New CTX-M Group Conferring β-Lactam Resistance: A Compendium of Phylogenetic Insights from Biochemical, Molecular, and Structural Biology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Phylogenetic Analysis
3.2. Molecular and Structural Study
3.3. CTX-M Clusters
3.3.1. Sequence Mutations in Cluster CTX-M-1
3.3.2. Sequence Mutations in Cluster CTX-M-2
3.3.3. Sequence Mutations in Cluster CTX-M-8
3.3.4. Sequence Mutations in Cluster CTX-M-9
3.3.5. Sequence Mutations in Cluster CTX-M-25
4. Discussion
4.1. Phylogenetic Study
4.2. Molecular and Structural Study
4.3. CTX-M-151 as a New Lactamases Group
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fleming, A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenzae. Br. J. Exp. Pathol. 1929, 10, 226–236. [Google Scholar] [CrossRef]
- Tan, S.Y.; Tatsumura, Y. Alexander Fleming (1881–1955): Discoverer of penicillin. Singap. Med. J. 2015, 56, 366–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobanovska, M.; Pilla, G. Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future? Yale J. Biol. Med. 2017, 90, 135–145. [Google Scholar] [PubMed]
- Fernandes, R.; Amador, P.; Prudêncio, C. β-Lactams: Chemical structure, mode of action and mechanisms of resistance. Rev. Med. Microbiol. 2013, 24, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 1996, 12, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Leung, E.; Weil, E.D.; Raviglione, M.; Nakatani, H. The WHO policy package to combat antimicrobial resistance. Bull. World Heal. Organ. 2011, 89, 390–392. [Google Scholar] [CrossRef]
- Livermore, D.M.; Woodford, N. The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol. 2006, 14, 413–420. [Google Scholar] [CrossRef]
- Suárez, C.; Gudiol, F. Beta-lactam antibiotics. Enferm. Infecc. Microbiol. Clin. 2009, 27, 116–129. [Google Scholar] [CrossRef]
- Bush, K. Proliferation and significance of clinically relevant β-lactamases. Ann. N. Y. Acad. Sci. 2013, 1277, 84–90. [Google Scholar] [CrossRef]
- van Hoek, A.H.A.M.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J.M. Acquired Antibiotic Resistance Genes: An Overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef] [Green Version]
- Paterson, D.L.; Bonomo, R.A. Clinical Update Extended-Spectrum Beta-Lactamases: A Clinical Update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, K.; Fisher, J.F. Epidemiological Expansion, Structural Studies, and Clinical Challenges of New β-Lactamases from Gram-Negative Bacteria. Annu. Rev. Microbiol. 2011, 65, 455–478. [Google Scholar] [CrossRef] [PubMed]
- Boerlin, P.; Reid-Smith, R.J. Antimicrobial resistance: Its emergence and transmission. Anim. Heal. Res. Rev. 2008, 9, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V. An update on newer β-lactamases. Indian J. Med. Res. 2007, 126, 417–427. [Google Scholar] [PubMed]
- Rupp, M.; Fey, P.D.; Rupp, M.E.; Fey, P.D. Extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae: Considerations for. Extended Spectrum β -Lactamase (ESBL)-Producing Enterobacteriaceae. Drugs 2003, 63, 353–365. [Google Scholar] [CrossRef]
- Bou, G. CTX-M β-Lactamases: An Update. Curr. Med. Chem.—Anti-Infect. Agents 2005, 4, 219–234. [Google Scholar] [CrossRef]
- Livermore, D.M.; Canton, R.; Gniadkowski, M.; Nordmann, P.; Rossolini, G.M.; Arlet, G.; Ayala, J.; Coque, T.M.; Kern-Zdanowicz, I.; Luzzaro, F.; et al. CTX-M: Changing the face of ESBLs in Europe. J. Antimicrob. Chemother. 2007, 59, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Ambler, R.P.; Coulson, A.F.W.; Frère, J.M.; Ghuysen, J.M.; Joris, B.; Forsman, M.; Levesque, R.C.; Tiraby, G.; Waley, S.G. A standard numbering scheme for the class A β-lactamases. Biochem. J. 1991, 276, 269–270. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A. Updated Functional Classification of β-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, M.M.; Arena, F.; Pallecchi, L.; Rossolini, G.M. CTX-M-type β-lactamases: A successful story of antibiotic resistance. Int. J. Med. Microbiol. 2013, 303, 305–317. [Google Scholar] [CrossRef]
