Mining of Cloned Disease Resistance Gene Homologs (CDRHs) in Brassica Species and Arabidopsis thaliana
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Gene and Genomic Data
2.2. Homolog Identification and Classification
2.3. Gene Cluster Analysis
3. Results
3.1. Distribution of CDRHs
3.2. Identification of CDRH Types
3.3. Identifying Clusters of CDRHs across Brassica Crops and Arabidopsis thaliana
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamokou, J.D.D.; Mbaveng, A.T.; Kuete, V. Chapter 8—Antimicrobial activities of african medicinal spices and vegetables. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 207–237. [Google Scholar] [CrossRef]
- Warwick, S.I.; Mummenhoff, F.; Sauder, C.A.; Koch, M.A.; Al-Shehbaz, I.A. Closing the gaps: Phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Plant Syst. Evol. 2010, 285, 209–232. [Google Scholar] [CrossRef]
- Fahey, J.W. Brassicas. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 606–615. [Google Scholar]
- Gupta, S.K. Biology and Breeding of Crucifers; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Sun, R. Economic/Academic Importance of Brassica rapa. In The Brassica rapa Genome; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–15. [Google Scholar]
- Kumar, A.; Banga, S.S.; Meena, P.D.; Kumar, P.R. Brassica Oilseeds: Breeding and Management; CABI: Wallingford, Oxfordshire, UK, 2015. [Google Scholar]
- Beilstein, M.A.; Nagalingum, N.S.; Clements, M.D.; Manchester, S.R.; Mathews, S. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2010, 107, 18724–18728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowers, J.; Chapman, B.; Rong, J.; Paterson, A.H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 2003, 422, 433–438. [Google Scholar] [CrossRef]
- Lysak, M.A.; Koch, M.A.; Pecinka, A.; Schubert, I. Chromosome triplication found across the tribe Brassiceae. Genome Res. 2005, 15, 516–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.-W.; Lai, K.-N.; Tai, P.-Y.; Li, W.-H. Rates of Nucleotide Substitution in Angiosperm Mitochondrial DNA Sequences and Dates of Divergence between Brassica and Other Angiosperm Lineages. J. Mol. Evol. 1999, 48, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wei, Y.; Xiao, D.; Gong, K.; Sun, P.; Ren, Y.; Yuan, J.; Wu, T.; Yang, Q.; Li, X.; et al. Brassica carinata genome characterization clarifies U’s triangle model of evolution and polyploidy in Brassica. Plant Physiol. 2021, 186, 388–406. [Google Scholar] [CrossRef]
- Navabi, Z.-K.; Huebert, T.; Sharpe, A.G.; O’Neill, C.M.; Bancroft, I.; Parkin, I.A. Conserved microstructure of the Brassica B Genome of Brassica nigra in relation to homologous regions of Arabidopsis thaliana, B. rapa and B. oleracea. BMC Genom. 2013, 14, 250. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Liu, Y.; Yang, X.; Tong, C.; Edwards, D.; Parkin, I.A.P.; Zhao, M.; Ma, J.; Yu, J.; Huang, S.; et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 2014, 5, 3930. [Google Scholar] [CrossRef]
- Yang, J.; Liu, D.; Wang, X.; Ji, C.; Cheng, F.; Liu, B.; Hu, Z.; Chen, S.; Pental, D.; Ju, Y.; et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat. Genet. 2016, 48, 1225–1232. [Google Scholar] [CrossRef]
- Chalhoub, B.; Denoeud, F.; Liu, S.; Parkin, I.A.P.; Tang, H.; Wang, X.; Chiquet, J.; Belcram, H.; Tong, C.; Samans, B.; et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 2014, 345, 950–953. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.-J.; Kim, J.S.; Kwon, S.-J.; Lim, K.-B.; Choi, B.-S.; Kim, J.-A.; Jin, M.; Park, J.Y.; Lim, M.-H.; Kim, H.-I.; et al. Sequence-Level Analysis of the Diploidization Process in the Triplicated FLOWERING LOCUS C Region of Brassica rapa. Plant Cell 2006, 18, 1339–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Tehrim, S.; Wang, L.; Dossa, K.; Zhang, X.; Ke, T.; Liao, B. Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications. BMC Genom. 2017, 18, 733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balesdent, M.H.; Barbetti, M.J.; Li, H.; Sivasithamparam, K.; Gout, L.; Rouxel, T. Analysis of Leptosphaeria maculans Race Structure in a Worldwide Collection of Isolates. Phytopathology 2005, 95, 1061. [Google Scholar] [CrossRef] [Green Version]
- Marcroft, S.J.; Elliott, V.L.; Cozijnsen, A.J.; Salisbury, P.A.; Howlett, B.J.; Van de Wouw, A.P. Identifying resistance genes to Leptosphaeria maculans in Australian Brassica napus cultivars based on reactions to isolates with known avirulence genotypes. Crop Pasture Sci. 2012, 63, 338–350. [Google Scholar] [CrossRef]
- Sekhwal, M.K.; Li, P.; Lam, I.; Wang, X.; Cloutier, S.; You, F.M. Disease Resistance Gene Analogs (RGAs) in Plants. Int. J. Mol. Sci. 2015, 16, 19248–19290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Le Roux, C.; Huet, G.; Jauneau, A.; Camborde, L.; Trémousaygue, D.; Kraut, A.; Zhou, B.; Levaillant, M.; Adachi, H.; Yoshioka, H.; et al. A Receptor Pair with an Integrated Decoy Converts Pathogen Disabling of Transcription Factors to Immunity. Cell 2015, 161, 1074–1088. [Google Scholar] [CrossRef] [Green Version]
- Ravensdale, M.; Bernoux, M.; Ve, T.; Kobe, B.; Thrall, P.H.; Ellis, J.G.; Dodds, P.N. Intramolecular Interaction Influences Binding of the Flax L5 and L6 Resistance Proteins to their AvrL567 Ligands. PLOS Pathog. 2012, 8, e1003004. [Google Scholar] [CrossRef]
- Whitham, S.; Dinesh-Kumar, S.; Choi, D.; Hehl, R.; Corr, C.; Baker, B. The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell 1994, 78, 1101–1115. [Google Scholar] [CrossRef]
- Afzal, A.J.; Wood, A.J.; Lightfoot, D.A. Plant receptor-like serine threonine kinases: Roles in signaling and plant defense. Mol. Plant Microbe Interact. 2008, 21, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Chisholm, S.T.; Coaker, G.; Day, B.; Staskawicz, B.J. Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. Cell 2006, 124, 803–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacas, J.-L.; Petitot, A.-S.; Bernier, L.; Estevan, J.; Conejero, G.; Mongrand, S.; Fernandez, D. Identification and characterization of the Non-race specific Disease Resistance 1 (NDR1) orthologous protein in coffee. BMC Plant Biol. 2011, 11, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mago, R.; Zhang, P.; Vautrin, S.; Šimková, H.; Bansal, U.; Luo, M.-C.; Rouse, M.; Karaoglu, H.; Periyannan, S.; Kolmer, J.; et al. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat. Plants 2015, 1, 15186. [Google Scholar] [CrossRef] [PubMed]
- Periyannan, S.; Moore, J.; Ayliffe, M.; Bansal, U.; Wang, X.; Huang, L.; Deal, K.; Luo, M.; Kong, X.; Bariana, H.; et al. The Gene Sr33, an Ortholog of Barley Mla Genes, Encodes Resistance to Wheat Stem Rust Race Ug99. Science 2013, 341, 786–788. [Google Scholar] [CrossRef]
- Jordan, T.; Seeholzer, S.; Schwizer, S.; Töller, A.; Somssich, I.E.; Keller, B. The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley. Plant J. 2011, 65, 610–621. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Grant, J.J.; Chini, A.; Basu, D.; Loake, G.J. Targeted Activation Tagging of the Arabidopsis NBS-LRR gene, ADR1, Conveys Resistance to Virulent Pathogens. Mol. Plant-Microbe Interact. 2003, 16, 669–680. [Google Scholar] [CrossRef] [Green Version]
- Castel, B.; Ngou, P.-M.; Cevik, V.; Redkar, A.; Kim, D.-S.; Yang, Y.; Ding, P.; Jones, J.D.G. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG 1. New Phytol. 2019, 222, 966–980. [Google Scholar] [CrossRef]
