Behavioral Management as a Coping Strategy for Managing Stressors in Primates: The Influence of Temperament and Species
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Subjects
2.2. Primate Temperament Assessment
2.3. Primate Training
2.4. Data Analysis
3. Results
4. Discussion
4.1. Training Differences by Species
4.2. Temperament and Behavioral Motivations
4.3. Implications for Welfare and Scientific Validity
4.4. Translational Relevance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Folkman, S.; Moskowitz, J.T. Coping: Pitfalls and promise. Annu. Rev. Psychol. 2004, 55, 745–774. [Google Scholar] [CrossRef] [PubMed]
- Leandro, P.G.; Castillo, M.D. Coping with stress and its relationship with personality dimensions, anxiety, and depression. Procedia-Soc. Behav. Sci. 2010, 5, 1562–1573. [Google Scholar] [CrossRef] [Green Version]
- Lambert, K.G.; Hyer, M.M.; Rzucidlo, A.A.; Bergeron, T.; Landis, T.; Bardi, M. Contingency-based emotional resilience: Effort-based reward training and flexible coping lead to adaptive responses to uncertainty in male rats. Front. Behav. Neurosci. 2014, 8, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidi, J.; Lucente, M.; Sonino, N.; Fava, G.A. Allostatic load and its impact on health: A systematic review. Psychother. Psychosom. 2021, 90, 11–27. [Google Scholar] [CrossRef] [PubMed]
- DiMatteo, M.R.; Lepper, H.S.; Croghan, T.W. Depression is a risk factor for noncompliance with medical treatment: Meta-analysis of the effects of anxiety and depression on patient adherence. Arch. Intern. Med. 2000, 160, 2101–2107. [Google Scholar] [CrossRef]
- Demyttenaere, K. Risk factors and predictors of compliance in depression. Eur. Neuropsychopharmacol. 2003, 13, 69–75. [Google Scholar] [CrossRef]
- Koolhaas, J.M.; Korte, S.M.; De Boer, S.F.; Van Der Vegt, B.J.; Van Reenen, C.G.; Hopster, H.; De Jong, I.C.; Ruis, M.A.W.; Blokhuis, H.J. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 1999, 23, 925–935. [Google Scholar] [CrossRef]
- Graves, P.L.; Mead, L.A.; Wang, N.Y.; Liang, K.Y.; Klag, M.J. Temperament as a potential predictor of mortality: Evidence from a 41-year prospective study. J. Behav. Med. 1994, 17, 111–126. [Google Scholar] [CrossRef]
- Janowski, K.; Steuden, S. The Temperament Risk Factor, Disease Severity, and Quality of Life in Patients with Psoriasis. Ann. Dermatol. 2020, 32, 452–459. [Google Scholar] [CrossRef]
- Sherwood, A.; Blumenthal, J.A.; Koch, G.G.; Hoffman, B.M.; Watkins, L.L.; Smith, P.J.; O’Connor, C.M.; Adams, K.F., Jr.; Rogers, J.G.; Sueta, C.; et al. Effects of Coping Skills Training on Quality of Life, Disease Biomarkers, and Clinical Outcomes in Patients with Heart Failure: A Randomized Clinical Trial. Circ. Heart Fail. 2017, 10, e003410. [Google Scholar] [CrossRef] [Green Version]
- Wald, R.L.; Dowling, G.C.; Temoshok, L.R. Coping styles predict immune system parameters and clinical outcomes in patients with HIV. Retrovirology 2006, 3, P65. [Google Scholar] [CrossRef]
- Folkman, S. Personal control and stress and coping processes: A theoretical analysis. J. Pers. Soc. Psychol. 1984, 46, 839–852. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, G.; Simeoni, M.; Rizza, P.; Caroleo, M.; Capria, M.; Mazzitello, G.; Sacco, T.; Mazzuca, E.; Panzino, M.T.; Cerantonio, A.; et al. Quality of life, clinical outcome, personality and coping in chronic hemodialysis patients. Ren. Fail. 2017, 39, 45–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broom, D.M.; Kirkden, R.D. Welfare, stress, behaviour and pathophysiology. Vet. Pathophysiol. 2004, Vol. 1, 337–369. [Google Scholar]