- Rossolini, G.M.; D’Andrea, M.M.; Mugnaioli, C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin. Microbiol. Infect. 2008, 14, 33–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiglione, B.; Rodríguez, M.M.; Brunetti, F.; Papp-Wallace, K.M.; Yoshizumi, A.; Ishii, Y.; Bonomo, R.A.; Gutkind, G.; Klinke, S.; Power, P. Structural and Biochemical Characterization of the Novel CTX-M-151 Extended-Spectrum β-Lactamase and Its Inhibition by Avibactam. Antimicrob. Agents Chemother. 2021, 65, e01757-20. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.; González-Alba, J.M.; Galán, J.C. CTX-M Enzymes: Origin and Diffusion. Front. Microbiol. 2012, 3, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naseer, U.; Sundsfjord, A. The CTX-M Conundrum: Dissemination of Plasmids andEscherichia coliClones. Microb. Drug Resist. 2011, 17, 83–97. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Pascual, A. Clinical significance of the extended-spectrum b-lactamases. Expert Rev. Anti Infect. Ther. 2008, 6, 671–683. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Navarro, M. Extended-spectrum β-lactamases in ambulatory care: A clinical perspective. Clin. Microbiol. Infect. 2008, 14, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Oteo, J.; Pérez-Vázquez, M.; Campos, J. Extended-spectrum β-lactamase producing Escherichia coli: Changing epidemiology and clinical impact. Curr. Opin. Infect. Dis. 2010, 23, 320–326. [Google Scholar] [CrossRef]
- Bonnet, R. Minireview Growing Group of Extended-Spectrum β-Lactamases: The CTX-M Enzymes. Antimicrob. Agents Chemother. 2004, 48, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Decousser, J.W.; Poirel, L.; Nordmann, P. Characterization of a Chromosomally Encoded Extended-Spectrum Class A b-Lactamase from Kluyvera cryocrescens. Antimicrob. Agents Chemother. 2001, 45, 3595–3598. [Google Scholar] [CrossRef] [Green Version]
- Humeniuk, C.; Arlet, G.; Gautier, V.; Grimont, P.; Labia, R.; Philippon, A. β-Lactamases of Kluyvera ascorbata, Probable Progenitors of Some Plasmid-Encoded CTX-M Types. Antimicrob. Agents Chemother. 2002, 46, 3045–3049. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Ka, P.; Nordmann, P. Chromosome-Encoded Ambler Class A b-Lactamase of Kluyvera georgiana, a Probable Progenitor of a Subgroup of CTX-M. Antimicrob. Agents Chemother. 2002, 46, 4038–4040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, M.M.; Power, P.; Sader, H.; Galleni, M.; Gutkind, G. Novel Chromosome-Encoded CTX-M-78 β-Lactamase from a Kluyvera georgiana Clinical Isolate as a Putative Origin of CTX-M-25 Subgroup. Antimicrob. Agents Chemother. 2010, 54, 3070–3071. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Baño, J.; López-Cerero, L.; Navarro, M.D.; De Alba, P.D.; Pascual, A. Faecal carriage of extended-spectrum -lactamase-producing Escherichia coli: Prevalence, risk factors and molecular epidemiology. J. Antimicrob. Chemother. 2008, 62, 1142–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, A.B.; Silverman, M.; Boyd, D.; McGeer, A.; Willey, B.M.; Pong-Porter, V.; Daneman, N.; Mulvey, M.R. Identification of a Progenitor of the CTX-M-9 Group of Extended-Spectrum β-Lactamases from Kluyvera georgiana Isolated in Guyana. Antimicrob. Agents Chemother. 2005, 49, 2112–2115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantón, R.; Coque, T.M. The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol. 2006, 9, 466–475. [Google Scholar] [CrossRef]
- Zhao, W.-H.; Hu, Z.-Q. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Crit. Rev. Microbiol. 2013, 39, 79–101. [Google Scholar] [CrossRef]
- Bacterial Antimicrobial Resistance Reference Gene Database; National Centre for Biotechnology Information (NCBI): Bethesda, MD, USA, 2018.
