FAAH rs324420 Polymorphism Is Associated with Performance in Elite Rink-Hockey Players
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Anthropometric Profile
2.2.2. Training Data, Sport Experience and Sport Injuries History
2.2.3. Sample Collection and DNA Extraction
2.2.4. Polymorphism Selection and Genotyping
2.2.5. Statistical Analysis
3. Results
3.1. Characteristics of Elite Rink-Hockey Players
3.2. Genotype Frequencies in Elite Female and Male Rink-Hockey Players
3.3. Univariate and Multivariate Analysis of FAAH rs324420 and Relevant Factors of Elite Performance in Rink-Hockey
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millard-Stafford, M.; Wittbrodt, M.T. Sex and performance: Nature versus nurture. In Routledge Handbook of Sport and Exercise Systems Genetics; Lightfoot, J.T., Hubal, M.J., Roth, S.M., Eds.; Routledge: London, UK, 2019; pp. 416–429. [Google Scholar]
- Ahmetov, I.I.; Egorova, E.S.; Gabdrakhmanova, L.J.; Fedotovskaya, O.N. Genes and athletic performance: An Update. Med. Sport Sci. 2016, 61, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, S.M.; Kilduff, L.P.; Day, S.H.; Pitsiladis, Y.P.; Williams, A.G. Genomics in rugby union: A review and future prospects. Eur. J. Sport Sci. 2015, 15, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.H.; Silva, M.G.; Cerqueira, F.; Tavares, V.; Medeiros, R. Genomic profile in association with sport-type, sex, ethnicity, psychological traits and sport injuries of elite athletes. J. Sports Med. Phys. Fit. 2021, 62, 418–434. [Google Scholar] [CrossRef] [PubMed]
- Peplonska, B.; Safranow, K.; Adamczyk, J.; Boguszewski, D.; Szymański, K.; Soltyszewski, I.; Barczak, A.; Siewierski, M.; PLoSki, R.; Sozanski, H.; et al. Association of serotoninergic pathway gene variants with elite athletic status in the Polish population. J. Sports Sci. 2019, 37, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
- Peplonska, B.; Adamczyk, J.G.; Siewierski, M.; Safranow, K.; Maruszak, A.; Sozanski, H.; Gajewski, A.K.; Zekanowski, C. Genetic variants associated with physical and mental characteristics of the elite athletes in the Polish population. Scand. J. Med. Sci. Sports 2017, 27, 788–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petito, A.; Altamura, M.; Iuso, S.; Padalino, F.A.; Sessa, F.; D’Andrea, G.; Margaglione, M.; Bellomo, A. The Relationship between Personality Traits, the 5HTT Polymorphisms, and the Occurrence of Anxiety and Depressive Symptoms in Elite Athletes. PLoS ONE 2016, 11, e0156601. [Google Scholar] [CrossRef] [Green Version]
- Vitale, J.A.; Castellini, G.; Gianola, S.; Banfi, G. Analysis of the Christiania stop in roller hockey players with and without previous groin pain: A prespective case series study. Sports Sci. Health 2019, 15, 641–646. [Google Scholar] [CrossRef]
- Yagüe, P.; Del Valle, M.E.; Egocheaga, J.; Linnamo, V.; Fernández, A. The competitive demands of elite male rink hockey. Biol. Sport 2013, 30, 195–199. [Google Scholar] [CrossRef]
- Calò, C.M.; Sanna, S.; Piras, I.S.; Pavan, P.; Vona, G. Body composition of Italian female hockey players. Biol. Sport 2009, 26, 23–31. [Google Scholar] [CrossRef] [Green Version]
- World Skate. Available online: http://www.worldskate.org/rink-hockey/about/regulations.html (accessed on 13 April 2022).
