New CTX-M Group Conferring β-Lactam Resistance: A Compendium of Phylogenetic Insights from Biochemical, Molecular, and Structural Biology
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Phylogenetic Analysis
3.2. Molecular and Structural Study
3.3. CTX-M Clusters
3.3.1. Sequence Mutations in Cluster CTX-M-1
3.3.2. Sequence Mutations in Cluster CTX-M-2
3.3.3. Sequence Mutations in Cluster CTX-M-8
3.3.4. Sequence Mutations in Cluster CTX-M-9
3.3.5. Sequence Mutations in Cluster CTX-M-25
4. Discussion
4.1. Phylogenetic Study
4.2. Molecular and Structural Study
4.3. CTX-M-151 as a New Lactamases Group
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fleming, A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenzae. Br. J. Exp. Pathol. 1929, 10, 226–236. [Google Scholar] [CrossRef]
- Tan, S.Y.; Tatsumura, Y. Alexander Fleming (1881–1955): Discoverer of penicillin. Singap. Med. J. 2015, 56, 366–367. [Google Scholar] [CrossRef] [PubMed]
- Lobanovska, M.; Pilla, G. Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future? Yale J. Biol. Med. 2017, 90, 135–145. [Google Scholar] [PubMed]
- Fernandes, R.; Amador, P.; Prudêncio, C. β-Lactams: Chemical structure, mode of action and mechanisms of resistance. Rev. Med. Microbiol. 2013, 24, 7–17. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 1996, 12, 9–16. [Google Scholar] [CrossRef]
- Leung, E.; Weil, E.D.; Raviglione, M.; Nakatani, H. The WHO policy package to combat antimicrobial resistance. Bull. World Heal. Organ. 2011, 89, 390–392. [Google Scholar] [CrossRef]
- Livermore, D.M.; Woodford, N. The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol. 2006, 14, 413–420. [Google Scholar] [CrossRef]
- Suárez, C.; Gudiol, F. Beta-lactam antibiotics. Enferm. Infecc. Microbiol. Clin. 2009, 27, 116–129. [Google Scholar] [CrossRef]
- Bush, K. Proliferation and significance of clinically relevant β-lactamases. Ann. N. Y. Acad. Sci. 2013, 1277, 84–90. [Google Scholar] [CrossRef]
- van Hoek, A.H.A.M.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J.M. Acquired Antibiotic Resistance Genes: An Overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef]
- Paterson, D.L.; Bonomo, R.A. Clinical Update Extended-Spectrum Beta-Lactamases: A Clinical Update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Fisher, J.F. Epidemiological Expansion, Structural Studies, and Clinical Challenges of New β-Lactamases from Gram-Negative Bacteria. Annu. Rev. Microbiol. 2011, 65, 455–478. [Google Scholar] [CrossRef] [PubMed]
- Boerlin, P.; Reid-Smith, R.J. Antimicrobial resistance: Its emergence and transmission. Anim. Heal. Res. Rev. 2008, 9, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V. An update on newer β-lactamases. Indian J. Med. Res. 2007, 126, 417–427. [Google Scholar] [PubMed]
- Rupp, M.; Fey, P.D.; Rupp, M.E.; Fey, P.D. Extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae: Considerations for. Extended Spectrum β -Lactamase (ESBL)-Producing Enterobacteriaceae. Drugs 2003, 63, 353–365. [Google Scholar] [CrossRef]
- Bou, G. CTX-M β-Lactamases: An Update. Curr. Med. Chem.—Anti-Infect. Agents 2005, 4, 219–234. [Google Scholar] [CrossRef]
- Livermore, D.M.; Canton, R.; Gniadkowski, M.; Nordmann, P.; Rossolini, G.M.; Arlet, G.; Ayala, J.; Coque, T.M.; Kern-Zdanowicz, I.; Luzzaro, F.; et al. CTX-M: Changing the face of ESBLs in Europe. J. Antimicrob. Chemother. 2007, 59, 165–174. [Google Scholar] [CrossRef]
- Ambler, R.P.; Coulson, A.F.W.; Frère, J.M.; Ghuysen, J.M.; Joris, B.; Forsman, M.; Levesque, R.C.; Tiraby, G.; Waley, S.G. A standard numbering scheme for the class A β-lactamases. Biochem. J. 1991, 276, 269–270. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A. Updated Functional Classification of β-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef]
