef]
- Therrell, D.M.; Stahle, D.W.; Cleaveland, M.K. Warm season tree growth and precipitation over Mexico. J. Geophys. Res. 2002, 107, 4205. [Google Scholar] [CrossRef]
- Griffin, D.; Meko, D.M.; Touchan, R.; Leavitt, S.W.; Woodhouse, C.A. Latewood Chronology Development for Summer-Moisture Reconstruction In the US Southwest. Tree-Ring Res. 2011, 67, 87–101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.W.; Yuan, Y.J.; Wei, W.S.; Shang, H.M.; Yu, S.L.; Zhang, R.B.; Chen, F.; Fan, Z.A.; Qin, L. Developments and Analysis of Multi-Tree-Ring Width Chronologies of Meyer Spruce in the Ortindag Sand Land. Desert Oasis Meteorol. 2016, 10, 47–53. [Google Scholar]
- Zhao, A.J.; Guo, S.G.; Yang, X.; Chen, K. Relationship between radial growth of earlywood, latewood of cryptomeria fortune with temperature and precipitation change in southwest Sichuan province, China. Resour. Environ. Yangtze Basin 2014, 23, 1603–1609. [Google Scholar]
- Zhao, Y.; Shi, J.; Shi, S.; Ma, X.; Zhang, W.; Wang, B.; Sun, X.; Lu, H.; Braeuning, A. Early summer hydroclimatic signals are captured well by tree-ring earlywood width in the eastern Qinling Mountains, central China. Clim. Past 2019, 15, 1113–1131. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Cheng, R.; Xiao, W.; Wang, R.; Liu, Z. The critical temperature to Huashan Pine (Pinus armandi) radial growth based on the daily mean temperature. Acta Ecol. Sin. 2012, 32, 1450–1457. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.L.; Wang, J.; Shang, Z.Y.; Ma, L.J.; Zhang, Q.P. Divergence Response of Earlywood, Latewood Chronologies of Pinus massoniana to Climatic Factors. Resour. Environ. Yangtze Basin 2020, 29, 1150–1162. [Google Scholar]
- Zhao, Y.; Shi, J.; Shi, S.; Yu, J.; Lu, H. Tree-ring latewood width based July–August SPEI reconstruction in South China since 1888 and its possible connection with ENSO. J. Meteorol. Res. 2017, 31, 39–48. [Google Scholar] [CrossRef]
- Ma, X.Q.; Shi, J.F.; Shi, S.Y.; Zhao, Y.S.; Zhang, W.J.; Zhu, Y.X. Climatic significance of the earlywood and latewood width of Pinus taiwanesis in Sanqingshan, Jiangxi province of China. Resour. Environ. Yangtze Basin 2020, 29, 1825–1834. [Google Scholar]
- Peng, J.F.; Wang, T. Response and model of tree-rings growth to climate factors at Huangbaishan Mountain, in Henan province. Sci. Geogr. Sin. 2015, 35, 644–651. [Google Scholar]
- Peng, J.F.; Sun, X.H.; Wang, F.; Li, L.L.; Wang, Z.G. Climatic signals from the radial growth of Huangshan pine (Pinus taiwanese’s Hayata) in the western Dabie Mountains. Ecol. Environ. Sci. 2013, 22, 1769–1773. [Google Scholar]
- Peng, J.F.; Li, G.D.; Li, L.L. Dendroclimatic potentials for the tree rings of Huangshan pine (Pinus taiwanensis) at Xiaolinhai in the western Dabie Mountains, China. Chin. J. Appl. Ecol. 2014, 25, 1857–1862. [Google Scholar]
- Cai, Q.; Liu, Y.; Qian, H.; Liu, R. Inverse effects of recent warming on trees growing at the low and high altitudes of the Dabie Mountains, subtropical China. Dendrochronologia 2019, 59, 125649. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Zhang, Y.; Shao, X.M.; Yin, Z.Y.; Zhang, J. Climate significance of tree-ring width of Huangshan Pine and Chinese Pine in the Dabie Mountains. Prog. Geogr. 2012, 31, 72–77. [Google Scholar]
- Shi, J.; Cook, E.R.; Li, J.; Lu, H. Unprecedented January–July warming recorded in a 178-year tree-ring width chronology in the Dabie Mountains, southeastern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 381, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.Y.; Cai, Q.F.; Liu, Y. Tree-ring records revealed the dry/wet variation of the Dabie Mountains during 1846–2010. J. Earth Environ. 2020, 11, 648–659. [Google Scholar]
- Zheng, Y.H.; Zhang, Y.; Shao, X.M.; Yin, Z.Y.; Zhang, J. Temperature variability inferred from tree-ring widths in the Dabie Mountains of subtropical central China. Trees 2012, 26, 1887–1894. [Google Scholar] [CrossRef]