- Saile, S.C.; Jacob, P.; Castel, B.; Jubic, L.M.; Salas-Gonzáles, I.; Bäcker, M.; Jones, J.D.G.; Dangl, J.L.; El Kasmi, F. Two unequally redundant “helper” immune receptor families mediate Arabidopsis thaliana intracellular “sensor” immune receptor functions. PLOS Biol. 2020, 18, e3000783. [Google Scholar] [CrossRef]
- Gao, M.; Wang, X.; Wang, D.; Xu, F.; Ding, X.; Zhang, Z.; Bi, D.; Cheng, Y.T.; Chen, S.; Li, X.; et al. Regulation of Cell Death and Innate Immunity by Two Receptor-like Kinases in Arabidopsis. Cell Host Microbe 2009, 6, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wen, J.; Lease, K.A.; Doke, J.T.; Tax, F.; Walker, J.C. BAK1, an Arabidopsis LRR Receptor-like Protein Kinase, Interacts with BRI1 and Modulates Brassinosteroid Signaling. Cell 2002, 110, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Kim, Y.; Kim, J.W.; Lee, H.-S.; Lee, W.S.; Kim, S.-K.; Wang, Z.-Y.; Kim, S.-H. Identification of Arabidopsis BAK1-Associating Receptor-Like Kinase 1 (BARK1) and Characterization of its Gene Expression and Brassinosteroid-Regulated Root Phenotypes. Plant Cell Physiol. 2013, 54, 1620–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, I.; Böhm, H.; Albert, M.; Feiler, C.E.; Imkampe, J.; Wallmeroth, N.; Brancato, C.; Raaymakers, T.M.; Oome, S.; Zhang, H.; et al. An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nat. Plants 2015, 1, 15140. [Google Scholar] [CrossRef] [PubMed]
- Tabata, S.; Kaneko, T.; Nakamura, Y.; Kotani, H.; Kato, T.; Asamizu, E.; Miyajima, N.; Sasamoto, S.; Kimura, T.; Hosouchi, T.; et al. Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 2000, 408, 823–826. [Google Scholar] [CrossRef]
- Gómez-Gómez, L.; Boller, T. FLS2: An LRR Receptor–like Kinase Involved in the Perception of the Bacterial Elicitor Flagellin in Arabidopsis. Mol. Cell 2000, 5, 1003–1011. [Google Scholar] [CrossRef]
- Century, K.S.; Shapiro, A.D.; Repetti, P.P.; Dahlbeck, D.; Holub, E.; Staskawicz, B.J. NDR1, a Pathogen-Induced Component Required for Arabidopsis Disease Resistance. Science 1997, 278, 1963–1965. [Google Scholar] [CrossRef]
- Swiderski, M.R.; Innes, R.W. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J. 2001, 26, 101–112. [Google Scholar] [CrossRef]
- Borhan, M.H.; Holub, E.B.; Beynon, J.L.; Rozwadowski, K.; Rimmer, S.R. The Arabidopsis TIR-NB-LRR Gene RAC1 Confers Resistance to Albugo candida (White Rust) and Is Dependent on EDS1 but not PAD4. Mol. Plant-Microbe Interact. 2004, 17, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Axtell, M.J.; Staskawicz, B.J. Initiation of RPS2-Specified Disease Resistance in Arabidopsis Is Coupled to the AvrRpt2-Directed Elimination of RIN4. Cell 2003, 112, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Day, B.; Dahlbeck, D.; Staskawicz, B.J. NDR1 Interaction with RIN4 Mediates the Differential Activation of Multiple Disease Resistance Pathways in Arabidopsis. Plant Cell 2006, 18, 2782–2791. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Elmore, J.M.; Lin, Z.-J.D.; Coaker, G. A Receptor-like Cytoplasmic Kinase Phosphorylates the Host Target RIN4, Leading to the Activation of a Plant Innate Immune Receptor. Cell Host Microbe 2011, 9, 137–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackey, D.; Belkhadir, Y.; Alonso, J.; Ecker, J.; Dangl, J.L. Arabidopsis RIN4 Is a Target of the Type III Virulence Effector AvrRpt2 and Modulates RPS2-Mediated Resistance. Cell 2003, 112, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Mackey, D.; Holt, B.F.; Wiig, A.; Dangl, J.L. RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis. Cell 2002, 108, 743–754. [Google Scholar] [CrossRef] [Green Version]
- Diener, A.C.; Ausubel, F.M. Resistance to Fusarium Oxysporum 1, a Dominant Arabidopsis Disease-Resistance Gene, Is Not Race Specific. Genetics 2005, 171, 305–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Diener, A.C. Arabidopsis thaliana resistance to Fusarium oxysporum 2 Implicates Tyrosine-Sulfated Peptide Signaling in Susceptibility and Resistance to Root Infection. PLoS Genet. 2013, 9, e1003525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, S.J.; Diener, A.C. Diversity in receptor-like kinase genes is a major determinant of quantitative resistance to Fusarium oxysporum f. sp. matthioli. New Phytol. 2013, 200, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Staal, J.; Kaliff, M.; Bohman, S.; Dixelius, C. Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease. Plant J. 2006, 46, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Staal, J.; Kaliff, M.; Dewaele, E.; Persson, M.; Dixelius, C. RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. Plant J. 2008, 55, 188–200. [Google Scholar] [CrossRef]
- Jehle, A.K.; Fürst, U.; Lipschis, M.; Albert, M.; Felix, G. Perception of the novel MAMP eMax from different Xanthomonas species requires the Arabidopsis receptor-like protein ReMAX and the receptor kinase SOBIR. Plant Signal. Behav. 2013, 8, e27408. [Google Scholar] [CrossRef] [Green Version]
- Jehle, A.K.; Lipschis, M.; Albert, M.; Fallahzadeh-Mamaghani, V.; Fürst, U.; Mueller, K.; Felix, G. The Receptor-Like Protein ReMAX of Arabidopsis Detects the Microbe-Associated Molecular Pattern eMax from Xanthomonas. Plant Cell 2013, 25, 2330–2340. [Google Scholar] [CrossRef] [Green Version]
- Albert, I.; Zhang, L.; Bemm, H.; Nürnberger, T. Structure-Function Analysis of Immune Receptor AtRLP23 with Its Ligand nlp20 and Coreceptors AtSOBIR1 and AtBAK1. Mol. Plant-Microbe Interact. 2019, 32, 1038–1046. [Google Scholar] [CrossRef]
- Wang, G.; Ellendorff, U.; Kemp, B.; Mansfield, J.W.; Forsyth, A.; Mitchell, K.; Bastas, K.; Liu, C.-M.; Woods-Tör, A.; Zipfel, C.; et al. A Genome-Wide Functional Investigation into the Roles of Receptor-Like Proteins in Arabidopsis. Plant Physiol. 2008, 147, 503–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Fraiture, M.; Kolb, D.; Löffelhardt, B.; Desaki, Y.; Boutrot, F.F.G.; Tor, M.; Zipfel, C.; Gust, A.A.; Brunner, F. Arabidopsis RECEPTOR-LIKE PROTEIN30 and Receptor-Like Kinase SUPPRESSOR OF BIR1-1/EVERSHED Mediate Innate Immunity to Necrotrophic Fungi. Plant Cell 2013, 25, 4227–4241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, L.; Fröhlich, K.; Melzer, E.; Pruitt, R.N.; Albert, I.; Zhang, L.; Joe, A.; Hua, C.; Song, Y.; Albert, M.; et al. Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1. BioRxiv 2021. [Google Scholar] [CrossRef]
- Zhang, L.; Kars, I.; Essenstam, B.; Liebrand, T.W.H.; Wagemakers, L.; Elberse, J.; Tagkalaki, P.; Tjoitang, D.; Van den Ackerveken, G.; Van Kan, J.A.L. Fungal Endopolygalacturonases Are Recognized as Microbe-Associated Molecular Patterns by the Arabidopsis Receptor-Like Protein responsiveness to botrytis polygalacturonases1. Plant Physiol. 2014, 164, 352–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, M.R.; Godiard, L.; Straube, E.; Ashfield, T.; Lewald, J.; Sattler, A.; Innes, R.W.; Dangl, J.L. Structure of the Arabidopsis RPM1 Gene Enabling Dual Specificity Disease Resistance. Science 1995, 269, 843–846. [Google Scholar] [CrossRef]
- Tornero, P.; Chao, R.A.; Luthin, W.N.; Goff, S.A.; Dangl, J.L. Large-Scale Structure –Function Analysis of the Arabidopsis RPM1 Disease Resistance Protein. Plant Cell 2002, 14, 435–450. [Google Scholar] [CrossRef] [Green Version]