- Veissier, I.; Boissy, A. Stress and welfare: Two complementary concepts that are intrinsically related to the animal’s point of view. Physiol. Behav. 2007, 92, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Poole, T. Happy animals make good science. Lab. Anim. 1997, 31, 116–124. [Google Scholar] [CrossRef]
- Prescott, M.J.; Lidster, K. Improving quality of science through better animal welfare: The NC3Rs strategy. Lab. Anim. 2017, 46, 152–156. [Google Scholar] [CrossRef]
- Koolhaas, J.; Van Reenen, C. Animal behavior and well-being symposium: Interaction between coping style/personality, stress, and welfare: Relevance for domestic farm animals. J. Anim. Sci. 2016, 94, 2284–2296. [Google Scholar] [CrossRef]
- Bloomsmith, M.A.; Perlman, J.E.; Hutchinson, E.; Sharpless, M. Behavioral management programs to promote laboratory animal welfare. In Management of Animal Care and Use Programs in Research, Education, and Testing; CRC Press: Boca Raton, FL, USA, 2017; pp. 63–82. [Google Scholar]
- Coleman, K.; Tully, L.A.; McMillan, J.L. Temperament correlates with training success in adult rhesus macaques. Am. J. Primatol. Off. J. Am. Soc. Primatol. 2005, 65, 63–71. [Google Scholar] [CrossRef]
- Laule, G.E.; Bloomsmith, M.A.; Schapiro, S.J. The use of positive reinforcement training techniques to enhance the care, management, and welfare of primates in the laboratory. J. Appl. Anim. Welf. Sci. 2003, 6, 163–173. [Google Scholar] [CrossRef]
- Graham, M.L.; Prescott, M.J. The multifactorial role of the 3Rs in shifting the harm-benefit analysis in animal models of disease. Eur. J. Pharmacol. 2015, 759, 19–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, M.L.; Schuurman, H.-J. Validity of animal models of type 1 diabetes, and strategies to enhance their utility in translational research. Eur. J. Pharmacol. 2015, 759, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.L.; Schuurman, H.-J. Pancreatic islet xenotransplantation. Drug Discov. Today Dis. Models 2017, 23, 43–50. [Google Scholar] [CrossRef]
- Ruhe, K.M.; Badarau, D.O.; Brazzola, P.; Hengartner, H.; Elger, B.S.; Wangmo, T. Participation in pediatric oncology: Views of child and adolescent patients. Psychooncology 2016, 25, 1036–1042. [Google Scholar] [CrossRef]
- Olszewski, A.E.; Goldkind, S.F. The Default Position: Optimizing Pediatric Participation in Medical Decision Making. Am. J. Bioeth. 2018, 18, 4–9. [Google Scholar] [CrossRef]
- Fernström, A.L.; Fredlund, H.; Spångberg, M.; Westlund, K. Positive reinforcement training in rhesus macaques—Training progress as a result of training frequency. Am. J. Primatol. Off. J. Am. Soc. Primatol. 2009, 71, 373–379. [Google Scholar] [CrossRef]
- Schapiro, S.J.; Perlman, J.E.; Thiele, E.; Lambeth, S. Training nonhuman primates to perform behaviors useful in biomedical research. Lab. Anim. 2005, 34, 37–42. [Google Scholar] [CrossRef]
- Coleman, K. Individual differences in temperament and behavioral management practices for nonhuman primates. Appl. Anim. Behav. Sci. 2012, 137, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Balconi, M.; Falbo, L.; Conte, V.A. BIS and BAS correlates with psychophysiological and cortical response systems during aversive and appetitive emotional stimuli processing. Motiv. Emot. 2012, 36, 218–231. [Google Scholar] [CrossRef]