- Cai, Q.F.; Liu, Y. The June-September maximum mean temperature reconstruction from Masson pine (Pinus massoniana Lamb.) tree rings in Macheng, southeast China since 1879 AD. Chin. Sci. Bull. 2013, 58, 169–177. [Google Scholar]
- Cai, Q.F.; Liu, Y. Temperature variation of the past century in the Tongbai Mountain, Henan Province and its relationship with air-sea interaction. Quat. Sci. 2021, 41, 346–365. [Google Scholar]
- Zhu, C.S.; Liu, J.W. The study on vegetation characteristics of Tongbai Mountain in Henan Province. Henan For. Sci. Technol. 1992, 03, 16–19. [Google Scholar]
- Yu, X.L.; Zhou, S. Outline of plant resource of Tongbai Mountains and system of its exploration application. Biol. Dep. Nanyang Teach. Coll. 2003, 2, 57–59. [Google Scholar]
- Cook, E.R.; Kairiukstis, L. Methods of Dendrochronology: Applications in the Environmental Sciences; Springer: Amsterdam, The Netherlands, 1990; Volume 104, p. 249. [Google Scholar]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Arizona Press: Tucson, AZ, USA, 1968. [Google Scholar]
- Holmes, R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Cook, E.; Holmes, R. Users manual for program AR-STAN. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1986, 302, 50–56. [Google Scholar]
- Biondi, F. Are Climate-Tree Growth Relationships Changing in North-Central Idaho, U. S.A.? Arct. Antarct. Alp. Res. 2000, 32, 111–116. [Google Scholar] [CrossRef]
- Zhao, J.Y. Changes and Mutation in Temperature and Precipititaion of China during 1960–2013 and Future Prediction. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2017. [Google Scholar]
- Schulz, M.; Mudelsee, M. Redfit: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 2002, 28, 421–426. [Google Scholar] [CrossRef]
- Wigley, T.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Climatol. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Li, H.H.; Gong, Y.F. Change of winter temperature in China and its response to SST in the Pacific Ocean. J. Chengdu Univ. Inf. Technol. 2020, 35, 323–329. [Google Scholar]
- Pang, T.H. China Meteorological Disaster: Henan Volume; China Meteorological Press: Beijing, China, 2005. [Google Scholar]
- Wu, F.H. Annals of Tongbai County; Zhongzhou Ancient Books Publishing House Press: Zhengzhou, China, 1995. [Google Scholar]
- Xu, W.C.; Ma, J.S.; Wang, W. A review of studys on the influence of ENSO events on the climate in China. Sci. Meteorol. Sin. 2005, 25, 212–220. [Google Scholar]
- Pan, H.S. Analysis of the relationship between El Nino event and change in sea surface temperature in Western Tropical Pacific, Indian Ocean and Kuroshio Current. Mar. Sci. Bull. 1997, 16, 22–30. [Google Scholar]
- Wu, P.; Ding, Y.H.; Liu, Y.J. A new study of El Nino impacts on summertime water vapor transport and rainfall in China. Acta Meteorol. Sin. 2017, 75, 371–383. [Google Scholar]
- Huang, R.H.; Sun, F.Y. Impacts of the Thermal State and the Convective Activities in the Tropical Western Warm Pool on the Summer Climate Anomalies in East Asia. Chin. J. Atmos. Sci. 1994, 18, 141–151. [Google Scholar]
- Chen, D.; Gao, S.H.; Chen, J.N.; Gao, S. The synergistic effect of SSTA between the equatorial eastern Pacific and the Indian-South China Sea warm pool region influence on the western Pacific subtropical high. Haiyang Xuebao 2016, 38, 1–15. [Google Scholar]
- Yuan, Y.J.; Li, C.Y. Possible impacts of the tropical Indian Ocean SST anomaly modes on the South China Sea summer monsoon onset. Chin. J. Atmos. Sci. 2009, 33, 325–336. [Google Scholar]
- Li, Y.J.; Wang, L.J. Variability of the thermal state of the western Pacific warm pool and the characteristics of its adjacent convective activities. Trans. Atmos. Sci. 2016, 39, 156–165. [Google Scholar]
- Fan, L.; Liu, Q.Y. Relationship between the Western Pacific Subtropical High and sea-surface temperature anomaly. J. Trop. Oceanogr. 2009, 28, 83–88. [Google Scholar]
- Meehl, A. The Annual Cycle and Interannual Variability in the Tropical Pacific and Indian Ocean Regions. Mon. Weather. Rev. 1987, 115, 27–50. [Google Scholar] [CrossRef] [Green Version]