- Han, J.; Waddington, G.; Anson, J.; Adams, R. Level of competitive success achieved by elite athletes and multi-joint proprioceptive ability. J. Sci. Med. Sport 2015, 18, 77–81. [Google Scholar] [CrossRef]
- Venâncio, J.; Lopes, D.; Lourenço, J.; Ribeiro, F. Knee joint position sense of roller hockey players: A comparative study. Sports Biomech. 2016, 15, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Cece, V.; Guillet-Descas, E.; Brenas, M.; Martinent, G. The role of dispositional emotion regulation strategies on the longitudinal emotional process and subjective performance during a competitive season. Eur. J. Sport Sci. 2021, 21, 1448–1458. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.G.; Silva, H.H. Comparison of body composition and nutrients’ deficiencies between Portuguese rink-hockey players. Eur. J. Pediatr. 2017, 176, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Trabal, G.; Daza, G.; Riera, J. Goalkeeper Effectiveness in the Direct Free Hit of Rink Hockey. Apunts Educ. Fis. Deportes 2020, 139, 56–64. [Google Scholar] [CrossRef]
- Ferraz, A.; Valente-Dos-Santos, J.; Sarmento, H.; Duarte-Mendes, P.; Travassos, B. A Review of Players’ Characterization and Game Performance on Male Rink-Hockey. Int. J. Environ. Res. Public Health 2020, 17, 4259. [Google Scholar] [CrossRef]
- Rodas, G.; Osaba, L.; Arteta, D.; Pruna, R.; Fernández, D.; Lucia, A. Genomic Prediction of Tendinopathy Risk in Elite Team Sports. Int. J. Sports Physiol. Perform. 2020, 15, 489–495. [Google Scholar] [CrossRef]
- World Skate. Available online: http://www.worldskate.org/rink-hockey/news-rink-hockey/3159-wrg2019-rink-hockey-portugal-and-spain-are-the-world-champion-in-male-and-female-rink-hockey.html (accessed on 13 April 2022).
- Bouchard, C.; Shephard, S. Physical activity, fitness, and health: The model and key concepts. In Physical Activity, Fitness and Health International Proceedings and Consensus Statement; Bouchard, C., Shephard, R., Stephens, T., Eds.; Human Kinetics Publishers: Champaign, IL, USA, 1993; pp. 11–23. [Google Scholar]
- Rink-hockey.net. Available online: http://rinkhockey.net/index.php (accessed on 2 May 2022).
- Marfell-Jones, M. International Standards for Anthropometric Assessment; ISAK: Potchefsroom, South Africa, 2006. [Google Scholar]
- Küchler, E.C.; Tannure, P.N.; Falagan-Lotsch, P.; Lopes, T.S.; Granjeiro, J.M.; Amorim, L.M. Buccal cells DNA extraction to obtain high quality human genomic DNA suitable for polymorphism genotyping by PCR-RFLP and Real-Time PCR. J. Appl. Oral Sci. 2012, 20, 467–471. [Google Scholar] [CrossRef] [Green Version]
- Assis, J.; Pereira, D.; Gomes, M.; Marques, D.; Marques, I.; Nogueira, A.; Catarino, R.; Medeiros, R. Influence of CYP3A4 genotypes in the outcome of serous ovarian cancer patients treated with first-line chemotherapy: Implication of a CYP3A4 activity profile. Int. J. Clin. Exp. Med. 2013, 1, 552–561. [Google Scholar]
- Ensembl Database. Available online: https://www.ensembl.org/index.html (accessed on 5 May 2022).
- GeneCards Database. Available online: https://www.genecards.org/ (accessed on 5 May 2022).
- UniProt Database. Available online: https://www.uniprot.org/ (accessed on 7 May 2022).
