Biostimulatory Effects of Amino Acids on Phenylalanine Ammonia Lyase, Capsaicin Synthase, and Peroxidase Activities in Capsicum baccatum L.
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Plants, Sampling, and Treatments
2.3. Sampling of Chilies
2.4. Phenylalanine Ammonia Lyase Assay
2.5. Capsaicin Synthase Assay
2.6. Peroxidase Assay
2.7. Extraction and Analysis of Capsaicinoids
2.8. Statistical Analysis
3. Results
3.1. Enzyme Activities and Total Capsaicinoids Contents
3.2. Individual Capsaicinoids after Biostimulant Application
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flores, P.; Hellin, P.; Fenoll, J. Effect of manure and mineral fertilisation on pepper nutritional quality. J. Sci. Food Agric. 2009, 89, 1581–1586. [Google Scholar] [CrossRef]
- Ahmed, A.; Yu, H.; Yang, X.; Jiang, W. Deficit Irrigation Affects Growth, Yield, Vitamin C Content, and Irrigation Water Use Efficiency of Hot Pepper Grown in Soilless Culture. HortScience 2014, 49, 722–728. [Google Scholar] [CrossRef]
- Yildirim, E.; Ekinci, M.; Kul, R.; Turan, M.; Gür, A. Mitigation of drought stress effects on pepper seedlings by exogenous methylamine application. Int. Lett. Nat. Sci. 2019, 76, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Ellenberger, J.; Siefen, N.; Krefting, P.; Schulze Lutum, J.-B.; Pfarr, D.; Remmel, M.; Schröder, L.; Röhlen-Schmittgen, S. Effect of UV radiation and salt stress on the accumulation of economically relevant secondary metabolites in bell pepper plants. Agronomy 2020, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- Zamljen, T.; Zupanc, V.; Slatnar, A. Influence of irrigation on yield and primary and secondary metabolites in two chilies species, Capsicum annuum L. and Capsicum chinense Jacq. Agric. Water Manag. 2020, 234, 106104. [Google Scholar] [CrossRef]
- Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, D.; Müller, T.; Yermiyahu, U. The use of biostimulants for enhancing nutrient uptake. Adv. Agron. 2015, 130, 141–174. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Sh Sadak, M.; Abdelhamid, M.T.; Schmidhalter, U. Effect of foliar application of aminoacids on plant yield and some physiological parameters in bean plants irrigated with seawater. J. Acta Biol. Colombiana 2015, 20, 141–152. [Google Scholar]
- Hildebrandt, T.M.; Nunes, N.A.; Araújo, W.L.; Braun, H.-P. Amino Acid catabolism in plants. Mol. Plant 2015, 8, 1563–1579. [Google Scholar] [CrossRef] [Green Version]
- Phimchan, P.; Chanthai, S.; Bosland, P.W.; Techawongstien, S. Enzymatic changes in phenylalanine ammonia-lyase, cinnamic-4-hydroxylase, capsaicin synthase, and peroxidase activities in Capsicum under drought stress. J. Agric. Food Chem. 2014, 62, 7057–7062. [Google Scholar] [CrossRef]
- Ochoa-Alejo, N.; Gómez-Peralta, J.E. Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annuum L.). J. Plant Physiol. 1993, 141, 147–152. [Google Scholar] [CrossRef]
- Mazourek, M.; Pujar, A.; Borovsky, Y.; Paran, I.; Mueller, L.; Jahn, M.M. A dynamic interface for capsaicinoid systems biology. Plant Physiol. 2009, 150, 1806–1821. [Google Scholar] [CrossRef] [Green Version]
- Dicko, M.H.; Gruppen, H.; Barro, C.; Traore, A.S.; van Berkel, W.J.H.; Voragen, A.G.J. Impact of phenolic compounds and related enzymes in sorghum varieties for resistance and susceptibility to biotic and abiotic stresses. J. Chem. Ecol. 2005, 31, 2671–2688. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid Biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Hwang, B.K. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J. Exp. Bot. 2014, 65, 2295–2306. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J.; Pomar, F.; Bernal, A.; Merino, F. Peroxidases and the metabolism of capsaicin in Capsicum annuum L. Phytochemistry Rev. 2004, 3, 141–157. [Google Scholar] [CrossRef]