- Botella, M.A.; Parker, J.E.; Frost, L.N.; Bittner-Eddy, P.D.; Beynon, J.L.; Daniels, M.J.; Holub, E.B.; Jones, J.D.G. Three Genes of the Arabidopsis RPP1 Complex Resistance Locus Recognize Distinct Peronospora parasitica Avirulence Determinants. Plant Cell 1998, 10, 1847–1860. [Google Scholar] [CrossRef] [Green Version]
- Sinapidou, E.; Williams, K.; Nott, L.; Bahkt, S.; Tör, M.; Crute, I.; Bittner-Eddy, P.; Beynon, J. Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. Plant J. 2004, 38, 898–909. [Google Scholar] [CrossRef] [Green Version]
- Van Der Biezen, E.A.; Freddie, C.T.; Kahn, K.; Parker, J.E.; Jones, J. Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J. 2002, 29, 439–451. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.E.; Coleman, M.J.; Szabò, V.; Frost, L.N.; Schmidt, R.; Van Der Biezen, E.A.; Moores, T.; Dean, C.; Daniels, M.J.; Jones, J. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell 1997, 9, 879–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barragan, A.C.; Wu, R.; Kim, S.-T.; Xi, W.; Habring, A.; Hagmann, J.; Van De Weyer, A.-L.; Zaidem, M.; Ho, W.W.H.; Wang, G.; et al. RPW8/HR repeats control NLR activation in Arabidopsis thaliana. PLoS Genet. 2019, 15, e1008313. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, T.; Eulgem, T. An alternative polyadenylation mechanism coopted to the Arabidopsis RPP7 gene through intronic retrotransposon domestication. Proc. Natl. Acad. Sci. USA 2013, 110, E3535–E3543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDowell, J.M.; Dhandaydham, M.; Long, T.A.; Aarts, M.G.M.; Goff, S.; Holub, E.B.; Dangl, J.L. Intragenic Recombination and Diversifying Selection Contribute to the Evolution of Downy Mildew Resistance at the RPP8 Locus of Arabidopsis. Plant Cell 1998, 10, 1861–1874. [Google Scholar] [CrossRef] [Green Version]
- Bittner-Eddy, P.D.; Crute, I.R.; Holub, E.B.; Beynon, J.L. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J. 2000, 21, 177–188. [Google Scholar] [CrossRef]
- Goritschnig, S.; Krasileva, K.; Dahlbeck, U.; Staskawicz, B.J. Computational Prediction and Molecular Characterization of an Oomycete Effector and the Cognate Arabidopsis Resistance Gene. PLoS Genet. 2012, 8, e1002502. [Google Scholar] [CrossRef] [Green Version]
- Bent, A.F.; Kunkel, B.N.; Dahlbeck, D.; Brown, K.L.; Schmidt, R.; Giraudat, J.; Leung, J.; Staskawicz, B.J. RPS2 of Arabidopsis thaliana: A Leucine-Rich Repeat Class of Plant Disease Resistance Genes. Science 1994, 265, 1856–1860. [Google Scholar] [CrossRef]
- Gassmann, W.; Hinsch, M.E.; Staskawicz, B.J. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J. 1999, 20, 265–277. [Google Scholar] [CrossRef]
- Deslandes, L.; Olivier, J.; Theulières, F.; Hirsch, J.; Feng, D.X.; Bittner-Eddy, P.; Beynon, J.; Marco, Y. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc. Natl. Acad. Sci. USA 2002, 99, 2404–2409. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Ellwood, S.; Calis, O.; Patrick, E.; Li, T.; Coleman, M.; Turner, J.G. Broad-Spectrum Mildew Resistance in Arabidopsis thaliana Mediated by RPW8. Science 2001, 291, 118–120. [Google Scholar] [CrossRef]
- Warren, R.F.; Henk, A.; Mowery, P.; Holub, E.; Innes, R.W. A Mutation within the Leucine-Rich Repeat Domain of the Arabidopsis Disease Resistance Gene RPS5 Partially Suppresses Multiple Bacterial and Downy Mildew Resistance Genes. Plant Cell 1998, 10, 1439–1452. [Google Scholar] [CrossRef] [Green Version]
- Sarris, P.F.; Duxbury, Z.; Huh, S.U.; Ma, Y.; Segonzac, C.; Sklenar, J.; Derbyshire, P.; Cevik, V.; Rallapalli, G.; Saucet, S.B.; et al. A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors. Cell 2015, 161, 1089–1100. [Google Scholar] [CrossRef] [Green Version]
- Borhan, M.H.; Gunn, N.; Cooper, A.; Gulden, S.; Tör, M.; Rimmer, S.R.; Holub, E.B. WRR4 Encodes a TIR-NB-LRR Protein That Confers Broad-Spectrum White Rust Resistance in Arabidopsis thaliana to Four Physiological Races of Albugo candida. Mol. Plant-Microbe Interact. 2008, 21, 757–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cevik, V.; Boutrot, F.; Apel, W.; Robert-Seilaniantz, A.; Furzer, O.J.; Redkar, A.; Castel, B.; Kover, P.X.; Prince, D.C.; Holub, E.B.; et al. Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust ( Albugo candida). Proc. Natl. Acad. Sci. USA 2019, 116, 2767–2773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, H.; Padmaja, K.L.; Paritosh, K.; Mukhi, N.; Tewari, A.K.; Mukhopadhyay, A.; Gupta, V.; Pradhan, A.K.; Pental, D. BjuWRR1, a CC-NB-LRR gene identified in Brassica juncea, confers resistance to white rust caused by Albugo candida. Theor. Appl. Genet. 2019, 132, 2223–2236. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Djavaheri, M.; Wang, H.; Larkan, N.J.; Haddadi, P.; Beynon, E.; Gropp, G.; Borhan, M.H. Leptosphaeria maculans Effector Protein AvrLm1 Modulates Plant Immunity by Enhancing MAP Kinase 9 Phosphorylation. iScience 2018, 3, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Larkan, N.J.; Lydiate, D.J.; Parkin, I.A.P.; Nelson, M.N.; Epp, D.J.; Cowling, W.A.; Rimmer, S.R.; Borhan, M.H. The B rassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the L eptosphaeria maculans effector AVRLM 1. New Phytol. 2013, 197, 595–605. [Google Scholar] [CrossRef]
- Larkan, N.J.; Ma, L.; Borhan, M.H. The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnol. J. 2015, 13, 983–992. [Google Scholar] [CrossRef]
- Larkan, N.J.; Ma, L.; Haddadi, P.; Buchwaldt, M.; Parkin, I.A.P.; Djavaheri, M.; Borhan, M.H. The Brassica napus wall-associated kinase-like (WAKL) gene Rlm9 provides race-specific blackleg resistance. Plant J. 2020, 104, 892–900. [Google Scholar] [CrossRef]
- Haddadi, P.; Larkan, N.J.; Van de Wouw, A.; Zhang, Y.; Neik, T.X.; Beynon, E.; Bayer, P.; Edwards, D.; Batley, J.; Borhan, M.H. Brassica napus genes Rlm4 and Rlm7, conferring resistance to Leptosphaeria maculans, are alleles of the Rlm9 wall-associated kinase-like resistance locus. bioRxiv 2021. [Google Scholar] [CrossRef]
- Hatakeyama, K.; Niwa, T.; Kato, T.; Ohara, T.; Kakizaki, T.; Matsumoto, S. The tandem repeated organization of NB-LRR genes in the clubroot-resistant CRb locus in Brassica rapa L. Mol. Genet. Genom. 2017, 292, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Matsumoto, E.; Aruga, D.; Kitagawa, S.; Matsumura, H.; Hayashida, N. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol. Biol. 2012, 80, 621–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatakeyama, K.; Suwabe, K.; Tomita, R.N.; Kato, T.; Nunome, T.; Fukuoka, H.; Matsumoto, S. Identification and Characterization of Crr1a, a Gene for Resistance to Clubroot Disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS ONE 2013, 8, e54745. [Google Scholar] [CrossRef]
- Shimizu, M.; Pu, Z.-J.; Kawanabe, T.; Kitashiba, H.; Matsumoto, S.; Ebe, Y.; Sano, M.; Funaki, T.; Fukai, E.; Fujimoto, R.; et al. Map-based cloning of a candidate gene conferring Fusarium yellows resistance in Brassica oleracea. Theor. Appl. Genet. 2015, 128, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.Y.; Krishnakumar, V.; Chan, A.P.; Thibaud-Nissen, F.; Schobel, S.; Town, C.D. Araport11: A complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017, 89, 789–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ap Parkin, I.; Koh, C.; Tang, H.; Robinson, S.J.; Kagale, S.; Clarke, W.E.; Town, C.D.; Nixon, J.; Krishnakumar, V.; Bidwell, S.L.; et al. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 2014, 15, R77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Cai, X.; Wu, J.; Liu, M.; Grob, S.; Cheng, F.; Liang, J.; Cai, C.; Liu, Z.; Liu, B.; et al. Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic. Res. 2018, 5, 50. [Google Scholar] [CrossRef] [Green Version]