- Kagan, J.; Reznick, J.S.; Snidman, N. Biological bases of childhood shyness. Science 1988, 240, 167–171. [Google Scholar] [CrossRef]
- Coleman, K.; Pierre, P.J. Assessing anxiety in nonhuman primates. ILAR J. 2014, 55, 333–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, M.L. Positive Reinforcement Training and Research; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2017; Volume 2017. [Google Scholar]
- Prescott, M.J.; Buchanan-Smith, H.M. Training Nonhuman Primates Using Positive Reinforcement Techniques: A Special Issue of the Journal of Applied Animal Welfare Science; Psychology Press: London, UK, 2016. [Google Scholar]
- Roter, D.L. Patient participation in the patient-provider interaction: The effects of patient question asking on the quality of interaction, satisfaction and compliance. Health Educ. Monogr. 1977, 5, 281–315. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, K.D.; Dennig, M.D.; Weisz, J.R. Determinants and consequences of children’s coping in the medical setting: Conceptualization, review, and critique. Psychol. Bull. 1995, 118, 328. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.S.; Vannatta, K.; Compas, B.E.; Vasey, M.; McGoron, K.D.; Salley, C.G.; Gerhardt, C.A. The role of coping and temperament in the adjustment of children with cancer. J. Pediatr. Psychol. 2009, 34, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Rothbart, M.K. Temperament, development, and personality. Curr. Dir. Psychol. Sci. 2007, 16, 207–212. [Google Scholar] [CrossRef]
- Strelau, J. Temperament risk factor: The contribution of temperament to the consequences of the state of stress. In Extreme Stress and Communities: Impact and Intervention; Springer: Berlin/Heidelberg, Germany, 1995; pp. 63–81. [Google Scholar]
- De Pauw, S.S.; Mervielde, I. Temperament, personality and developmental psychopathology: A review based on the conceptual dimensions underlying childhood traits. Child Psychiatry Hum. Dev. 2010, 41, 313–329. [Google Scholar] [CrossRef]
- Williams, P.G.; Suchy, Y.; Rau, H.K. Individual differences in executive functioning: Implications for stress regulation. Ann. Behav. Med. 2009, 37, 126–140. [Google Scholar] [CrossRef]
- Keltikangas-Järvinen, L.; Kettunen, J.; Ravaja, N.; Näätänen, P. Inhibited and disinhibited temperament and autonomic stress reactivity. Int. J. Psychophysiol. 1999, 33, 185–196. [Google Scholar] [CrossRef]
- Bolhuis, J.E.; Schouten, W.G.; de Leeuw, J.A.; Schrama, J.W.; Wiegant, V.M. Individual coping characteristics, rearing conditions and behavioural flexibility in pigs. Behav. Brain Res. 2004, 152, 351–360. [Google Scholar] [CrossRef]
- Rueda, M.R.; Rothbart, M.K. The influence of temperament on the development of coping: The role of maturation and experience. New Dir. Child Adolesc. Dev. 2009, 2009, 19–31. [Google Scholar] [CrossRef]
- Turner, C.A.; Flagel, S.B.; Blandino, P.; Watson, S.J.; Akil, H. Utilizing a unique animal model to better understand human temperament. Curr. Opin. Behav. Sci. 2017, 14, 108–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheynin, J.; Beck, K.D.; Pang, K.C.H.; Servatius, R.J.; Shikari, S.; Ostovich, J.; Myers, C.E. Behaviourally inhibited temperament and female sex, two vulnerability factors for anxiety disorders, facilitate conditioned avoidance (also) in humans. Behav. Process. 2014, 103, 228–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavigelli, S.A. Behavioral inhibition in rodents: A model to study causes and health consequences of temperament. In Behavioral Inhibition; Springer: Berlin/Heidelberg, Germany, 2018; pp. 35–58. [Google Scholar]