- Sessa, F.; Chetta, M.; Petito, A.; Franzetti, M.; Bafunno, V.; Pisanelli, D.; Sarno, M.; Iuso, S.; Margaglione, M. Gene polymorphisms and sport attitude in Italian athletes. Genet. Test. Mol. Biomark. 2011, 15, 285–290. [Google Scholar] [CrossRef]
- Orysiak, J.; Mazur-Różycka, J.; Busko, K.; Gajewski, J.; Szczepanska, B.; Malczewska-Lenczowska, J. Individual and combined influence of ACE and ACTN3 genes on muscle phenotypes in Polish athletes. J. Strength Cond. Res. 2018, 32, 2776–2782. [Google Scholar] [CrossRef]
- Orysiak, J.; Busko, K.; Mazur-RóŻycka, J.; Michalski, R.; Gajewski, J.; Malczewska-Lenczowska, J.; Sitkowski, D. Relationship Between ACTN3 R577X Polymorphism and Physical Abilities in Polish Athletes. J. Strength Cond. Res. 2015, 29, 2333–2339. [Google Scholar] [CrossRef] [PubMed]
- Petr, M.; Stastny, P.; Pecha, O.; Šteffl, M.; Šeda, O.; Kohlíková, E. PPARA intron polymorphism associated with power performance in 30-s anaerobic Wingate Test. PLoS ONE 2014, 9, e107171. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Oh, S.D.; Jung, I.G.; Lee, J.; Sim, Y.J.; Lee, J.K.; Kang, B.Y. Distribution of the Trp64Arg polymorphism in the ß 3-adrenergic receptor gene in athletes and its influence on cardiovascular function. Kardiol. Pol. 2010, 68, 920–926. [Google Scholar] [PubMed]
- Cupeiro, R.; Pérez-Prieto, R.; Amigo, T.; Gortázar, P.; Redondo, C.; González-Lamuño, D. Role of the monocarboxylate transporter MCT1 in the uptake of lactate during active recovery. Eur. J. Appl. Physiol. 2016, 116, 1005–1010. [Google Scholar] [CrossRef] [Green Version]
- Mufson, E.J.; He, B.; Ginsberg, S.D.; Carper, B.A.; Bieler, G.S.; Crawford, F.; Alvarez, V.E.; Huber, B.R.; Stein, T.D.; McKee, A.C.; et al. Gene Profiling of Nucleus Basalis Tau Containing Neurons in Chronic Traumatic Encephalopathy: A Chronic Effects of Neurotrauma Consortium Study. J. Neurotrauma 2018, 35, 1260–1271. [Google Scholar] [CrossRef]
- Tremblay, S.; Iturria-Medina, Y.; Mateos-Pérez, J.M.; Evans, A.C.; De Beaumont, L. Defining a multimodal signature of remote sports concussions. Eur. J. Neurosci. 2017, 46, 1956–1967. [Google Scholar] [CrossRef] [Green Version]
- Ben-Zaken, S.; Meckel, Y.; Nemet, D.; Kassem, E.; Eliakim, A. The combined frequencies of the IL-6 G-174C and IGFBP3 A-202C polymorphisms among swimmers and runners. Growth Horm. IGF Res. 2020, 51, 17–21. [Google Scholar] [CrossRef]
- Ben-Zaken, S.; Meckel, Y.; Nemet, D.; Kassem, E.; Eliakim, A. Genetic basis for the dominance of Israeli long-distance runners of Ethiopian origin. J. Strength Cond. Res. 2019, 35, 1885–1896. [Google Scholar] [CrossRef]
- Amorim, T.; Durães, C.; Machado, J.C.; Metsios, G.S.; Wyon, M.; Maia, J.; Flouris, A.D.; Marques, F.; Nogueira, L.; Adubeiro, N.; et al. Genetic variation in Wnt/β-catenin and ER signalling pathways in female and male elite dancers and its associations with low bone mineral density: A cross-section and longitudinal study. Osteoporos. Int. 2018, 29, 2261–2274. [Google Scholar] [CrossRef] [Green Version]
- Salles, J.I.; Lopes, L.R.; Duarte, M.; Morrissey, D.; Martins, M.B.; Machado, D.E.; Guimarães, J.; Perini, J.A. Fc receptor-like 3 (-169T>C) polymorphism increases the risk of tendinopathy in volleyball athletes: A case control study. BMC Med. Genet. 2018, 19, 119. [Google Scholar] [CrossRef]
- Dongdem, J.T.; Helegbe, G.K.; Opare-Asamoah, K.; Wezena, C.A.; Ocloo, A. Assessment of NSAIDs as potential inhibitors of the fatty acid amide hydrolase I (FAAH-1) using three different primary fatty acid amide substrates in vitro. BMC Pharmacol. Toxicol. 2022, 23, 1. [Google Scholar] [CrossRef] [PubMed]
- Lutz, B.; Marsicano, G.; Maldonado, R.; Hillard, C.J. The endocannabinoid system in guarding against fear, anxiety and stress. Nat. Rev. Neurosci. 2015, 16, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.N.; Karacabeyli, E.S.; Gorzalka, B.B. Estrogen recruits the endocannabinoid system to modulate emotionality. Psychoneuroendocrinology 2007, 32, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Ensembl Home. rs324420 (SNP)—Population Genetics—Homo sapiens—Ensembl Genome Browser 89. Available online: http://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=1:46404589-46405589;v=rs324420;vdb=variation;vf=200953 (accessed on 7 May 2022).