- Lyons, E.; Pedersen, B.; Kane, J.; Alam, M.; Ming, R.; Tang, H.; Wang, X.; Bowers, J.; Paterson, A.; Lisch, D.; et al. Finding and Comparing Syntenic Regions among Arabidopsis and the Outgroups Papaya, Poplar, and Grape: CoGe with Rosids. Plant Physiol. 2008, 148, 1772. [Google Scholar] [CrossRef] [Green Version]
- Rameneni, J.J.; Lee, Y.; Dhandapani, V.; Yu, X.; Su, R.C.; Oh, M.H.; Yong, P.L. Genomic and Post-Translational Modification Analysis of Leucine-Rich-Repeat Receptor-Like Kinases in Brassica rapa. PLoS ONE 2015, 10, e0142255. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.; Yang, S.; Song, Y. Identification and expression analysis of the LRR-RLK gene family in tomato (Solanum lycopersicum) Heinz 1706. Genome 2015, 58, 121–134. [Google Scholar] [CrossRef]
- Yang, H.; Bayer, P.E.; Tirnaz, S.; Edwards, D.; Batley, J. Genome-Wide Identification and Evolution of Receptor-Like Kinases (RLKs) and Receptor like Proteins (RLPs) in Brassica juncea. Biology 2021, 10, 17. [Google Scholar] [CrossRef]
- Singh, S.; Chand, S.; Singh, N.K.; Sharma, T.R. Genome-Wide Distribution, Organisation and Functional Characterization of Disease Resistance and Defence Response Genes across Rice Species. PLoS ONE 2015, 10, e0125964. [Google Scholar] [CrossRef] [Green Version]
- Alamery, S.; Tirnaz, S.; Bayer, P.; Tollenaere, R.; Chaloub, B.; Edwards, D.; Batley, J. Genome-wide identification and comparative analysis of NBS-LRR resistance genes in Brassica napus. Crop Pasture Sci. 2017, 69, 79–93. [Google Scholar] [CrossRef]
- Jiang, M.; Dong, X.; Lang, H.; Pang, W.; Zhan, Z.; Li, X.; Piao, Z. Mining of Brassica-Specific Genes (BSGs) and Their Induction in Different Developmental Stages and under Plasmodiophora brassicae Stress in Brassica rapa. Int. J. Mol. Sci. 2018, 19, 2064. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Quan, X.; Jia, G.; Xiao, J.; Cloutier, S.; You, F.M. RGAugury: A pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genom. 2016, 17, 852. [Google Scholar] [CrossRef] [Green Version]
- Tirnaz, S.; Bayer, P.; Inturrisi, F.; Neik, T.; Yang, H.; Dolatabadian, A.; Zhang, F.; Severn-Ellis, A.; Patel, D.; Pradhan, A.; et al. Resistance gene analogs in the Brassicaceae: Identification, characterization, distribution and evolution. Plant Physiol. 2020, 184, 909–922. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, G.; Garg, V.; Kudapa, H.; Doddamani, D.; Pazhamala, L.T.; Khan, A.W.; Thudi, M.; Lee, S.-H.; Varshney, R.K. Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea. Plant Biotechnol. J. 2016, 14, 1563–1577. [Google Scholar] [CrossRef] [PubMed]
- Holub, E.B. The arms race is ancient history in Arabidopsis, the wildflower. Nat. Rev. Genet. 2001, 2, 516–527. [Google Scholar] [CrossRef]
- Jupe, F.; Pritchard, L.; Etherington, G.J.; MacKenzie, K.; Cock, P.J.; Wright, F.; Sharma, S.K.; Bolser, D.; Bryan, G.J.; Jones, J.D.; et al. Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genom. 2012, 13, 75. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.S.; Takahashi, H.; Miyazaki, A.; Hamamoto, H.; Yamaguchi, I.; Kusano, T.; Shah, J. Up-regulation of Arabidopsis thaliana NHL10 in the hypersensitive response to Cucumber mosaic virus infection and in senescing leaves is controlled by signalling pathways that differ in salicylate involvement. Planta 2004, 218, 740–750. [Google Scholar] [CrossRef]
- Fedoroff, N. Transposons and genome evolution in plants. Proc. Natl. Acad. Sci. USA 2000, 97, 7002. [Google Scholar] [CrossRef] [Green Version]
- Bayer, P.E.; Scheben, A.; Golicz, A.A.; Yuan, Y.; Faure, S.; Lee, H.; Chawla, H.S.; Anderson, R.; Bancroft, I.; Raman, H.; et al. Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids. Plant Biotechnol. J. 2021, 19, 2488–2500. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Wu, J.; Wang, X. Genome triplication drove the diversification of Brassica plants. Hortic. Res. 2014, 1, 14024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolatabadian, A.; Bayer, P.E.; Tirnaz, S.; Hurgobin, B.; Edwards, D.; Batley, J. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. Plant Biotechnol. J. 2019, 18, 969–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inturrisi, F.; Bayer, P.; Yang, H.; Tirnaz, S.; Edwards, D.; Batley, J. Genome-wide identification and comparative analysis of resistance genes in Brassica juncea. Mol. Breed. 2020, 40, 78. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, R.; Kuang, H.; Meyers, B.C. The Diversification of Plant NBS-LRR Defense Genes Directs the Evolution of MicroRNAs That Target Them. Mol. Biol. Evol. 2016, 33, 2692–2705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayer, P.E.; Golicz, A.A.; Tirnaz, S.; Chan, C.K.; Edwards, D.; Batley, J. Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome. Plant Biotechnol. J. 2019, 17, 789–800. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Shao, Z.-Q.; Wu, X.-Z.; Wang, Q.; Wang, B.; Chen, J.-Q.; Hang, Y.-Y.; Xue, J.-Y. Loss/retention and evolution of NBS-encoding genes upon whole genome triplication of Brassica rapa. Gene 2014, 540, 54–61. [Google Scholar] [CrossRef]
- Yu, J.; Tehrim, S.; Zhang, F.; Tong, C.; Huang, J.; Cheng, X.; Dong, C.; Zhou, Y.; Qin, R.; Hua, W.; et al. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genom. 2014, 15, 3. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Wu, H.; Zhang, R.; Li, S.; He, W.; Wong, F.-L.; Li, G.; Zhao, S.; Lam, H.-M. Molecular phylogeny and dynamic evolution of disease resistance genes in the legume family. BMC Genom. 2016, 17, 402. [Google Scholar] [CrossRef] [Green Version]
- Schnable, J.C.; Springer, N.M.; Freeling, M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc. Natl. Acad. Sci. USA 2011, 108, 4069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodhouse, M.R.; Schnable, J.C.; Pedersen, B.S.; Lyons, E.; Lisch, D.; Subramaniam, S.; Freeling, M. Following Tetraploidy in Maize, a Short Deletion Mechanism Removed Genes Preferentially from One of the Two Homeologs. PLoS Biol. 2010, 8, e1000409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, L.; Si, W.; Zhao, L.; Yang, S.; Zhang, X. Dynamic evolution of NBS–LRR genes in bread wheat and its progenitors. Mol. Genet. Genom. 2014, 290, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Hurgobin, B.; Golicz, A.A.; Bayer, P.E.; Chan, C.-K.K.; Tirnaz, S.; Dolatabadian, A.; Schiessl, S.V.; Samans, B.; Montenegro, J.D.; Parkin, I.A.P.; et al. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol. J. 2018, 16, 1265–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, M. Mapping of a Locus Controlling Resistance to Albugo candida in Brassica napus Using Molecular Markers. Phytopathology 1995, 85, 218–220. [Google Scholar] [CrossRef]
- Kole, C.; Teutonico, R.; Mengistu, A.; Williams, P.; Osborn, T. Molecular mapping of a locus controlling resistance to Albugo candida in Brassica rapa. Phytopathology 1996, 86, 367–369. [Google Scholar] [CrossRef]