- Mooley, D.A.; Parthasarathy, B. Fluctuations in All-India Summer Monsoon Rainfall during 1871–1978. Clim. Chang. 1984, 6, 287–301. [Google Scholar] [CrossRef]
- Yasunari, T.; Suppiah, R. Some problem on the interannual variability of Indonesian monsoon rainfall. Toropical Rainfall Meas. 1988, 113–121. [Google Scholar]
- Chang, C.P.; Zhang, Y.S.; Li, T. Interannual and Interdecadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part I: Roles of the Subtropical Ridge. J. Clim. 2000, 13, 4310–4325. [Google Scholar]
- Jia, J.; Sun, Z.; Liu, X.; Tan, G. Evolution of Summer Precipitation Quasi-Biennial Oscillation in Eastern China. Chin. J. Atmos. Sci. 2009, 33, 397–407. [Google Scholar]
- Liu, Y.Y.; Ding, Y.H.; Gao, H.; Li, W.J. Tropospheric biennial oscillation of the western Pacific subtropical high and its relationships with the tropical SST and atmospheric circulation anomalies. Chin. Sci. Bull. 2013, 58, 3664–3672. [Google Scholar] [CrossRef] [Green Version]
Statistical Indicator | EWW | LWW | RW | |||
---|---|---|---|---|---|---|
RES | STD | RES | STD | RES | STD | |
Core/tree | 39/20 | 39/20 | 39/20 | 39/20 | 39/20 | 39/20 |
Common period | 1887–2014 | 1887–2014 | 1887–2014 | 1887–2014 | 1887–2014 | 1887–2014 |
Mean sensitivity | 0.231 | 0.226 | 0.254 | 0.237 | 0.221 | 0.198 |
All series correlation coefficient | 0.314 | 0.249 | 0.258 | 0.199 | 0.34 | 0.239 |
Intra-tree correlation coefficient | 0.541 | 0.53 | 0.475 | 0.423 | 0.56 | 0.508 |
Inter-tree correlation coefficient | 0.308 | 0.241 | 0.253 | 0.193 | 0.334 | 0.231 |
Signal noise ratio | 15.76 | 11.681 | 11.161 | 7.437 | 17.348 | 9.595 |
Expressed population signal | 0.94 | 0.921 | 0.918 | 0.881 | 0.945 | 0.906 |
Month | EWW | RW | LWW | ||||||
---|---|---|---|---|---|---|---|---|---|
T | Tmin | Tmax | P | T | Tmin | Tmax | P | P | |
Current May | −0.496 | −0.32 | −0.528 | 0.334 | −0.388 | −0.264 | −0.402 | 0.285 | |
Current June | −0.316 | −0.281 | −0.326 | 0.329 | −0.219 | −0.239 | −0.22 | 0.278 | |
Current October | −0.23 | −0.239 | |||||||
Current May–June | −0.598 | −0.411 | −0.607 | 0.425 | −0.449 | −0.334 | −0.446 | 0.36 | 0.203 |
Calibration (1958–1987) | Verification (1988–2005) | Calibration (1976–2005) | Verification (1958–1975) | Full Calibration (1958–2005) | |
---|---|---|---|---|---|
R | 0.603 | 0.726 | 0.596 | 0.747 | 0.651 |
R2 | 0.363 | 0.527 | 0.355 | 0.559 | 0.424 |
RE | 0.508 | 0.552 | |||
CE | 0.505 | 0.551 | |||
S | 18+/12− | 14+/4− * | 21+/9− * | 11+/7− | 32+/16− * |
S1 | 3 ** | 3 ** | 5 ** | 1 ** | 12 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, M.; Li, X.; Peng, J.; Cui, J.; Li, J.; Wei, Y.; Wei, X.; Li, J. Early Summer Temperature Variation Recorded by Earlywood Width in the Northern Boundary of Pinus taiwanensis Hayata in Central China and Its Linkages to the Indian and Pacific Oceans. Biology 2022, 11, 1077. https://doi.org/10.3390/biology11071077
Peng M, Li X, Peng J, Cui J, Li J, Wei Y, Wei X, Li J. Early Summer Temperature Variation Recorded by Earlywood Width in the Northern Boundary of Pinus taiwanensis Hayata in Central China and Its Linkages to the Indian and Pacific Oceans. Biology. 2022; 11(7):1077. https://doi.org/10.3390/biology11071077
Chicago/Turabian StylePeng, Meng, Xuan Li, Jianfeng Peng, Jiayue Cui, Jingru Li, Yafei Wei, Xiaoxu Wei, and Jinkuan Li. 2022. "Early Summer Temperature Variation Recorded by Earlywood Width in the Northern Boundary of Pinus taiwanensis Hayata in Central China and Its Linkages to the Indian and Pacific Oceans" Biology 11, no. 7: 1077. https://doi.org/10.3390/biology11071077
APA StylePeng, M., Li, X., Peng, J., Cui, J., Li, J., Wei, Y., Wei, X., & Li, J. (2022). Early Summer Temperature Variation Recorded by Earlywood Width in the Northern Boundary of Pinus taiwanensis Hayata in Central China and Its Linkages to the Indian and Pacific Oceans. Biology, 11(7), 1077. https://doi.org/10.3390/biology11071077