- D’Andrea, M.M.; Arena, F.; Pallecchi, L.; Rossolini, G.M. CTX-M-type β-lactamases: A successful story of antibiotic resistance. Int. J. Med. Microbiol. 2013, 303, 305–317. [Google Scholar] [CrossRef]
- Rossolini, G.M.; D’Andrea, M.M.; Mugnaioli, C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin. Microbiol. Infect. 2008, 14, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Ghiglione, B.; Rodríguez, M.M.; Brunetti, F.; Papp-Wallace, K.M.; Yoshizumi, A.; Ishii, Y.; Bonomo, R.A.; Gutkind, G.; Klinke, S.; Power, P. Structural and Biochemical Characterization of the Novel CTX-M-151 Extended-Spectrum β-Lactamase and Its Inhibition by Avibactam. Antimicrob. Agents Chemother. 2021, 65, e01757-20. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.; González-Alba, J.M.; Galán, J.C. CTX-M Enzymes: Origin and Diffusion. Front. Microbiol. 2012, 3, 110. [Google Scholar] [CrossRef] [PubMed]
- Naseer, U.; Sundsfjord, A. The CTX-M Conundrum: Dissemination of Plasmids andEscherichia coliClones. Microb. Drug Resist. 2011, 17, 83–97. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Pascual, A. Clinical significance of the extended-spectrum b-lactamases. Expert Rev. Anti Infect. Ther. 2008, 6, 671–683. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Navarro, M. Extended-spectrum β-lactamases in ambulatory care: A clinical perspective. Clin. Microbiol. Infect. 2008, 14, 104–110. [Google Scholar] [CrossRef][Green Version]
- Oteo, J.; Pérez-Vázquez, M.; Campos, J. Extended-spectrum β-lactamase producing Escherichia coli: Changing epidemiology and clinical impact. Curr. Opin. Infect. Dis. 2010, 23, 320–326. [Google Scholar] [CrossRef]
- Bonnet, R. Minireview Growing Group of Extended-Spectrum β-Lactamases: The CTX-M Enzymes. Antimicrob. Agents Chemother. 2004, 48, 1–14. [Google Scholar] [CrossRef]
- Decousser, J.W.; Poirel, L.; Nordmann, P. Characterization of a Chromosomally Encoded Extended-Spectrum Class A b-Lactamase from Kluyvera cryocrescens. Antimicrob. Agents Chemother. 2001, 45, 3595–3598. [Google Scholar] [CrossRef]
- Humeniuk, C.; Arlet, G.; Gautier, V.; Grimont, P.; Labia, R.; Philippon, A. β-Lactamases of Kluyvera ascorbata, Probable Progenitors of Some Plasmid-Encoded CTX-M Types. Antimicrob. Agents Chemother. 2002, 46, 3045–3049. [Google Scholar] [CrossRef]
- Poirel, L.; Ka, P.; Nordmann, P. Chromosome-Encoded Ambler Class A b-Lactamase of Kluyvera georgiana, a Probable Progenitor of a Subgroup of CTX-M. Antimicrob. Agents Chemother. 2002, 46, 4038–4040. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.M.; Power, P.; Sader, H.; Galleni, M.; Gutkind, G. Novel Chromosome-Encoded CTX-M-78 β-Lactamase from a Kluyvera georgiana Clinical Isolate as a Putative Origin of CTX-M-25 Subgroup. Antimicrob. Agents Chemother. 2010, 54, 3070–3071. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; López-Cerero, L.; Navarro, M.D.; De Alba, P.D.; Pascual, A. Faecal carriage of extended-spectrum -lactamase-producing Escherichia coli: Prevalence, risk factors and molecular epidemiology. J. Antimicrob. Chemother. 2008, 62, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Olson, A.B.; Silverman, M.; Boyd, D.; McGeer, A.; Willey, B.M.; Pong-Porter, V.; Daneman, N.; Mulvey, M.R. Identification of a Progenitor of the CTX-M-9 Group of Extended-Spectrum β-Lactamases from Kluyvera georgiana Isolated in Guyana. Antimicrob. Agents Chemother. 2005, 49, 2112–2115. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.; Coque, T.M. The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol. 2006, 9, 466–475. [Google Scholar] [CrossRef]
- Zhao, W.-H.; Hu, Z.-Q. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Crit. Rev. Microbiol. 2013, 39, 79–101. [Google Scholar] [CrossRef]
- Bacterial Antimicrobial Resistance Reference Gene Database; National Centre for Biotechnology Information (NCBI): Bethesda, MD, USA, 2018.