- Kole, C.; Williams, P.; Rimmer, S.; Osborn, T. Linkage mapping of genes controlling resistance to white rust (Albugo candida) in Brassica rapa (syn. campestris) and comparative mapping to Brassica napus and Arabidopsis thaliana. Genome 2002, 45, 22–27. [Google Scholar] [CrossRef]
- Bhayana, L.; Paritosh, K.; Arora, H.; Yadava, S.K.; Singh, P.; Nandan, D.; Mukhopadhyay, A.; Gupta, V.; Pradhan, A.K.; Pental, D. A Mapped Locus on LG A6 of Brassica juncea Line Tumida Conferring Resistance to White Rust Contains a CNL Type R Gene. Front. Plant Sci. 2020, 10, 1690. [Google Scholar] [CrossRef]
- Panjabi-Massand, P.; Yadava, S.K.; Sharma, P.; Kaur, A.; Kumar, A.; Arumugam, N.; Sodhi, Y.S.; Mukhopadhyay, A.; Gupta, V.; Pradhan, A.K.; et al. Molecular mapping reveals two independent loci conferring resistance to Albugo candida in the east European germplasm of oilseed mustard Brassica juncea. Theor. Appl. Genet. 2010, 121, 137–145. [Google Scholar] [CrossRef]
- Singh, B.K.; Nandan, D.; Ambawat, S.; Ram, B.; Kumar, A.; Singh, T.; Meena, H.S.; Kumar, V.; Singh, V.V.; Rai, P.K.; et al. Validation of molecular markers for marker-assisted pyramiding of white rust resistance loci in Indian Mustard (Brassica juncea L.). Can. J. Plant Sci. 2015, 95, 939–945. [Google Scholar] [CrossRef] [Green Version]
- Somers, D.; Rakow, G.; Rimmer, S. Brassica napus DNA markers linked to white rust resistance in Brassica juncea. Theor. Appl. Genet. 2002, 104, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Fredua-Agyeman, R.; Coriton, O.; Huteau, V.; Parkin, I.A.P.; Chèvre, A.-M.; Rahman, H. Molecular cytogenetic identification of B genome chromosomes linked to blackleg disease resistance in Brassica napus × B. carinata interspecific hybrids. Theor. Appl. Genet. 2014, 127, 1305–1318. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.N. Interspecific transfer of Brassica juncea-type high blackleg resistance to Brassica napus. Euphytica 1984, 33, 295–303. [Google Scholar] [CrossRef]
- Saal, B.; Struss, D. RGA- and RAPD-derived SCAR markers for a Brassica B-genome introgression conferring resistance to blackleg in oilseed rape. Theor. Appl. Genet. 2005, 111, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Fang, Z.; Yang, L.; Zhang, Y.; Wang, Q.; Liu, Y.; Zhuang, M.; Yang, Y.; Xie, B.; Liu, B.; et al. Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea. BMC Genom. 2014, 15, 1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, Z.; Ino, Y.; Kimura, Y.; Tago, A.; Shimizu, M.; Natsume, S.; Sano, Y.; Fujimoto, R.; Kaneko, K.; Shea, D.J.; et al. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress. Front. Plant Sci. 2016, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Saha, P.; Kalia, P.; Sonah, H.; Sharma, T.R. Molecular mapping of black rot resistance locus X ca1bo on chromosome 3 in I ndian cauliflower (Brassica oleracea var. botrytis L.). Plant Breed. 2014, 133, 268–274. [Google Scholar] [CrossRef]
- Sharma, B.B.; Kalia, P.; Singh, D.; Sharma, T.R. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group) through Embryo Rescue. Front. Plant Sci. 2017, 8, 1255. [Google Scholar] [CrossRef]
- Sharma, B.B.; Kalia, P.; Yadava, D.K.; Singh, D.; Sharma, T.R. Genetics and Molecular Mapping of Black Rot Resistance Locus Xca1bc on Chromosome B-7 in Ethiopian Mustard (Brassica carinata A. Braun). PLoS ONE 2016, 11, e0152290. [Google Scholar] [CrossRef]
- Farinhó, M.; Coelho, P.; Carlier, J.; Svetleva, D.; Monteiro, A.; Leitão, J.M. Mapping of a locus for adult plant resistance to downy mildew in broccoli (Brassica oleracea convar. italica). Theor. Appl. Genet. 2004, 109, 1392–1398. [Google Scholar] [CrossRef]
- Li, J.; Ding, Q.; Wang, F.; Li, H.; Zhang, Y.; Liu, L.; Jiao, Z.; Gao, J. Genome-wide gene expression profiles in response to downy mildew in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Eur. J. Plant Pathol. 2018, 151, 861–873. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, S.R.; Kalia, P.; Deshmukh, R.; Kumar, V.; Sharma, P. Molecular mapping of the downy mildew resistance gene Ppa3 in cauliflower (Brassica oleracea var. botrytis L.). J. Hortic. Sci. Biotechnol. 2012, 87, 137–143. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, F.; Yu, R.; Zou, Y.; Qi, J.; Zhao, X.; Yu, Y.; Zhang, D.; Li, L. Genetic mapping and localization of a major QTL for seedling resistance to downy mildew in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol. Breed. 2009, 23, 573–590. [Google Scholar] [CrossRef]
- Zhang, B.; Li, P.; Su, T.; Li, P.; Xin, X.; Wang, W.; Zhao, X.; Yu, Y.; Zhang, D.; Yu, S.; et al. BrRLP48, Encoding a Receptor-Like Protein, Involved in Downy Mildew Resistance in Brassica rapa. Front. Plant Sci. 2018, 9, 1708. [Google Scholar] [CrossRef]
- Ce, F.; Mei, J.; He, H.; Zhao, Y.; Hu, W.; Yu, F.; Li, Q.; Ren, X.; Si, J.; Song, H.; et al. Identification of Candidate Genes for Clubroot-Resistance in Brassica oleracea Using Quantitative Trait Loci-Sequencing. Front. Plant Sci. 2021, 12, 2569. [Google Scholar] [CrossRef]
- Dakouri, A.; Zhang, X.; Peng, G.; Falk, K.C.; Gossen, B.; Strelkov, S.E.; Yu, F. Analysis of genome-wide variants through bulked segregant RNA sequencing reveals a major gene for resistance to Plasmodiophora brassicae in Brassica oleracea. Sci. Rep. 2018, 8, 17657. [Google Scholar] [CrossRef]
- Farid, M.; Yang, R.-C.; Kebede, B.; Rahman, H. Evaluation of Brassica oleracea accessions for resistance to Plasmodiophora brassicae and identification of genomic regions associated with resistance. Genome 2019, 63, 91–101. [Google Scholar] [CrossRef]
- Mehraj, H.; Akter, A.; Miyaji, N.; Miyazaki, J.; Shea, D.J.; Fujimoto, R.; Doullah, A.-U. Genetics of Clubroot and Fusarium Wilt Disease Resistance in Brassica Vegetables: The Application of Marker Assisted Breeding for Disease Resistance. Plants 2020, 9, 726. [Google Scholar] [CrossRef]
- Lv, H.; Fang, Z.; Yang, L.; Zhang, Y.; Wang, Y. An update on the arsenal: Mining resistance genes for disease management of Brassica crops in the genomic era. Hortic. Res. 2020, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.J.; Strelkov, S.E.; Howard, R.J.; Rahman, H. Screening of Brassica germplasm for resistance to Plasmodiophora brassicae pathotypes prevalent in Canada for broadening diversity in clubroot resistance. Can. J. Plant Sci. 2012, 92, 501–515. [Google Scholar] [CrossRef] [Green Version]
- Qasim, M.U.; Zhao, Q.; Shahid, M.; Samad, R.A.; Ahmar, S.; Wu, J.; Fan, C.; Zhou, Y. Identification of QTLs Containing Resistance Genes for Sclerotinia Stem Rot in Brassica napus Using Comparative Transcriptomic Studies. Front. Plant Sci. 2020, 11, 776. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Jian, H.; Lu, K.; Filardo, F.; Yin, N.; Liu, L.; Qu, C.; Li, W.; Du, H.; Li, J. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol. J. 2016, 14, 1368–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Cai, G.; Tu, J.; Li, L.; Liu, S.; Luo, X.; Zhou, L.; Fan, C.; Zhou, Y. Identification of QTLs for Resistance to Sclerotinia Stem Rot and BnaC.IGMT5.a as a Candidate Gene of the Major Resistant QTL SRC6 in Brassica napus. PLoS ONE 2013, 8, e67740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Zhao, Q.; Liu, S.; Shahid, M.; Lan, L.; Cai, G.; Zhang, C.; Fan, C.; Wang, Y.; Zhou, Y. Genome-wide Association Study Identifies New Loci for Resistance to Sclerotinia Stem Rot in Brassica napus. Front. Plant Sci. 2016, 7, 1418. [Google Scholar] [CrossRef] [Green Version]