- Bernal, M.A.; Calderon, A.A.; Pedreno, M.A.; Munoz, R.; Ros Barcelo, A.; Merino de Caceres, F. Capsaicin oxidation by peroxidase from Capsicum annuum (variety Annuum) fruits. J. Agric. Food Chem. 1993, 41, 1041–1044. [Google Scholar] [CrossRef]
- Yildiztekin, M.; Tuna, A.L.; Kaya, C. Physiological Effects of the brown seaweed (Ascophyllum nodosum) and humic substances on plant growth, enzyme activities of certain pepper plants grown under salt stress. Acta Biol. Hung. 2018, 69, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Rehman, R.N.U.; Malik, A.U.; Khan, A.S.; Hasan, M.U.; Anwar, R.; Ali, S.; Haider, M.W. Combined application of hot water treatment and methyl salicylate mitigates chilling injury in sweet pepper (Capsicum annuum L.) fruits. Sci. Hortic. 2021, 283, 110113. [Google Scholar] [CrossRef]
- Zamljen, T.; Hudina, M.; Veberič, R.; Slatnar, A. Biostimulative effect of amino acids and green algae extract on capsaicinoid and other metabolite contents in fruits of Capsicum spp. Chem. Biol. Technol. Agric. 2021, 8, 63. [Google Scholar] [CrossRef]
- Zamljen, T.; Veberic, R.; Hudina, M.; Slatnar, A. The brown marmorated stink bug (Halyomorpha halys Stål.) influences pungent and non-pungent Capsicum cultivars’ pre- and post-harvest quality. Agronomy 2021, 11, 2252. [Google Scholar] [CrossRef]
- Cebulj, A.; Halbwirth, H.; Mikulic-Petkovsek, M.; Veberic, R.; Slatnar, A. The impact of scald development on phenylpropanoid metabolism based on phenol content, enzyme activity, and gene expression analysis. Hortic. Environ. Biotechnol. 2020, 61, 849–858. [Google Scholar] [CrossRef]
- Medic, A.; Jakopic, J.; Hudina, M.; Solar, A.; Veberic, R. Identification and quantification of the major phenolic constituents in Juglans regia L. peeled kernels and pellicles, using HPLC–MS/MS. Food Chem. 2021, 352, 129404. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Zheng, W.; Galletta, G.J. Cultural system affects fruit quality and antioxidant capacity in strawberries. J. Agric. Food Chem. 2002, 50, 6534–6542. [Google Scholar] [CrossRef]
- Ji, B.; Zhao, Y.; Zhang, Q.; Wang, P.; Guan, J.; Rong, R.; Yu, Z. Analytical technologies in the biomedical sciences, l. Simultaneous determination of cinnamaldehyde, cinnamic acid, and 2-methoxy cinnamic acid in rat whole blood after oral administration of volatile oil of Cinnamoni Ramulus by UHPLC-MS/MS: An application for a pharmacokinetic study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1001, 107–113. [Google Scholar] [CrossRef]
- Slatnar, A.; Mikulic Petkovsek, M.; Halbwirth, H.; Stampar, F.; Stich, K.; Veberic, R. Enzyme activity of the phenylpropanoid pathway as a response to apple scab infection. Ann. Appl. Biol. 2010, 156, 449–456. [Google Scholar] [CrossRef]
- Zamljen, T.; Jakopič, J.; Hudina, M.; Veberič, R.; Slatnar, A. Influence of intra and inter species variation in chilies (Capsicum spp.) on metabolite composition of three fruit segments. Sci. Rep. 2021, 11, 4932. [Google Scholar] [CrossRef]
- Wolf, R.; Huschka, C.; Raith, K.; Wohlrab, W.; Neubert, R.H.H. Rapid quantification of capsaicin and dihydrocapsaicin in human skin extracts after dermal administration using HPLC-ESI-MS. J. Liquid Chromatogr. Relat. Technol. 1999, 22, 531–539. [Google Scholar] [CrossRef]
- You, Y.; Uboh, C.E.; Soma, L.R.; Guan, F.; Taylor, D.; Li, X.; Liu, Y.; Chen, J. Validated UHPLC–MS-MS Method for rapid analysis of capsaicin and dihydrocapsaicin in equine plasma for doping control. J. Anal. Toxicol. 2013, 37, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 15 May 2021).