- Hazari, A.; Salberg, S.; Griep, Y.; Yamakawa, G.R.; Mychasiuk, R. Examining changes in rodent temperament following repetitive mild traumatic brain injury in adolescence. Behav. Neurosci. 2020, 134, 384. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.A.; Bales, K.L.; Capitanio, J.P.; Conley, A.; Czoty, P.W.; ‘t Hart, B.A.; Hopkins, W.D.; Hu, S.L.; Miller, L.A.; Nader, M.A. Why primate models matter. Am. J. Primatol. 2014, 76, 801–827. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Jiang, Y.H.; Zhang, Y.Q. Modeling autism in non-human primates: Opportunities and challenges. Autism Res. 2018, 11, 686–694. [Google Scholar] [CrossRef]
- Camus, S.; Ko, W.K.D.; Pioli, E.; Bezard, E. Why bother using non-human primate models of cognitive disorders in translational research? Neurobiol. Learn. Mem. 2015, 124, 123–129. [Google Scholar] [CrossRef]
- Miller, C.; Bard, K.A.; Juno, C.J.; Nadler, R.D. Behavioral responsiveness of young chimpanzees (Pan troglodytes) to a novel environment. Folia Primatol. 1986, 47, 128–142. [Google Scholar] [CrossRef]
- Rouff, J.H.; Sussman, R.W.; Strube, M.J. Personality traits in captive lion-tailed macaques (Macaca silenus). Am. J. Primatol. Off. J. Am. Soc. Primatol. 2005, 67, 177–198. [Google Scholar] [CrossRef]
- Kagan, J. Temperament and the reactions to unfamiliarity. Child Dev. 1997, 68, 139–143. [Google Scholar] [CrossRef]
- Wilson, D.S.; Clark, A.B.; Coleman, K.; Dearstyne, T. Shyness and boldness in humans and other animals. Trends Ecol. Evol. 1994, 9, 442–446. [Google Scholar] [CrossRef]
- Kagan, J.; Snidman, N. Early childhood predictors of adult anxiety disorders. Biol. Psychiatry 1999, 46, 1536–1541. [Google Scholar] [CrossRef]
- Harper, F.W.; Goodlett, B.D.; Trentacosta, C.J.; Albrecht, T.L.; Taub, J.W.; Phipps, S.; Penner, L.A. Temperament, personality, and quality of life in pediatric cancer patients. J. Pediatr. Psychol. 2014, 39, 459–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archard, G.A.; Braithwaite, V. The importance of wild populations in studies of animal temperament. J. Zool. 2010, 281, 149–160. [Google Scholar] [CrossRef]
- DeMaso, D.R.; Snell, C. Promoting coping in children facing pediatric surgery. Semin. Pediatr. Surg. 2013, 22, 134–138. [Google Scholar] [CrossRef] [PubMed]
- De Boer, S.F.; Buwalda, B.; Koolhaas, J.M. Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility. Neurosci. Biobehav. Rev. 2017, 74, 401–422. [Google Scholar] [CrossRef]
- Zarrabi, F. Investigating the relationship between learning style and metacognitive listening awareness. Int. J. Listening 2020, 34, 21–33. [Google Scholar] [CrossRef]
- Davis, S.E. Effects of Motivation, Preferred Learning Styles, and Perceptions of Classroom Climate on Achievement in Ninth and Tenth Grade Math Students. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2007. [Google Scholar]
- Webb, L.E.; van Reenen, C.G.; Jensen, M.B.; Schmitt, O.; Bokkers, E.A. Does temperament affect learning in calves? Appl. Anim. Behav. Sci. 2015, 165, 33–39. [Google Scholar] [CrossRef]