- Gunduz-Cinar, O.; MacPherson, K.P.; Cinar, R.; Gamble-George, J.; Sugden, K.; Williams, B.; Godlewski, G.; Ramikie, T.S.; Gorka, A.X.; Alapafuja, S.O.; et al. Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol. Psychiatry 2013, 18, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, D.C.; Cota, V.R.; Oliveira, A.C.P.; Moreira, F.A.; Moraes, M.F.D. The Endocannabinoid System Activation as a Neural Network Desynchronizing Mediator for Seizure Suppression. Front. Behav. Neurosci. 2020, 14, 603245. [Google Scholar] [CrossRef] [PubMed]
- Ginevičienė, V.; Utkus, A.; Pranckevičienė, E.; Semenova, E.A.; Hall, E.; Ahmetov, I.I. Perspectives in Sports Genomics. Biomedicines 2022, 10, 298. [Google Scholar] [CrossRef]
- Lucia, A.; Gómez-Gallego, F.; Barroso, I.; Rabadán, M.; Bandrés, F.; San Juan, A.F.; Chicharro, J.L.; Ekelund, U.; Brage, S.; Earnest, C.P.; et al. PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J. Appl. Physiol. 2005, 99, 344–348. [Google Scholar] [CrossRef] [Green Version]
- Akhmetov, I.I.; Popov, D.V.; Mozhaĭskaia, I.A.; Missina, S.S.; Astratenkova, I.V.; Vinogradova, O.L.; Rogozkin, V.A. Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Ross. Fiziol. Zhurnal Im. IM Sechenova 2007, 93, 837–843. [Google Scholar]
- Maciejewska, A.; Sawczuk, M.; Cieszczyk, P.; Mozhayskaya, I.A.; Ahmetov, I.I. The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J. Sports Sci. 2012, 30, 101–113. [Google Scholar] [CrossRef]
- UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Hall, E.C.R.; Semenova, E.A.; Pranckevičienė, E.; Ginevičienė, V. Advances in sports genomics. Adv. Clin. Chem. 2022, 107, 215–263. [Google Scholar] [CrossRef] [PubMed]
- Varley, I.; Hughes, D.C.; Greeves, J.P.; Stellingwerff, T.; Ranson, C.; Fraser, W.D.; Sale, C. The association of novel polymorphisms with stress fracture injury in Elite Athletes: Further insights from the SFEA cohort. J. Sci. Med. Sport 2018, 21, 564–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfarth, B.; Rankinen, T.; Muhlbauer, S.; Scherr, J.; Boulay, M.R.; Pérusse, L.; Rauramaa, R.; Bouchard, C. Association between a beta2-adrenergic receptor polymorphism and elite endurance performance. Metab. Clin. Exp. 2007, 56, 1649–1651. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Suraci, B.; Semenova, E.A.; Boulygina, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Borisov, O.V.; Khabibova, S.A.; Larin, A.K.; Pavlenko, A.V.; et al. A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players. J. Strength Cond. Res. 2019, 33, 2344–2351. [Google Scholar] [CrossRef] [PubMed]