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2013, 41, D36–D42. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Lemoine, F.; Correia, D.; Lefort, V.; Doppelt-Azeroual, O.; Mareuil, F.; Cohen-Boulakia, S.; Gascuel, O. NGPhylogeny.fr: New generation phylogenetic services for non-specialists. Nucleic Acids Res. 2019, 47, W260–W265. [Google Scholar] [CrossRef] [Green Version]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef] [Green Version]
- Palzkill, T. Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the Specificity of TEM, CTX-M, and KPC β-lactamases. Front. Mol. Biosci. 2018, 5, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutour, C.; Bonnet, R.; Marchandin, H.; Boyer, M.; Chanal, C.; Sirot, D.; Sirot, J. CTX-M-1, CTX-M-3, and CTX-M-14 β-Lactamases from Enterobacteriaceae Isolated in France. Antimicrob. Agents Chemother. 2002, 46, 534–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Angelis, G.; Del Giacomo, P.; Posteraro, B.; Sanguinetti, M.; Tumbarello, M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int. J. Mol. Sci. 2020, 21, 5090. [Google Scholar] [CrossRef] [PubMed]
Hotspot | CTX-M-1 Variants |
---|---|
Val80Ala (MI) | 3, 10, 12, 15, 22, 28, 29, 30, 33, 34, 36, 37, 42, 54, 62, 64, 66, 68, 71, 72, 80, 82, 88, 96, 101, 103, 117, 123, 127, 132, 139, 143, 150, 154, 155, 156, 157, 162, 163, 167, 169, 170, 172, 173, 176, 177, 178, 180, 181, 182, 183, 184, 186, 187, 188, 189, 193, 194, 197, 199, 202, 203, 204, 206, 208, 209, 210, 211, 216, 218, 220, 224, 225, 228, 231, 232 |
Asp117Asn (M2) | 3, 10, 12, 15, 22, 23, 28, 32, 34, 42, 52, 53, 54, 57, 60, 62, 64, 66, 68, 69, 71, 72, 79, 80, 82, 88, 96, 101, 103, 114, 116, 117, 123, 127, 132, 136, 138, 139, 142, 144, 150, 154, 155, 156, 157, 162, 163, 164, 167, 169, 170, 172, 173, 176, 177, 178, 179, 180, 181, 182, 183, 184, 186, 187, 188, 189, 190, 193, 194, 197, 199, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 216, 218, 220, 224, 225, 226, 228, 230, 231, 232 |
Ser143Ala (M3) | 3, 10, 12, 15, 22, 23, 28, 29, 30, 33, 34, 37, 42, 52, 53, 54, 57, 60, 62, 64, 66, 68, 69, 71, 72, 79, 80, 82, 88, 96, 101, 103, 114, 116, 117, 123, 132, 136, 139, 142, 143, 144, 150, 155, 156, 157, 162, 163, 164, 167, 169, 170, 172, 173, 176, 177, 178, 179, 180, 181, 182, 183, 184, 186, 187, 188, 189, 190, 193, 194, 197, 199, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 216, 218, 220, 224, 225, 226, 227, 228, 230, 231, 232 |
Asp242Gly (M4) | 15, 28, 29, 32, 33, 53, 64, 69, 71, 79, 82, 88, 96, 101, 103, 114, 117, 123, 127, 132, 139, 142, 143, 144, 150, 154, 155, 156, 157, 163, 164, 169, 170, 172, 173, 176, 178, 179, 180, 181, 182, 183, 184, 186, 188, 189, 190, 193, 194, 197, 199, 202, 208, 209, 210, 216, 218, 224, 225, 226, 227, 228, 230, 231, 232 |
Asn289Asp (M5) | 3, 10, 12, 15, 29, 30, 33, 34, 37, 42, 52, 53, 54, 57, 60, 61, 62, 64, 66, 68, 71, 72, 80, 82, 88, 96, 101, 103, 114, 117, 123, 132, 136, 139, 142, 143, 144, 150, 155, 156, 157, 162, 163, 164, 167, 169, 170, 172, 173, 176, 177, 178, 179, 180, 181, 182, 183, 184, 186, 187, 188, 189, 190, 193, 194, 197, 199, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 216, 218, 220, 224, 225, 226, 227, 228, 230, 231, 232 |
Enzyme | Mutation | Enzyme | Mutation | Enzyme | Mutation |