- Choi, N.; Cho, H.-J. Temperament and home environment characteristics as predictors of young children’s learning motivation. Early Child. Educ. J. 2020, 48, 607–620. [Google Scholar] [CrossRef]
- Zimmer-Gembeck, M.J.; Skinner, E.A. The development of coping: Implications for psychopathology and resilience. Dev. Psychopathol. 2016, 1–61. [Google Scholar] [CrossRef]
- Blount, R.L.; Simons, L.E.; Devine, K.A.; Jaaniste, T.; Cohen, L.L.; Chambers, C.T.; Hayutin, L.G. Evidence-based assessment of coping and stress in pediatric psychology. J. Pediatr. Psychol. 2008, 33, 1021–1045. [Google Scholar] [CrossRef] [Green Version]
- Lyons, D.M.; Parker, K.J.; Schatzberg, A.F. Animal models of early life stress: Implications for understanding resilience. Dev. Psychobiol. 2010, 52, 402–410. [Google Scholar] [CrossRef]
- Graham, M.L.; Rieke, E.F.; Mutch, L.A.; Zolondek, E.K.; Faig, A.W.; Dufour, T.A.; Munson, J.W.; Kittredge, J.A.; Schuurman, H.J. Successful implementation of cooperative handling eliminates the need for restraint in a complex non-human primate disease model. J. Med. Primatol. 2012, 41, 89–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manimala, M.R.; Blount, R.L.; Cohen, L.L. The Effects of Parental Reassurance versus Distraction on Child Distress and Coping During Immunizations. Children’s Health Care 2000, 29, 161–177. [Google Scholar] [CrossRef]
- Ayers, S.; Baum, A.; McManus, C.; Newman, S.; Wallston, K.; Weinman, J.; West, R. Cambridge Handbook of Psychology, Health and Medicine; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Connor-Smith, J.K.; Flachsbart, C. Relations between personality and coping: A meta-analysis. J. Pers. Soc. Psychol. 2007, 93, 1080–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compas, B.E.; Connor-Smith, J.; Jaser, S.S. Temperament, stress reactivity, and coping:implications for depression in childhood and adolescence. J. Clin. Child Adolesc. Psychol. 2004, 33, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Freeman, H.D.; Brosnan, S.F.; Hopper, L.M.; Lambeth, S.P.; Schapiro, S.J.; Gosling, S.D. Developing a comprehensive and comparative questionnaire for measuring personality in chimpanzees using a simultaneous top-down/bottom-up design. Am. J. Primatol. 2013, 75, 1042–1053. [Google Scholar] [CrossRef] [Green Version]
- Bert, A.; Abbott, D.H.; Nakamura, K.; Fuchs, E. The marmoset monkey: A multi-purpose preclinical and translational model of human biology and disease. Drug Discov. Today 2012, 17, 1160–1165. [Google Scholar]
- Box, H. Studies of temperament in simian primates with implications for socially mediated learning. Int. J. Comp. Psychol. 1999, 12, 203–218. [Google Scholar]
- Warren, J.M. Possibly unique characteristics of learning by primates. J. Hum. Evol. 1974, 3, 445–454. [Google Scholar] [CrossRef]
- Rumbaugh, D.M. Evidence of qualitative differences in learning processes among primates. J. Comp. Physiol. Psychol. 1971, 76, 250. [Google Scholar] [CrossRef]
- Perone, M. Negative effects of positive reinforcement. Behav. Anal. 2003, 26, 1–14. [Google Scholar] [CrossRef]
- Westlund, K. Training laboratory primates—Benefits and techniques. Primate Biol. 2015, 2, 119–132. [Google Scholar] [CrossRef]
- Bethell, E.; Holmes, A.; MacLarnon, A.; Semple, S. Cognitive bias in a non-human primate: Husbandry procedures influence cognitive indicators of psychological well-being in captive rhesus macaques. Anim. Welf. 2012, 21, 185–195. [Google Scholar] [CrossRef]