- Szelid, Z.; Lux, Á.; Kolossváry, M.; Tóth, A.; Vágó, H.; Lendvai, Z.; Kiss, L.; Maurovich-Horvat, P.; Bagyura, Z.; Merkely, B. Right Ventricular Adaptation Is Associated with the Glu298Asp Variant of the NOS3 Gene in Elite Athletes. PLoS ONE 2015, 10, e0141680. [Google Scholar] [CrossRef]
Characteristics | Female (n = 18) | Male (n = 98) | Total (n = 116) | p |
---|---|---|---|---|
Age (years) * | 25.3 ± 7.9 | 28.8 ± 8.7 | 28.2 ± 8.7 | 0.117 |
Body mass (kg) * | 67.4 ± 8.7 | 82.8 ± 10.5 | 79.0 ± 12.0 | 0.000 |
Height (m) * | 1.73 ± 0.1 | 1.85 ± 0.1 | 1.82 ± 0.1 | 0.000 |
BMI (kg/m2) * | 22.7 ± 2.6 | 24.3 ± 2.1 | 24.0 ± 2.2 | 0.005 |
WHR * | 0.82 ± 0.06 | 0.88 ± 0.11 | 0.87 ± 0.11 | 0.015 |
Hand length (cm) * | 22.3 ± 2.6 | 23.5 ± 2.0 | 23.3 ± 2.1 | 0.029 |
Training experience (years) * | 19.4 ± 8.6 | 24.0 ± 8.7 | 23.3 ± 8.8 | 0.039 |
Training frequency * | ||||
days/week | 4.6 ± 0.8 | 5.9 ± 0.8 | 5.7 ± 0.9 | 0.000 |
hours/day | 2.4 ± 0.9 | 2.4 ± 0.9 | 2.4 ± 0.9 | 0.041 |
hours/week | 11.4 ± 6.5 | 14.3 ± 6.2 | 13.8 ± 6.3 | 0.000 |
Participations in regional and national teams * | 26.44 ± 13.16 | 42.38 ± 37.78 | 39.9 ± 35.5 | 0.080 |
Sport injury | ||||
No | 17 (94.4) | 51 (52.0) | 68 (58.6) | 0.002 |
Yes | 1 (5.6) | 47 (48.0) | 48 (41.4) | |
Nationality | ||||
Portuguese | 18 (100) | 78 (79.6) | 96 (82.8) | 0.113 |
Others | -- | 20 (20.4) | 20 (17.2) | |
Ethnicity | ||||
Caucasian | 17 (94.4) | 96 (98.0) | 113 (97.4) | 0.956 |
Others | 1 (5.6) | 3 (3.0) | 3 (2.6) | |
Profession | ||||
Athletes | -- | 45 (45.9) | 45 (38.8) | <0.001 |
Student | 10 (55.6) | 25 (25.5) | 35 (30.2) | |
Teacher | 2 (11.1) | 11 (11.2) | 13 (11.2) | |
Physical therapist | 2 (11.1) | -- | 2 (1.7) | |
Sport coordinator | -- | 1 (1.0) | 1 (0.9) | |
Coach | -- | 1 (1.0) | 1 (0.9) | |
Podiatrist | 1 (5.6) | -- | 1 (0.9) | |
Other | 3 (16.7) | 15 (15.3) | 18 (15.5) |
Genetic Variant | Functional Consequence | Gene | Encode Protein and Its Functions | TaqMan® Assays ID |
---|---|---|---|---|
Nerve plasticity and other neural functions: | C___1897306_10 | |||
rs324420 | Missense | FAAH | Fatty Acid Amide Hydrolase | |
Energy metabolism and circadian rhythm: | ||||
rs8192678 | Missense | PPARGC1A | PPARG Coactivator 1 Alpha | C___1643192_20 |
rs2016520 | 5 prime UTR | PPARD | Peroxisome Proliferator Activated Receptor Delta | C___8851952_30 |
rs1801282 | Missense | PPARG | Peroxisome Proliferator Activated Receptor Gamma | C___1129864_10 |
rs731236 | Synonymous | VDR | Vitamin D Receptor | C___2404008_10 |
Catecholaminergic system: | ||||
rs1042713 | Missense | ADRB2 | Adrenoceptor Beta 2 | C___2084764_20 |
Neurotransmission, antimicrobial and antitumoral activities: | ||||
rs1799983 | Missense | NOS3 | Nitric Oxide Synthase 3 | C___3219460_20 |
Genotype Frequencies | Female (n = 18) | Male (n = 98) | Total (n = 116) | p |
---|---|---|---|---|