- Aza-González, C.; Núñez-Palenius, H.G.; Ochoa-Alejo, N. Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Rep. 2011, 30, 695–706. [Google Scholar] [CrossRef]
- Walker, M.C.; van der Donk, W.A. The many roles of glutamate in metabolism. J. Ind. Microbiol. Biotechnol. 2016, 43, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Canellas, L.P.; Olivares, F.L. Physiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. Agric. 2014, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Astaneh, R.K.; Bolandnazar, S.; Nahandi, F.Z.; Oustan, S. Effect of selenium application on phenylalanine ammonia-lyase (PAL) activity, phenol leakage and total phenolic content in garlic (Allium sativum L.) under NaCl stress. Inf. Process. Agric. 2018, 5, 339–344. [Google Scholar] [CrossRef]
- Ruan, J.; Gerendás, J. Absorption of foliar-applied urea-15N and the impact of low nitrogen, potassium, magnesium and sulfur nutritional status in tea (Camellia sinensis L.) plants. Soil Sci. Plant Nutr. 2015, 61, 653–663. [Google Scholar] [CrossRef] [Green Version]
- Oraghi Ardebili, Z.; Reza, A.; Ardebili, N.; Pashaie, A. The induced physiological changes by foliar application of amino acids in Aloe vera L. plants. Plant OMICS 2012, 5, 279–284. [Google Scholar]
- Alturki, S.; Shalaby, T.; Almadini, A.M.; El-Ramady, H. The nutritional status of tomato seedlings and peroxidase activity under foliar applications of some biostimulants. Fresenius Environm. Bull. 2020, 29, 421–433. [Google Scholar]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Kumaraswamy, R.V.; Kumari, S.; Choudhary, R.C.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Salicylic acid functionalized chitosan nanoparticle: A sustainable biostimulant for plant. Int. J. Biol. Macromol. 2019, 123, 59–69. [Google Scholar] [CrossRef]
Tissue | Biostimulant | Capsaicinoids (g/kg FW) | ||||
---|---|---|---|---|---|---|
(h) | Capsaicin | Dihydro-Capsaicin | Nordihydro-Capsaicin | Homo-Capsaicin | Homodihydro-Capsaicin | |
Pericarp | 0 | 1.34 ± 0.22 c | 0.28 ± 0.05 b | 0.02 ± 0.00 b | 0.02 ± 0.00 c | 0.01 ± 0.00 a |
1 | 2.03 ± 0.25 a | 0.45 ± 0.05 a | 0.04 ± 0.00 a | 0.07 ± 0.00 a | 0.01 ± 0.00 a | |
3 | 1.19 ± 0.11 c | 0.26 ± 0.02 b | 0.02 ± 0.00 b | 0.02 ± 0.00 c | 0.01 ± 0.00 a | |
24 | 2.21 ± 0.18 a | 0.46 ± 0.04 a | 0.05 ± 0.00 a | 0.05 ± 0.00 a | 0.01 ± 0.00 a | |
48 | 1.71 ± 0.03 b | 0.42 ± 0.01 a | 0.04 ± 0.00 a | 0.06 ± 0.00 a | 0.01 ± 0.00 a | |
72 | 1.52 ± 0.19 b | 0.39 ± 0.01 a | 0.04 ± 0.00 a | 0.04 ± 0.00 b | 0.01 ± 0.00 a | |
Placenta | 0 | 16.85 ± 0.95 b | 4.71 ± 0.37 a | 0.27 ± 0.03 a | 0.73 ± 0.10 b | 0.64 ± 0.05 a |
1 | 19.64 ± 0.36 a | 5.44 ± 0.13 a | 0.37 ± 0.00 a | 1.35 ± 0.08 a | 0.70 ± 0.00 a | |
3 | 15.17 ± 0.10 b | 4.30 ± 0.12 a | 0.25 ± 0.02 a | 0.82 ± 0.01 b | 0.56 ± 0.03 a | |
24 | 11.94 ± 0.32 c | 3.39 ± 0.05 b | 0.22 ± 0.00 a | 0.61 ± 0.01 b | 0.46 ± 0.00 a | |
48 | 22.71 ± 2.79 a | 5.66 ± 0.79 a | 0.34 ± 0.06 a | 1.40 ± 0.19 a | 0.65 ± 0.12 a | |
72 | 14.40 ± 1.05 b | 3.94 ± 0.37 a | 0.25 ± 0.03 a | 0.72 ± 0.09 b | 0.55 ± 0.05 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamljen, T.; Medic, A.; Hudina, M.; Veberic, R.; Slatnar, A. Biostimulatory Effects of Amino Acids on Phenylalanine Ammonia Lyase, Capsaicin Synthase, and Peroxidase Activities in Capsicum baccatum L. Biology 2022, 11, 674. https://doi.org/10.3390/biology11050674
Zamljen T, Medic A, Hudina M, Veberic R, Slatnar A. Biostimulatory Effects of Amino Acids on Phenylalanine Ammonia Lyase, Capsaicin Synthase, and Peroxidase Activities in Capsicum baccatum L. Biology. 2022; 11(5):674. https://doi.org/10.3390/biology11050674
Chicago/Turabian StyleZamljen, Tilen, Aljaz Medic, Metka Hudina, Robert Veberic, and Ana Slatnar. 2022. "Biostimulatory Effects of Amino Acids on Phenylalanine Ammonia Lyase, Capsaicin Synthase, and Peroxidase Activities in Capsicum baccatum L." Biology 11, no. 5: 674. https://doi.org/10.3390/biology11050674
APA StyleZamljen, T., Medic, A., Hudina, M., Veberic, R., & Slatnar, A. (2022). Biostimulatory Effects of Amino Acids on Phenylalanine Ammonia Lyase, Capsaicin Synthase, and Peroxidase Activities in Capsicum baccatum L. Biology, 11(5), 674. https://doi.org/10.3390/biology11050674