- Hopper, L.M. Leveraging Social Learning to Enhance Captive Animal Care and Welfare. J. Zool. Bot. Gard. 2021, 2, 3. [Google Scholar] [CrossRef]
- Luna, D.; González, C.; Byrd, C.J.; Palomo, R.; Huenul, E.; Figueroa, J. Do Domestic Pigs Acquire a Positive Perception of Humans through Observational Social Learning? Animals 2021, 11, 127. [Google Scholar] [CrossRef]
- Kemp, C.; Thatcher, H.; Farningham, D.; Witham, C.; MacLarnon, A.; Holmes, A.; Semple, S.; Bethell, E.J. A protocol for training group-housed rhesus macaques (Macaca mulatta) to cooperate with husbandry and research procedures using positive reinforcement. Appl. Anim. Behav. Sci. 2017, 197, 90–100. [Google Scholar] [CrossRef]
- Wooddell, L.J.; Kaburu, S.S.; Dettmer, A.M. Dominance rank predicts social network position across developmental stages in rhesus monkeys. Am. J. Primatol. 2020, 82, e23024. [Google Scholar] [CrossRef]
- Drea, C.M.; Wallen, K. Low-status monkeys “play dumb” when learning in mixed social groups. Proc. Natl. Acad. Sci. USA 1999, 96, 12965–12969. [Google Scholar] [CrossRef] [Green Version]
- McKinley, J.; Buchanan-Smith, H.M.; Bassett, L.; Morris, K. Training common marmosets (Callithrix jacchus) to cooperate during routine laboratory procedures: Ease of training and time investment. J. Appl. Anim. Welf. Sci. 2003, 6, 209–220. [Google Scholar] [CrossRef]
- Coleman, K.; Maier, A. The use of positive reinforcement training to reduce stereotypic behavior in rhesus macaques. Appl. Anim. Behav. Sci. 2010, 124, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Vollmayr, B.; Gass, P. Learned helplessness: Unique features and translational value of a cognitive depression model. Cell Tissue Res. 2013, 354, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Gasperin, D.; Netuveli, G.; Dias-da-Costa, J.S.; Pattussi, M.P. Effect of psychological stress on blood pressure increase: A meta-analysis of cohort studies. Cad. Saude Publica 2009, 25, 715–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaud, K.; Matheson, K.; Kelly, O.; Anisman, H. Impact of stressors in a natural context on release of cortisol in healthy adult humans: A meta-analysis. Stress 2008, 11, 177–197. [Google Scholar] [CrossRef] [PubMed]
- Schubert, C.; Lambertz, M.; Nelesen, R.A.; Bardwell, W.; Choi, J.B.; Dimsdale, J.E. Effects of stress on heart rate complexity—A comparison between short-term and chronic stress. Biol. Psychol. 2009, 80, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Segerstrom, S.C.; Miller, G.E. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychol. Bull. 2004, 130, 601–630. [Google Scholar] [CrossRef] [Green Version]
- Pierce, J.S.; Kozikowski, C.; Lee, J.M.; Wysocki, T. Type 1 diabetes in very young children: A model of parent and child influences on management and outcomes. Pediatr. Diabetes 2017, 18, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Powers, S.W.; Bloont, R.L.; Bachanas, P.J.; Cotter, M.W.; Swan, S.C. Helping preschool leukemia patients and their parents cope during injections. J. Pediatr. Psychol. 1993, 18, 681–695. [Google Scholar] [CrossRef]
- Grey, M.; Whittemore, R.; Jaser, S.; Ambrosino, J.; Lindemann, E.; Liberti, L.; Northrup, V.; Dziura, J. Effects of coping skills training in school-age children with type 1 diabetes. Res. Nurs. Health 2009, 32, 405–418. [Google Scholar] [CrossRef] [Green Version]