FAAH rs324420 | ||||
AA | 1 (5.6) | 3 (3.1) | 4 (3.4) | 0.789 |
AC | 6 (33.3) | 28 (28.6) | 34 (29.3) | |
CC | 11 (61.1) | 67 (68.4) | 78 (67.2) | |
PPARGC1A rs8192678 | ||||
TT | 2 (11.1) | 17 (17.3) | 19 (16.4) | 0.705 |
CT | 9 (50.0) | 51 (52.0) | 60 (51.7) | |
CC | 7 (38.9) | 30 (30.6) | 37 (31.9) | |
PPARD rs2016520 | ||||
CC | 0 (0.0) | 5 (5.1) | 5 (4.3) | 0.395 |
CT | 7 (38.9) | 32 (32.7) | 39 (33.6) | |
TT | 11 (61.1)) | 61 (62.2) | 72 (62.1) | |
PPARG rs1801282 | ||||
GG | 0 (0.0) | 4 (4.1) | 4 (3.4) | 0.494 |
CG | 3 (16.7) | 14 (14.3) | 17 (14.7) | |
CC | 15 (83.3) | 80 (81.6) | 95 (81.9) | |
VDR rs731236 | ||||
GG | 1 (5.6) | 17 (17.3) | 18 (15.5) | 0.019 |
AG | 13 (72.2) | 36 (36.7) | 49 (42.2) | |
AA | 4 (22.2) | 45(45.9) | 49 (42.2) | |
ADRB2 rs1042713 | ||||
AA | 3 (16.7) | 15 (15.3) | 18 (15.5) | 0.989 |
AG | 8 (44.4) | 44 (44.9) | 52 (44.8) | |
GG | 7 (38.9) | 39 (39.8) | 46 (39.7) | |
NOS3 rs1799983 | ||||
TT | 0 (0.0) | 14 (14.3) | 14 (12.1) | 0.212 |
GT | 11 (61.1) | 47 (48.0) | 58 (50.0) | |
GG | 7 (38.9) | 37 (37.8) | 44 (37.9) |
Characteristics | OR | 95% CI | p |
---|---|---|---|
FAAH rs324420 | 2.88 | 1.06–7.80 | 0.038 |
(AA/AC vs. CC 1) | |||
Age * | 9.74 | 3.09–30.74 | 0.065 |
(≥26 yrs. vs. <26 yrs. 1) | |||
Sex | 2.48 | 0.50–12.30 | 0.265 |
(male vs. female 1) | |||
BMI | 0.58 | 0.19–1.80 | 0.349 |
(≥25 kg/m2 vs. <25 kg/m2 1) | |||
WHR * | 0.83 | 0.30–2.28 | 0.721 |
(≥0.85 vs. <0.85 1) | |||
Hand length * | 0.35 | 0.12–1.02 | 0.054 |
(≥23 cm vs. <23 cm 1) | |||
Sport injury | 3.71 | 1.21–11.31 | 0.021 |
(Yes vs. no 1) | |||
Recovery from first sport injury * | 0.64 | 0.15–2.73 | 0.541 |
(≥10 months vs. <10 months 1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, H.-H.; Tavares, V.; Silva, M.-R.G.; Neto, B.V.; Cerqueira, F.; Medeiros, R. FAAH rs324420 Polymorphism Is Associated with Performance in Elite Rink-Hockey Players. Biology 2022, 11, 1076. https://doi.org/10.3390/biology11071076
Silva H-H, Tavares V, Silva M-RG, Neto BV, Cerqueira F, Medeiros R. FAAH rs324420 Polymorphism Is Associated with Performance in Elite Rink-Hockey Players. Biology. 2022; 11(7):1076. https://doi.org/10.3390/biology11071076
Chicago/Turabian StyleSilva, Hugo-Henrique, Valéria Tavares, Maria-Raquel G. Silva, Beatriz Vieira Neto, Fátima Cerqueira, and Rui Medeiros. 2022. "FAAH rs324420 Polymorphism Is Associated with Performance in Elite Rink-Hockey Players" Biology 11, no. 7: 1076. https://doi.org/10.3390/biology11071076
APA StyleSilva, H. -H., Tavares, V., Silva, M. -R. G., Neto, B. V., Cerqueira, F., & Medeiros, R. (2022). FAAH rs324420 Polymorphism Is Associated with Performance in Elite Rink-Hockey Players. Biology, 11(7), 1076. https://doi.org/10.3390/biology11071076