---|---|---|---|---|---|
CTX-M-54 | Pro170Gln | CTX-M-143 | Asn173Ser | CTX-M-194 | Arg7His |
CTX-M-64 | Ser89Thr | CTX-M-154 | Glu39Lys | CTX-M-197 | Leu158Val |
CTX-M-66 | Ser23Asn | CTX-M-164 | Gln8Lys | CTX-M-204 | Thr168Ile |
CTX-M-68 | Glu161Asp | CTX-M-170 | Asp203Asn | CTX-M-207 | Asp242Ser |
CTX-M-72 | Arg167Gly | CTX-M-172 | Leu141Pro | CTX-M-208 | Ala222Glu |
CTX-M-88 | Arg277His | CTX-M-173 | Ala153Thr | CTX-M-209 | Thr212Ile |
CTX-M-101 | Ser126Ile | CTX-M-176 | Thr267Ala | CTX-M-210 | Ala31Thr |
CTX-M-103 | Ser240Asn | CTX-M-177 | Gln157Leu | CTX-M-211 | Met2Lys |
CTX-M-114 | Val77Ala | CTX-M-179 | Pro269Thr | Val2Ser | |
CTX-M-117 | Pro177Gln | CTX-M-181 | Asn135His | CTX-M-216 | Gly290Ser |
CTX-M-123 | Val233Thr | CTX-M-182 | Lys36Arg | CTX-M-224 | Gln8Leu |
CTX-M-127 | Asn138Thr | CTX-M-183 | Thr30Lys | CTX-M-226 | Pro25Thr |
CTX-M-138 | Ile286Ser | CTX-M-184 | Asn58Thr | CTX-M-227 | Gly290Arg |
CTX-M-139 | Tyr27Phe | CTX-M-186 | Thr20Ser | CTX-M-228 | Ser223Asn |
CTX-M-142 | Asp32Asn | CTX-M-187 | Leu291Ser | CTX-M-230 | Ala174Ile |
CTX-M-150 | Asn216His | CTX-M-188 | Ala82Thr | CTX-M-231 | Ala31Glu |
Thr218His | CTX-M-189 | Ser133Gly | CTX-M-232 | Ala15Thr |
Enzyme | Mutation | Enzyme | Mutation |
---|---|---|---|
CTX-M-17 | Glu289Lys | CTX-M-104 | Ser275Asn |
CTX-M-21 | Ala13Gly | CTX-M-110 | Lys114Glu |
Ala14Gly | Leu291Asn | ||
Cys16Gly | CTX-M-111 | Pro148Gln | |
Leu26Phe | CTX-M-112 | Ser126Gly | |
Val33Gly | CTX-M-113 | Gln86Arg | |
CTX-M-38 | Ser223Arg | CTX-M-126 | Pro170Ala |
CTX-M-73 | Val33Met | CTX-M-134 | Asp242Ser |
CTX-M-81 | Lys85Glu | CTX-M-161 | Gly149Glu |
Cys101Gln | CTX-M-168 | Pro170His | |
CTX-M-83 | Gln60His | CTX-M-198 | Pro25Ala |
CTX-M-84 | Thr211Ala | CTX-M-201 | Asn107Ser |
CTX-M-85 | Leu122Pro | CTX-M-213 | Ala156Glu |
CTX-M-86 | Ile111Phe |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendonça, J.; Guedes, C.; Silva, C.; Sá, S.; Oliveira, M.; Accioly, G.; Baylina, P.; Barata, P.; Pereira, C.; Fernandes, R. New CTX-M Group Conferring β-Lactam Resistance: A Compendium of Phylogenetic Insights from Biochemical, Molecular, and Structural Biology. Biology 2022, 11, 256. https://doi.org/10.3390/biology11020256
Mendonça J, Guedes C, Silva C, Sá S, Oliveira M, Accioly G, Baylina P, Barata P, Pereira C, Fernandes R. New CTX-M Group Conferring β-Lactam Resistance: A Compendium of Phylogenetic Insights from Biochemical, Molecular, and Structural Biology. Biology. 2022; 11(2):256. https://doi.org/10.3390/biology11020256
Chicago/Turabian StyleMendonça, Jacinta, Carla Guedes, Carina Silva, Sara Sá, Marco Oliveira, Gustavo Accioly, Pilar Baylina, Pedro Barata, Cláudia Pereira, and Ruben Fernandes. 2022. "New CTX-M Group Conferring β-Lactam Resistance: A Compendium of Phylogenetic Insights from Biochemical, Molecular, and Structural Biology" Biology 11, no. 2: 256. https://doi.org/10.3390/biology11020256
APA StyleMendonça, J., Guedes, C., Silva, C., Sá, S., Oliveira, M., Accioly, G., Baylina, P., Barata, P., Pereira, C., & Fernandes, R. (2022). New CTX-M Group Conferring β-Lactam Resistance: A Compendium of Phylogenetic Insights from Biochemical, Molecular, and Structural Biology. Biology, 11(2), 256. https://doi.org/10.3390/biology11020256