- Watson, K.K.; Platt, M.L. Of mice and monkeys: Using non-human primate models to bridge mouse-and human-based investigations of autism spectrum disorders. J. Neurodev. Disord. 2012, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Bauman, M.D.; Schumann, C. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Exp. Neurol. 2018, 299, 252–265. [Google Scholar] [CrossRef]
- Feczko, E.J.; Bliss-Moreau, E.; Walum, H.; Pruett, J.R., Jr.; Parr, L.A. The macaque social responsiveness scale (mSRS): A rapid screening tool for assessing variability in the social responsiveness of rhesus monkeys (Macaca mulatta). PLoS ONE 2016, 11, e0145956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Behavior | Description | Association |
---|---|---|
Active | Moving about, walking, running, climbing, jumping; not lethargic. | E 1, I 2 |
Aggressive | High frequency displays; threats. | I * |
Alarmed | Fearful; alarm calling; maximizes space to technician. | I * |
Bold | Fearless; not restrained or tentative; not timid, shy, or coy. | E * |
Calm | Reacts in an even, calm way; is not easily disturbed; not agitated; restful; peaceful. | E * |
Confident | Readily explores, investigates novel items. | E * |
Depressed | Isolated, withdrawn, sullen, brooding, and has reduced activity. | I * |
Curious | Readily explores, eager | E * |
Engaged | Interested, interactive, amiable | E |
Gentle | Responds to technicians in an easy-going, kind, and considerate manner; not rough or threatening. | E |
Playful | Engages in play behavior. | E |
Submissive | Displays lower hierarchical behavior; presenting, fear grimace, eye-averting, avoiding, cowering | E, I |
Tentative | Timid, shy, hesitant. | I |
Vigilant | Alert; ready, attentive, watchful. | I |
Sub-Phase | SBP 1 Engagement % | Food Reward Offered | Toe-Touching | Trial End Criteria | Sub-Phase Passing Criteria |
---|---|---|---|---|---|
P-1 | 0% | Yes | No | Animal takes at least 9 treats by hand OR trial time reaches 4 min | Score of 2. Animal takes food by hand (1 point) post trial AND has an attitude that is engaged, neutral/calm, or curious (1 point) post trial. |
P-2 | 30% | Yes | No | Animal takes at least 9 treats by hand OR trial time reaches 4 min | Score of 2. Animal takes food by hand (1 point) mid-session AND has an attitude that is engaged, neutral/calm, or curious (1 point) mid-session. |
P-3 | 50% | Yes | No | Animal takes at least 9 treats by hand OR trial time reaches 4 min | Score of 2. Animal takes food by hand (1 point) mid-session AND has an attitude that is engaged, neutral/calm, or curious (1 point) mid-session. |
P-4 | 90% | Yes | No | Animal takes at least 9 treats by hand OR trial time reaches 4 min | Score of 2. Animal takes food by hand (1 point) mid-session AND has an attitude that is engaged, neutral/calm, or curious (1 point) mid-session. |
P-5 | 90% | Yes | Yes | Animal is non-reactive to toe touching/holding limbs for 10 s (×3) OR trial time reaches 4 min | Score of at least 2. Animal takes food by hand (1 point) mid-session, has a mid-session attitude that is engaged, neutral/calm, or curious (2 points), or has a mid-session attitude that is submissive or tentative (1 point). |
Species | All Phases Median (IQR) (Hrs) | P(re) Phase Median (IQR) (Hrs) | Phase 1 Median (IQR) (Hrs) | Phase 2 Median (IQR) (Hrs) |
---|---|---|---|---|