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2013, 41, D36–D42. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef]
- Lemoine, F.; Correia, D.; Lefort, V.; Doppelt-Azeroual, O.; Mareuil, F.; Cohen-Boulakia, S.; Gascuel, O. NGPhylogeny.fr: New generation phylogenetic services for non-specialists. Nucleic Acids Res. 2019, 47, W260–W265. [Google Scholar] [CrossRef]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef]
- Palzkill, T. Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the Specificity of TEM, CTX-M, and KPC β-lactamases. Front. Mol. Biosci. 2018, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Dutour, C.; Bonnet, R.; Marchandin, H.; Boyer, M.; Chanal, C.; Sirot, D.; Sirot, J. CTX-M-1, CTX-M-3, and CTX-M-14 β-Lactamases from Enterobacteriaceae Isolated in France. Antimicrob. Agents Chemother. 2002, 46, 534–537. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, G.; Del Giacomo, P.; Posteraro, B.; Sanguinetti, M.; Tumbarello, M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int. J. Mol. Sci. 2020, 21, 5090. [Google Scholar] [CrossRef] [PubMed]
Hotspot | CTX-M-1 Variants |
---|---|
Val80Ala (MI) | 3, 10, 12, 15, 22, 28, 29, 30, 33, 34, 36, 37, 42, 54, 62, 64, 66, 68, 71, 72, 80, 82, 88, 96, 101, 103, 117, 123, 127, 132, 139, 143, 150, 154, 155, 156, 157, 162, 163, 167, 169, 170, 172, 173, 176, 177, 178, 180, 181, 182, 183, 184, 186, 187, 188, 189, 193, 194, 197, 199, 202, 203, 204, 206, 208, 209, 210, 211, 216, 218, 220, 224, 225, 228, 231, 232 |
Asp117Asn (M2) | 3, 10, 12, 15, 22, 23, 28, 32, 34, 42, 52, 53, 54, 57, 60, 62, 64, 66, 68, 69, 71, 72, 79, 80, 82, 88, 96, 101, 103, 114, 116, 117, 123, 127, 132, 136, 138, 139, 142, 144, 150, 154, 155, 156, 157, 162, 163, 164, 167, 169, 170, 172, 173, 176, 177, 178, 179, 180, 181, 182, 183, 184, 186, 187, 188, 189, 190, 193, 194, 197, 199, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 216, 218, 220, 224, 225, 226, 228, 230, 231, 232 |
Ser143Ala (M3) | 3, 10, 12, 15, 22, 23, 28, 29, 30, 33, 34, 37, 42, 52, 53, 54, 57, 60, 62, 64, 66, 68, 69, 71, 72, 79, 80, 82, 88, 96, 101, 103, 114, 116, 117, 123, 132, 136, 139, 142, 143, 144, 150, 155, 156, 157, 162, 163, 164, 167, 169, 170, 172, 173, 176, 177, 178, 179, 180, 181, 182, 183, 184, 186, 187, 188, 189, 190, 193, 194, 197, 199, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 216, 218, 220, 224, 225, 226, 227, 228, 230, 231, 232 |
Asp242Gly (M4) | 15, 28, 29, 32, 33, 53, 64, 69, 71, 79, 82, 88, 96, 101, 103, 114, 117, 123, 127, 132, 139, 142, 143, 144, 150, 154, 155, 156, 157, 163, 164, 169, 170, 172, 173, 176, 178, 179, 180, 181, 182, 183, 184, 186, 188, 189, 190, 193, 194, 197, 199, 202, 208, 209, 210, 216, 218, 224, 225, 226, 227, 228, 230, 231, 232 |
Asn289Asp (M5) | 3, 10, 12, 15, 29, 30, 33, 34, 37, 42, 52, 53, 54, 57, 60, 61, 62, 64, 66, 68, 71, 72, 80, 82, 88, 96, 101, 103, 114, 117, 123, 132, 136, 139, 142, 143, 144, 150, 155, 156, 157, 162, 163, 164, 167, 169, 170, 172, 173, 176, 177, 178, 179, 180, 181, 182, 183, 184, 186, 187, 188, 189, 190, 193, 194, 197, 199, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 216, 218, 220, 224, 225, 226, 227, 228, 230, 231, 232 |
Enzyme | Mutation | Enzyme | Mutation | Enzyme | Mutation |