- Murat, F.; Louis, A.; Maumus, F.; Armero, A.; Cooke, R.; Quesneville, H.; Crollius, H.R.; Salse, J. Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol. 2015, 16, 262. [Google Scholar] [CrossRef] [Green Version]
- Cooley, M.B.; Pathirana, S.; Wu, H.-J.; Kachroo, P.; Klessig, D.F. Members of the Arabidopsis HRT/RPP8 Family of Resistance Genes Confer Resistance to Both Viral and Oomycete Pathogens. Plant Cell 2000, 12, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Miller, J.; Nozaki, Y.; Takeda, M.; Shah, J.; Hase, S.; Ikegami, M.; Ehara, Y.; Dinesh-Kumar, S.P. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 2002, 32, 655–667. [Google Scholar] [CrossRef]
- Kachroo, P.; Yoshioka, K.; Shah, J.; Dooner, H.K.; Klessig, D.F. Resistance to Turnip Crinkle Virus in Arabidopsis Is Regulated by Two Host Genes and Is Salicylic Acid Dependent but NPR1, Ethylene, and Jasmonate Independent. Plant Cell 2000, 12, 677–690. [Google Scholar] [CrossRef] [Green Version]
- Warren, R.F.; Merritt, P.M.; Holub, E.; Innes, R.W. Identification of Three Putative Signal Transduction Genes Involved in R Gene-Specified Disease Resistance in Arabidopsis. Genetics 1999, 152, 401–412. [Google Scholar] [CrossRef]
- Tasset, C.; Bernoux, M.; Jauneau, A.; Pouzet, C.; Brière, C.; Kieffer-Jacquinod, S.; Rivas, S.; Marco, Y.; Deslandes, L. Autoacetylation of the Ralstonia solanacearum Effector PopP2 Targets a Lysine Residue Essential for RRS1-R-Mediated Immunity in Arabidopsis. PLoS Pathog. 2010, 6, e1001202. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Li, Q.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biol. 2019, 20, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzon, C.; Ponger, L.; Gaut, B.S. Striking Similarities in the Genomic Distribution of Tandemly Arrayed Genes in Arabidopsis and Rice. PLoS Comput. Biol. 2006, 2, e115. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.; Gill, R.A.; Xiang, Y.; Ma, L.; Cheng, X.; Huang, J.; Liu, S. Fractionization of polyploid duplicated genes: Gene loss, expression divergence, and epigenetic regulation in Brassica napus. In The Brassica napus Genome; Springer: Cham, Switzerland, 2018; pp. 149–158. [Google Scholar] [CrossRef]
- Glover, N.; Dessimoz, C.; Ebersberger, I.; Forslund, S.K.; Gabaldón, T.; Huerta-Cepas, J.; Martin, M.-J.; Muffato, M.; Patricio, M.; Pereira, C.; et al. Advances and Applications in the Quest for Orthologs. Mol. Biol. Evol. 2019, 36, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Panchy, N.; Lehti-Shiu, M.; Shiu, S.-H. Evolution of Gene Duplication in Plants. Plant Physiol. 2016, 171, 2294–2316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, C.R.; Hanson-Smith, V.; Johnson, A.D. Following Gene Duplication, Paralog Interference Constrains Transcriptional Circuit Evolution. Science 2013, 342, 104–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, M.; Haberer, G.; Panda, A.; Das Laha, S.; Ghosh, T.C.; Schäffner, A.R. Expression Pattern Similarities Support the Prediction of Orthologs Retaining Common Functions after Gene Duplication Events. Plant Physiol. 2016, 171, 2343. [Google Scholar] [CrossRef] [Green Version]
- Marais, D.L.D.; Rausher, M.D. Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 2008, 454, 762–765. [Google Scholar] [CrossRef]
- Force, A.; Lynch, M.; Pickett, F.B.; Amores, A.; Yan, Y.-L.; Postlethwait, J. Preservation of Duplicate Genes by Complementary, Degenerative Mutations. Genetics 1999, 151, 1531–1545. [Google Scholar] [CrossRef]
- Freeling, M.; Scanlon, M.J.; Fowler, J.E. Fractionation and subfunctionalization following genome duplications: Mechanisms that drive gene content and their consequences. Curr. Opin. Genet. Dev. 2015, 35, 110–118. [Google Scholar] [CrossRef]
- Ohno, S. Evolution by Gene Duplication, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1970; p. 160. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, C.; Robatzek, S. Plants and pathogens: Putting infection strategies and defence mechanisms on the map. Curr. Opin. Plant Biol. 2012, 15, 699–707. [Google Scholar] [CrossRef]
- Nepal, M.P.; Benson, B.V. CNL Disease Resistance Genes in Soybean and Their Evolutionary Divergence. Evol. Bioinform. 2015, 11, 49–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, H.; Saito, T.; Ito, H.; Komeda, Y.; Kato, A. Overexpression of the TIR-X gene results in a dwarf phenotype and activation of defense-related gene expression in Arabidopsis thaliana. J. Plant Physiol. 2014, 171, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Nandety, R.S.; Caplan, J.L.; Cavanaugh, K.; Perroud, B.; Wroblewski, T.; Michelmore, R.W.; Meyers, B.C. The Role of TIR-NBS and TIR-X Proteins in Plant Basal Defense Responses. Plant Physiol. 2013, 162, 1459–1472. [Google Scholar] [CrossRef] [Green Version]
- Ferdous, M.J.; Hossain, M.R.; Park, J.-I.; Robin, A.H.K.; Jesse, D.M.I.; Jung, H.-J.; Kim, H.-T.; Nou, I.-S. Inheritance Pattern and Molecular Markers for Resistance to Blackleg Disease in Cabbage. Plants 2019, 8, 583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferdous, M.J.; Hossain, M.R.; Park, J.-I.; Robin, A.H.K.; Natarajan, S.; Jesse, D.M.I.; Jung, H.-J.; Kim, H.-T.; Nou, I.-S. In-silico identification and differential expressions of LepR4-syntenic disease resistance related domain containing genes against blackleg causal fungus Leptosphaeria maculans in Brassica oleracea. Gene Rep. 2020, 19, 100598. [Google Scholar] [CrossRef]
- Hossain, M.R.; Ferdous, M.J.; Park, J.-I.; Robin, A.H.K.; Natarajan, S.; Jung, H.-J.; Kim, H.-T.; Nou, I.-S. In-silico identification and differential expression of putative disease resistance-related genes within the collinear region of Brassica napus blackleg resistance locus LepR2’ in Brassica oleracea. Hortic. Environ. Biotechnol. 2020, 61, 879–890. [Google Scholar] [CrossRef]
- Leister, D. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet. 2004, 20, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Michelmore, R.W.; Meyers, B.C. Clusters of Resistance Genes in Plants Evolve by Divergent Selection and a Birth-and-Death Process. Genome Res. 1998, 8, 1113–1130. [Google Scholar] [CrossRef] [Green Version]
- Stahl, E.A.; Dwyer, G.; Mauricio, R.; Kreitman, M.; Bergelson, J. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 1999, 400, 667–671. [Google Scholar] [CrossRef]
- Dong, O.X.; Ao, K.; Xu, F.; Johnson, K.C.M.; Wu, Y.; Li, L.; Xia, S.; Liu, Y.; Huang, Y.; Rodriguez, E.; et al. Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases. Nat. Plants 2018, 4, 699–710. [Google Scholar] [CrossRef]
- Liang, W.; Wersch, S.; Tong, M.; Li, X. TIR-NB-LRR immune receptor SOC 3 pairs with truncated TIR-NB protein CHS 1 or TN 2 to monitor the homeostasis of E3 ligase SAUL 1. New Phytol. 2019, 221, 2054–2066. [Google Scholar] [CrossRef] [PubMed]
- Tong, M.; Kotur, T.; Liang, W.; Vogelmann, K.; Kleine, T.; Leister, D.; Brieske, C.; Yang, S.; Lüdke, D.; Wiermer, M.; et al. E3 ligase SAUL1 serves as a positive regulator of PAMP-triggered immunity and its homeostasis is monitored by immune receptor SOC3. New Phytol. 2017, 215, 1516–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wersch, S.; Li, X. Stronger When Together: Clustering of Plant NLR Disease resistance Genes. Trends Plant Sci. 2019, 24, 688–699. [Google Scholar] [CrossRef]