Rhesus (n = 51) | 2.98 (2.45–3.93) | 0.23 (0.12–0.42) | 2.03 (1.77–2.53) | 0.59 (0.23–0.97) |
Cynomolgus (n = 32) | 5.20 (3.99–6.02) | 0.36 (0.16–0.71) | 3.06 (2.57–3.89) | 1.53 (0.82–2.03) |
p-Value (Rhesus v. Cynomolgus) | <0.0001 * | 0.0213 * | <0.0001 * | <0.0001 * |
Species | All Phases Median (IQR) (Hrs) | P(re) Phase Median (IQR) (Hrs) | Phase 1 Median (IQR) (Hrs) | Phase 2 Median (IQR) (Hrs) | |
---|---|---|---|---|---|
Rhesus (n = 51) | Inhibited (n = 8) | 2.83 (2.39–4.83) | 0.42 (0.08–0.81) | 1.93 (1.61–2.51) | 0.52 (0.26–0.96) |
Exploratory (n = 43) | 2.98 (2.45–3.93) | 0.20 (0.13–0.38) | 2.10 (1.77–2.53) | 0.59 (0.23–1.03) | |
p-Value (I v. E) | 0.9021 | 0.2916 | 0.5410 | 0.7460 | |
Cynomolgus (n = 32) | Inhibited (n = 16) | 5.00 (3.85–6.40) | 0.43 (0.28–0.79) | 2.83 (2.50–4.26) | 1.20 (0.82–2.28) |
Exploratory (n = 16) | 5.30 (4.15–6.02) | 0.26 (0.13–0.67) | 3.37 (2.66–3.74) | 1.59 (0.88–1.81) | |
p-Value (I v. E) | 0.4554 | 0.5713 | 0.9912 | 0.5534 |
Species | All Phases Median (IQR) (Hrs) | P(re) Phase Median (IQR) (Hrs) | Phase 1 Median (IQR) (Hrs) | Phase 2 Median (IQR) (Hrs) | |
---|---|---|---|---|---|
Rhesus (n = 51) | Female (n = 24) | 3.05 (2.43–3.68) | 0.25 (0.17–0.47) | 2.04 (1.68–2.52) | 0.63 (0.34–1.02) |
Male (n = 27) | 2.97 (2.55–4.15) | 0.18 (0.12–0.42) | 2.03 (1.83–2.62) | 0.58 (0.22–0.93) | |
p-Value (Female v. Male) | 0.7060 | 0.4140 | 0.4277 | 0.9366 | |
Cynomolgus (n = 32) | Female (n = 11) | 4.53 (3.82–6.17) | 0.27 (0.13–0.53) | 2.78 (2.08–3.70) | 1.57 (0.95–2.28) |
Male (n = 21) | 5.47 (4.15–5.95) | 0.42 (0.19–0.72) | 3.25 (2.64–4.09) | 1.48 (0.73–1.94) | |
p-Value (Female v. Male) | 0.4841 | 0.2293 | 0.1170 | 0.7677 |
Species | All Phases Median (IQR) (Hrs) | P(re) Phase Median (IQR) (Hrs) | Phase 1 Median (IQR) (Hrs) | Phase 2 Median (IQR) (Hrs) | |
---|---|---|---|---|---|
Rhesus (n = 51) | Young (n = 26) | 2.93 (2.44–4.20) | 0.26 (0.13–0.44) | 1.99 (1.81–2.47) | 0.60 (0.23–1.11) |
Mature (n = 25) | 3.11 (2.48–3.63) | 0.20 (0.12–0.33) | 2.14 (1.72–2.67) | 0.59 (0.28–0.87) | |
p-Value (Young v. Mature) | 0.8683 | 0.4141 | 0.2667 | 0.2054 | |
Cynomolgus (n = 32) | Young (n = 22) | 5.34 (4.15–5.88) | 0.47 (0.28–0.84) | 3.09 (2.47–4.04) | 1.56 (0.95–2.08) |
Mature (n = 10) | 4.74 (3.76–6.20) | 0.18 (0.13–0.33) | 3.02 (2.58–3.73) | 1.38 (0.70–1.96) | |
p-Value (Young v. Mature) | 0.4004 | 0.0296 * | 0.4794 | 0.5810 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmer, S.; Oppler, S.H.; Graham, M.L. Behavioral Management as a Coping Strategy for Managing Stressors in Primates: The Influence of Temperament and Species. Biology 2022, 11, 423. https://doi.org/10.3390/biology11030423
Palmer S, Oppler SH, Graham ML. Behavioral Management as a Coping Strategy for Managing Stressors in Primates: The Influence of Temperament and Species. Biology. 2022; 11(3):423. https://doi.org/10.3390/biology11030423
Chicago/Turabian StylePalmer, Sierra, Scott Hunter Oppler, and Melanie L. Graham. 2022. "Behavioral Management as a Coping Strategy for Managing Stressors in Primates: The Influence of Temperament and Species" Biology 11, no. 3: 423. https://doi.org/10.3390/biology11030423
APA StylePalmer, S., Oppler, S. H., & Graham, M. L. (2022). Behavioral Management as a Coping Strategy for Managing Stressors in Primates: The Influence of Temperament and Species. Biology, 11(3), 423. https://doi.org/10.3390/biology11030423