---|---|---|---|---|---|
CTX-M-54 | Pro170Gln | CTX-M-143 | Asn173Ser | CTX-M-194 | Arg7His |
CTX-M-64 | Ser89Thr | CTX-M-154 | Glu39Lys | CTX-M-197 | Leu158Val |
CTX-M-66 | Ser23Asn | CTX-M-164 | Gln8Lys | CTX-M-204 | Thr168Ile |
CTX-M-68 | Glu161Asp | CTX-M-170 | Asp203Asn | CTX-M-207 | Asp242Ser |
CTX-M-72 | Arg167Gly | CTX-M-172 | Leu141Pro | CTX-M-208 | Ala222Glu |
CTX-M-88 | Arg277His | CTX-M-173 | Ala153Thr | CTX-M-209 | Thr212Ile |
CTX-M-101 | Ser126Ile | CTX-M-176 | Thr267Ala | CTX-M-210 | Ala31Thr |
CTX-M-103 | Ser240Asn | CTX-M-177 | Gln157Leu | CTX-M-211 | Met2Lys |
CTX-M-114 | Val77Ala | CTX-M-179 | Pro269Thr | Val2Ser | |
CTX-M-117 | Pro177Gln | CTX-M-181 | Asn135His | CTX-M-216 | Gly290Ser |
CTX-M-123 | Val233Thr | CTX-M-182 | Lys36Arg | CTX-M-224 | Gln8Leu |
CTX-M-127 | Asn138Thr | CTX-M-183 | Thr30Lys | CTX-M-226 | Pro25Thr |
CTX-M-138 | Ile286Ser | CTX-M-184 | Asn58Thr | CTX-M-227 | Gly290Arg |
CTX-M-139 | Tyr27Phe | CTX-M-186 | Thr20Ser | CTX-M-228 | Ser223Asn |
CTX-M-142 | Asp32Asn | CTX-M-187 | Leu291Ser | CTX-M-230 | Ala174Ile |
CTX-M-150 | Asn216His | CTX-M-188 | Ala82Thr | CTX-M-231 | Ala31Glu |
Thr218His | CTX-M-189 | Ser133Gly | CTX-M-232 | Ala15Thr |
Enzyme | Mutation | Enzyme | Mutation |
---|---|---|---|
CTX-M-17 | Glu289Lys | CTX-M-104 | Ser275Asn |
CTX-M-21 | Ala13Gly | CTX-M-110 | Lys114Glu |
Ala14Gly | Leu291Asn | ||
Cys16Gly | CTX-M-111 | Pro148Gln | |
Leu26Phe | CTX-M-112 | Ser126Gly | |
Val33Gly | CTX-M-113 | Gln86Arg | |
CTX-M-38 | Ser223Arg | CTX-M-126 | Pro170Ala |
CTX-M-73 | Val33Met | CTX-M-134 | Asp242Ser |
CTX-M-81 | Lys85Glu | CTX-M-161 | Gly149Glu |
Cys101Gln | CTX-M-168 | Pro170His | |
CTX-M-83 | Gln60His | CTX-M-198 | Pro25Ala |
CTX-M-84 | Thr211Ala | CTX-M-201 | Asn107Ser |
CTX-M-85 | Leu122Pro | CTX-M-213 | Ala156Glu |
CTX-M-86 | Ile111Phe |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendonça, J.; Guedes, C.; Silva, C.; Sá, S.; Oliveira, M.; Accioly, G.; Baylina, P.; Barata, P.; Pereira, C.; Fernandes, R. New CTX-M Group Conferring β-Lactam Resistance: A Compendium of Phylogenetic Insights from Biochemical, Molecular, and Structural Biology. Biology 2022, 11, 256. https://doi.org/10.3390/biology11020256
Mendonça J, Guedes C, Silva C, Sá S, Oliveira M, Accioly G, Baylina P, Barata P, Pereira C, Fernandes R. New CTX-M Group Conferring β-Lactam Resistance: A Compendium of Phylogenetic Insights from Biochemical, Molecular, and Structural Biology. Biology. 2022; 11(2):256. https://doi.org/10.3390/biology11020256
Chicago/Turabian StyleMendonça, Jacinta, Carla Guedes, Carina Silva, Sara Sá, Marco Oliveira, Gustavo Accioly, Pilar Baylina, Pedro Barata, Cláudia Pereira, and Ruben Fernandes. 2022. "New CTX-M Group Conferring β-Lactam Resistance: A Compendium of Phylogenetic Insights from Biochemical, Molecular, and Structural Biology" Biology 11, no. 2: 256. https://doi.org/10.3390/biology11020256
APA StyleMendonça, J., Guedes, C., Silva, C., Sá, S., Oliveira, M., Accioly, G., Baylina, P., Barata, P., Pereira, C., & Fernandes, R. (2022). New CTX-M Group Conferring β-Lactam Resistance: A Compendium of Phylogenetic Insights from Biochemical, Molecular, and Structural Biology. Biology, 11(2), 256. https://doi.org/10.3390/biology11020256