- De Araújo, A.C.; Fonseca, F.C.D.A.; Cotta, M.G.; Alves, G.S.C.; Miller, R.N.G. Plant NLR receptor proteins and their potential in the development of durable genetic resistance to biotic stresses. Biotechnol. Res. Innov. 2019, 3, 80–94. [Google Scholar] [CrossRef]
- Friedman, A.R.; Baker, B.J. The evolution of resistance genes in multi-protein plant resistance systems. Curr. Opin. Genet. Dev. 2007, 17, 493–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charron, C.; Nicolaï, M.; Gallois, J.-L.; Robaglia, C.; Moury, B.; Palloix, A.; Caranta, C. Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. Plant J. 2008, 54, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Dodds, P.N.; Lawrence, G.J.; Catanzariti, A.-M.; Teh, T.; Wang, C.-I.A.; Ayliffe, M.A.; Kobe, B.; Ellis, J.G. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl. Acad. Sci. USA 2006, 103, 8888–8893. [Google Scholar] [CrossRef] [Green Version]
- Rose, L.E.; Bittner-Eddy, P.D.; Langley, C.H.; Holub, E.B.; Michelmore, R.W.; Beynon, J.L. The Maintenance of Extreme Amino Acid Diversity at the Disease Resistance Gene, RPP13, in Arabidopsis thaliana. Genetics 2004, 166, 1517–1527. [Google Scholar] [CrossRef] [Green Version]
- Yahiaoui, N.; Brunner, S.; Keller, B. Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J. 2006, 47, 85–98. [Google Scholar] [CrossRef]
- Delourme, R.; Pilet-Nayel, M.-L.; Archipiano, M.; Horvais, R.; Tanguy, X.; Rouxel, T.; Brun, H.; Renard, M.; Balesdent, M.H. A Cluster of Major Specific Resistance Genes to Leptosphaeria maculans in Brassica napus. Phytopathology 2004, 94, 578–583. [Google Scholar] [CrossRef] [Green Version]
- Ghanbarnia, K.; Ma, L.; Larkan, N.J.; Haddadi, P.; Fernando, W.G.D.; Borhan, M.H. Leptosphaeria maculans AvrLm9: A new player in the game of hide and seek with AvrLm4-7. Mol. Plant Pathol. 2018, 19, 1754–1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plissonneau, C.; Daverdin, G.; Ollivier, B.; Blaise, F.; Degrave, A.; Fudal, I.; Rouxel, T.; Balesdent, M. A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans. New Phytol. 2016, 209, 1613–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazar, N.; Mesarich, C.H.; Petit-Houdenot, Y.; Talbi, N.; De la Sierra-Gallay, I.L.; Zélie, E.; Blondeau, K.; Gracy, J.; Ollivier, B.; Blaise, F.; et al. A new family of structurally conserved fungal effectors displays epistatic interactions with plant resistance proteins. bioRxiv 2021. [Google Scholar] [CrossRef]
- Meyers, B.C.; Kozik, A.; Griego, A.; Kuang, H.; Michelmore, R.W. Genome-Wide Analysis of NBS-LRR–Encoding Genes in Arabidopsis. Plant Cell 2003, 15, 809–834. [Google Scholar] [CrossRef] [Green Version]
- Richly, E.; Kurth, J.; Leister, D. Mode of Amplification and Reorganization of Resistance Genes During Recent Arabidopsis thaliana Evolution. Mol. Biol. Evol. 2002, 19, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Perazzolli, M.; Malacarne, G.; Baldo, A.; Righetti, L.; Bailey, A.; Fontana, P.; Velasco, R.; Malnoy, M. Characterization of Resistance Gene Analogues (RGAs) in Apple (Malus × domestica Borkh.) and Their Evolutionary History of the Rosaceae Family. PLoS ONE 2014, 9, e83844. [Google Scholar] [CrossRef] [Green Version]
Gene | RGA Type | Avirulence Gene (Pathogen) | GenBank ID | Source |
---|---|---|---|---|
At_ADR1 | RNL | unknown (Hyaloperonospora arabidopsidis F, Erysiphe cichoracearum F, Pseudomonas syringae B) | Q9FW44 U | [32,33,34] |
At_BAK1 | LRR-RLK | AvrPto and AvrPtoB (P. syringae), unknown but interacts with RLP23/SOBIR1 interaction (Sclerotinia sclerotiorum F) | Q94F62 U | [35,36,37,38] |
At_FLS2 | LRR-RLK | AvrPto1 (P. syringae) | Q9FL28 U | [39,40] |
At_NDR1 | TM | AvrRpt2 (P. syringae) | O48915 U | [41] |
At_NGR1a | RNL | unknown (Albugo candida F, H. arabidopsidis, and P. syringae) | Q9FKZ1 U | [33,34] |
At_NGR1b | RNL | Q9FKZ0 U | ||
At_PBS1 | STK | AvrPphB (P. syringae) | Q9FE20 U | [42] |
At_RAC1 | TNL | unknown (A. candida) | Q6QX58 U | [43] |
At_RIN4 | CC | AvrB, AvrRPM1 and AvrRpt2(P. syringae) | Q8GYN5 U | [44,45,46,47,48] |
At_RFO1 | Other-RLK | unknown (Fusarium oxysporum matthioli F) | Q8RY17 U | [49] |
At_RFO2 | LRR-RLP | unknown (F. oxysporum matthioli) | Q9SHI4 U | [50] |
At_RFO3 | Other-RLK | unknown (F. oxysporum matthioli) | Q9LW83 U | [51] |
At_RLM1a | TNL | unknown (Leptosphaeria maculans F) | Q9CAK1 U | [52] |
At_RLM1b | TNL | unknown (L. maculans) | F4I594 U | |
At_RLM3 | TN | unknown (L. maculans, Botrytis cinerea F, Alternaria brassicicola F and A. brassicae F) | Q9FT77 U | [53] |
At_RLP1 | LRR-RLP | unknown (Xanthomonas spp. B) | Q9LNV9 | [54,55] |
At_RLP23 | LRR-RLP | unknown but interacts with BAK1/SOBIR1 (S. sclerotiorum) | O48849 | [38,56] |
At_RLP30 | LRR-RLP | unknown (P. syringae), interacts with Sclerotinia culture filtrate elicitor 1 (SCFE1)/BAK1/SOBIR1 (S. sclerotiorum) | Q9MA83 | [57,58] |
At_RLP32 | LRR-RLP | unknown but interacts with BAK1/SOBIR1 (P. syringae) | Q9M9X0 | [59] |
At_RLP42 | LRR-RLP | unknown but interacts with SOBIR1 (B.cinerea and H. arabidopsidis) | Q9LJS0 | [60] |
At_RPM1 | NL | AvrRPM1 or AvrB (P. syringae) | Q39214 U | [61,62] |
At_RPP1 | TNL | ATR1NdWsB (H. arabidopsidis) | F4J339 U | [63] |
At_RPP2a | TNL | unknown but interacts with RPP2b (H. arabidopsidis) | F4JT78 U | [64] |
At_RPP2b | TNL | unknown but interacts with RPP2a (H. arabidopsidis) | F4JT80 U | |
At_RPP4 | TNL | ATR4(H. arabidopsidis) | F4JNA9 U | [65] |
At_RPP5 | TNL | ATR5 (H. arabidopsidis) | F4JNB7 U | [66] |
At_RPP7 | NL | unknown (H. arabidopsidis) | Q8W3K0 U | [67,68] |
At_RPP8 | CNL | AvrRPP8 (H. arabidopsidis) | Q8W4J9 U | [69] |
At_RPP13 | CNL | ATR13 (H. arabidopsidis) | Q9M667 U | [70] |
At_RPP39 | CNL | ATR39-1 (H. arabidopsidis) | H9BPR9 U | [71] |
At_RPS2 | NL | AvrRpt2 (P. syringae) | Q42484 U | [72] [73] |
At_RPS4 | TNL | AvrRPS4 (P. syringae) | Q9XGM3 U | |
At_RPS5 | TNL | AvrPphB (P. syringae) | O64973 U | [74] |
At_Rpw8.1 | RNL | unknown (E. cichoracearum) | Q9C5Z7 U | [75] |
At_Rpw8.2 | RNL | unknown (E. cichoracearum) | Q9C5Z6 U | |
At_RRS1 | TNL | AvrRPS4 (P. syringae), popP2 (Ralstonia solanacearum B), unknown (Colletotrichum higginsianum F) | P0DKH5 U | [76,77] |
At_SOBIR1 | LRR-RLK | unknown but interacts FLS2 (P. syringae), unknown but interacts with BAK1/SOBIR1 (S. sclerotiorum) | Q9SKB2 | [35,38] |
At_WRR4a | TNL | unknown (A. candida) | Q9C7X0 U | [78] |
At_WRR4b | TNL | unknown (A. candida) | MK034466 N | [79] |
At_WRR8 | TNL | unknown (A. candida) | MK034463 N | |
At_WRR9 | NL | unknown (A. candida) | MK034464 N | |
At_WRR12 | TNL | unknown (A. candida) | MK034462 N | |
Bju_WRR1 | CNL | unknown (A. candida) | A0A5C1IWT6 U | [80] |
Bna_MPK9 | Other-RLK | AvrLm1 (L. maculans) | A0A078IFE9 U | [81] |
Bna_LepR3/Rlm2 | LRR-RLP | AvrLm1 (LepR3) and AvrLm2 (Rlm2) (L. maculans) | I7C3X3 U/ A0A0B5L618 U | [82,83] |
Bna_Rlm9/4/7 | Other-RLK | AvrLm5-9 (Rlm9) and AvrLm4-7 (Rlm4/7) (L. maculans) | CDX67982.1 N | [84,85] |
Bra_cRa/cRb | TNL | unknown (Plasmodiophora brassicae F) | M5A8J3 U | [86,87] |
Bra_Crr1a | TNL | unknown (P. brassicae) | AB605024.1 N | [88] |
Bol_FocBo1 | TNL | unknown (F. oxysporum f. sp. Conglutinans F) | BAQ21734.1 N | [89] |
Species | Genome Version (Size) | Source | |
---|---|---|---|
Arabidopsis thaliana | TAIR10 (119 Mbp) | https://www.arabidopsis.org/, accessed on 27 December 2020 | [90] |
Brassica carinata | zd-1 v1.0 (1087 Mbp) | http://brassicadb.bio2db.com/, accessed on 10 April 2021 | [11] |
Brassica juncea | Tumida T84-66 v1.5 (937 Mbp) | http://brassicadb.org/, accessed on 27 December 2020 | [14] |
Brassica napus | Darmor bzh v4.1 (850 Mbp) | http://brassicadb.org/, accessed on 27 December 2020 | [15] |
Brassica nigra | DH YZ12151 (402 Mbp) | http://brassicadb.org/, accessed on 27 December 2020 | [14] |
Brassica oleracea | TO100 v2.1 (488 Mbp) | http://brassicadb.org/, accessed on 27 December 2020 | [91] |
Brassica rapa | Chiifu-401-42 v3.0 (353 Mbp) | http://bigd.big.ac.cn/gwh, accessed 27 December 2020 | [92] |
Cloned Gene (RGA Domain) | Paralog | ||||||
---|---|---|---|---|---|---|---|
T | S | RGA * | Non-RGA | Total | |||
Same | Different | ||||||
Brassica species | Bju_WRR1 (CNL) | 0 | 1 | 0 | 1 TX | 0 | 1 |
Bna_MAPk (Other-RLK) | 0 | 8 | 0 | 0 | 8 | 8 | |
Bra_cRa/cRb (TNL) | 3 | 1 | 1 TNL | 1 NL, 2 TX | 0 | 4 | |
Bra_Crr1a (TNL) | 1 | 2 | 1 TNL | 2 TX | 1 | 3 | |
Bol_FocBo1 (TNL) | 0 | 0 | 0 | 0 | 0 | 0 | |
Bna_LepR3/Rlm2 (LRR-RLP) | 0 | 1 | 1 LRR-RLP | 0 | 0 | 1 | |
Bna_Rlm9/4/7 (Other-RLK) | 0 | 6 | 3 Other-RLK | 0 | 3 | 6 | |
Total | 4 | 19 | 6 | 6 | 14 | 23 | |
Arabidopsis thaliana | At_ADR1 (NL) | 0 | 2 | 2 NL | 0 | 0 | 2 |
At_BAK1 (LRR-RLK) | 0 | 4 | 4 LRR-RLK | 0 | 0 | 4 | |
At_FLS2 (LRR-RLK) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_NDR1 (TM) | 1 | 0 | 0 | 0 | 1 | 1 | |
At_NRG1a (RNL) | 1 | 0 | 0 | 1 NL | 0 | 1 | |
At_NRG1b (RNL) | 1 | 0 | 0 | 1 NL | 0 | 1 | |
At_PBS1 (STK) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_RAC1 (TNL) | 0 | 4 | 3 TNL | 1 TN | 0 | 4 | |
At_RFO1 (Other-RLK) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_RFO2 (LRR-RLP) | 0 | 1 | 0 | 1 LRR-RLK | 0 | 1 | |
At_RFO3 (Other-RLK) | 0 | 1 | 1 Other-RLK | 0 | 0 | 1 | |
At_RIN4 (CC) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_RLM1a (TNL) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_RLM1b (TNL) | 5 | 2 | 6 TNL | 1 NL | 0 | 7 | |
At_RLM3 (TN) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_RPM1 (NL) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_RLP1 (LRR-RLP) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_RLP23 (LRR-RLP) | 3 | 0 | 3 LRR-RLP | 0 | 0 | 3 | |
At_RLP30 (LRR-RLP) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_RLP32 (LRR-RLP) | 0 | 1 | 1 LRR-RLP | 0 | 0 | 1 | |
At_RLP42 (LRR-RLP) | 3 | 0 | 3 LRR-RLP | 0 | 0 | 3 | |
At_RPP1 (TNL) | 3 | 3 | 5 TNL | 1 TX | 0 | 6 | |
At_RPP2a (TNL) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_RPP2b (TNL) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_RPP4 (TNL) | 6 | 0 | 5 TNL | 1 Other-NLR | 0 | 6 | |
At_RPP5 (TNL) | 7 | 0 | 5 TNL | 1 Other-NLR | 1 | 7 | |
At_RPP5 (NL) | 4 | 0 | 0 | 4 CNL | 0 | 4 | |
At_RPP8 (CNL) | 2 | 0 | 2 CNL | 0 | 0 | 2 | |
At_RPP13 (CNL) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_RPP39 (CNL) | 3 | 0 | 2 CNL | 1 NL | 0 | 3 | |
At_RPS2 (NL) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_RPS4 (TNL) | 1 | 0 | 1 TNL | 0 | 0 | 1 | |
At_RPS5 (TNL) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_Rpw8.1 (RNL) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_Rpw8.2 (RNL) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_RRS1 (TNL) | 1 | 0 | 0 | 1 NL | 0 | 1 | |
At_SOBIR1 (LRR-RLK) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_WRR4a (TNL) | 1 | 0 | 1 TNL | 0 | 0 | 1 | |
At_WRR4b (TNL) | 0 | 0 | 0 | 0 | 0 | 0 | |
At_WRR8 (TNL) | 3 | 1 | 3 TNL | 1 TN | 0 | 4 | |
At_WRR9 (NL) | 0 | 1 | 0 | 0 | 1 | 1 | |
At_WRR12 (TNL) | 0 | 1 | 1 TNL | 0 | 0 | 1 | |
Total | 43 | 22 | 49 | 13 | 3 | 65 |
Cloned Gene (RGA Domain) | Ortholog | ||||
---|---|---|---|---|---|
RGA * | Non-RGA | Total | |||
Same | Different | ||||
Brassica species | Bju_WRR1 (CNL) | 14 CNL | 12 NL, 3 CN, 1 Other-RLK | 16 | 46 |
Bna_MAPk (Other-RLK) | 1 Other-RLK | 0 | 31 | 32 | |
Bra_cRa/cRb (TNL) | 9 TNL | 4 Other-NLR, 12 TN, 1 Other-RLK, 3 TX | 1 | 19 | |
Bra_Crr1a (TNL) | 9 TNL | 1 NL, 1 Other-NLR, 1 CNL, 2 TX | 8 | 22 | |
Bol_FocBo1 (TNL) | 7 TNL | 1 Other-NLR, 1 TN, 1 TX | 5 | 15 | |
Bna_LepR3/Rlm2 (LRR-RLP) | 4 LRR-RLP | 0 | 3 | 7 | |
Bna_Rlm9/4/7 (Other-RLK) | 56 Other-RLK | 0 | 28 | 84 | |
Total | 100 | 94 | 94 | 229 | |
Arabidopsis thaliana | At_ADR1 (NL) | 2 NL | 3 CNL | 0 | 5 |
At_BAK1 (LRR-RLK) | 30 LRR-RLK | 0 | 11 | 41 | |
At_FLS2 (LRR-RLK) | 13 LRR-RLK | 1 LRR-RLP | 5 | 19 | |
At_NDR1 (TM) | 0 | 0 | 22 | 22 | |
At_NRG1a (RNL) | 0 | 6 CNL, 1 LRR-RLP, 1 NBS, 17 NL | 4 | 29 | |
At_NRG1b (RNL) | 0 | 8 CNL, 1 LRR-RLP, 1 NBS, 16 NL | 4 | 29 | |
At_PBS1 (STK) | 0 | 1 NL | 36 | 37 | |
At_RAC1 (TNL) | 0 | 1 NBS | 0 | 1 | |
At_RFO1 (Other-RLK) | 2 Other-RLK | 0 | 1 | 3 | |
At_RFO2 (LRR-RLP) | 4 LRR-RLP | 0 | 3 | 7 | |
At_RFO3 (Other-RLK) | 15 Other-RLK | 1 Other-NLR | 6 | 22 | |
At_RIN4 (CC) | 0 | 0 | 0 | 0 | |
At_RLM1a (TNL) | 0 | 0 | 0 | 0 | |
At_RLM1b (TNL) | 9 TNL | 3 NL, 1 Other-NLR, 2 TN, 1 TX | 6 | 22 | |
At_RLM3 (TN) | 0 | 0 | 0 | 0 | |
At_RPM1 (NL) | 4 NL | 1 NBS | 5 | 10 | |
At_RLP1 (LRR-RLP) | 7 LRR-RLP | 0 | 4 | 11 | |
At_RLP23 (LRR-RLP) | 0 | 0 | 2 | 2 | |
At_RLP30 (LRR-RLP) | 0 | 0 | 0 | 0 | |
At_RLP32 (LRR-RLP) | 4 LRR-RLP | 0 | 2 | 6 | |
At_RLP42 (LRR-RLP) | 0 | 0 | 2 | 2 | |
At_RPP1 (TNL) | 0 | 0 | 0 | 0 | |
At_RPP2a (TNL) | 6 TNL | 1 NBS | 2 | 9 | |
At_RPP2b (TNL) | 6 TNL | 1 NBS | 4 | 11 | |
At_RPP4 (TNL) | 0 | 0 | 0 | 0 | |
At_RPP5 (TNL) | 1 TNL | 0 | 0 | 1 | |
At_RPP5 (NL) | 0 | 0 | 0 | 0 | |
At_RPP8 (CNL) | 0 | 4 NL, 1 CN | 0 | 5 | |
At_RPP13 (CNL) | 1 CNL | 2 CN, 2 NBS, 1 NL | 3 | 9 | |
At_RPP39 (CNL) | 1 CNL | 1 CN | 0 | 2 | |
At_RPS2 (NL) | 2 NL | 7 CNL, 1 LRR-RLK | 1 | 11 | |
At_RPS4 (TNL) | 6 TNL | 1 NL, 1 TN, 1 LRR-RLP | 2 | 11 | |
At_RPS5 (TNL) | 0 | 0 | 0 | 0 | |
At_Rpw8.1 (RNL) | 0 | 0 | 0 | 0 | |
At_Rpw8.2 (RNL) | 0 | 0 | 0 | 0 | |
At_RRS1 (TNL) | 1 TNL | 2 NL | 0 | 3 | |
At_SOBIR1 (LRR-RLK) | 21 LRR-RLK | 2 LRR-RLP | 2 | 23 | |
At_WRR4a (TNL) | 0 | 0 | 0 | 0 | |
At_WRR4b (TNL) | 0 | 0 | 0 | 0 | |
At_WRR8 (TNL) | 0 | 1 NL, 1 NBS | 0 | 2 | |
At_WRR9 (NL) | 0 | 0 | 0 | 0 | |
At_WRR12 (TNL) | 7 TNL | 5 Other-NLR, 3 NBS, 3 NL, 1 TN, 3 TX, 1 LRR-RLP | 1 | 24 | |
Total | 144 | 61 | 120 | 323 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantila, A.Y.; Neik, T.X.; Tirnaz, S.; Thomas, W.J.W.; Bayer, P.E.; Edwards, D.; Batley, J. Mining of Cloned Disease Resistance Gene Homologs (CDRHs) in Brassica Species and Arabidopsis thaliana. Biology 2022, 11, 821. https://doi.org/10.3390/biology11060821
Cantila AY, Neik TX, Tirnaz S, Thomas WJW, Bayer PE, Edwards D, Batley J. Mining of Cloned Disease Resistance Gene Homologs (CDRHs) in Brassica Species and Arabidopsis thaliana. Biology. 2022; 11(6):821. https://doi.org/10.3390/biology11060821
Chicago/Turabian StyleCantila, Aldrin Y., Ting X. Neik, Soodeh Tirnaz, William J. W. Thomas, Philipp E. Bayer, David Edwards, and Jacqueline Batley. 2022. "Mining of Cloned Disease Resistance Gene Homologs (CDRHs) in Brassica Species and Arabidopsis thaliana" Biology 11, no. 6: 821. https://doi.org/10.3390/biology11060821
APA StyleCantila, A. Y., Neik, T. X., Tirnaz, S., Thomas, W. J. W., Bayer, P. E., Edwards, D., & Batley, J. (2022). Mining of Cloned Disease Resistance Gene Homologs (CDRHs) in Brassica Species and Arabidopsis thaliana. Biology, 11(6), 821. https://doi.org/10.3390/biology11060821