Jurassic Palynology from “The Dinosaur Coast” of Asturias (Lastres Fm., Northwestern Spain): Palynostratigraphical and Palaeoecological Insights
Abstract
:Simple Summary
Abstract
1. Introduction
2. Geographical and Geological Context
3. Material and Methods
4. Results
5. Discussion
5.1. Palynostratigraphical Implications
5.2. Palaeoenvironment and Palaeoecology
5.3. Evidence of Wildfires
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valenzuela, M.; García-Ramos, J.C.; Suárez de Centi, C. The Jurassic sedimentation in Asturias (N Spain). Trab. Geol. 1986, 16, 121–132. [Google Scholar]
- Valenzuela, M.; Díaz-González, T.E.; Gutiérrez-Villarias, M.G.; Suárez de Centi, C. La Fm. Lastres del Kimmeridgiense de Asturias: Sedimentología y estudio paleobotánico inicial. Cuad. Geol. Ibér. 1998, 24, 141–172. [Google Scholar]
- García-Ramos, J.C.; Piñuela, L.; Lires, J. Atlas del Jurásico de Asturias; Ediciones Nobel: Oviedo, Spain, 2006. [Google Scholar]
- García-Ramos, J.C.; Piñuela, L.; Uzqueda, H.; Poblet, J.; Bulnes, M.; Alonso, J.L.; Suárez-Vega, L.C. Travertinos ricos en oncoides asociados a paleomanantiales y lagos efímeros próximos a fallas sinsedimentarias en el Jurásico Superior de Asturias. In Proceedings of the Comunicaciones del V Congreso del Jurásico de España, Museo del Jurásico de Asturias, Colunga, Spain, 8–11 September 2010; pp. 83–91. [Google Scholar]
- González-Fernández, B.; Menéndez-Casares, E.; Vicedo, V.; Aramburu, C.; Caus, E. New insights about the Upper Jurassic—Lower Cretaceous sedimentary successions from Asturias (NW Iberian Peninsula). J. Iber. Geol. 2014, 40, 409–430. [Google Scholar] [CrossRef] [Green Version]
- Olóriz, F.; Valenzuela, M.; Garcia-Ramos, J.C.; Suárez de Centi, C. The first record of the genus Eurasenia (Ammonitina) from the Upper Jurassic of Asturias (Northern Spain). Geobios 1988, 21, 741–748. [Google Scholar] [CrossRef]
- Schudack, M.; Schudack, U. New biostratigraphical data for the Upper Jurassic of Asturias (northern Spain) based on Ostracoda. Rev. Esp. Micropaleontol. 2002, 34, 1–18. [Google Scholar]
- Avanzini, M.; García-Ramos, J.C.; Lires, J.; Menegon, M.; Piñuela, L.; Fernández, L.A. Turtle tracks from the Late Jurassic of Asturias, Spain. Acta Palaeontol. Pol. 2005, 50, 743–755. [Google Scholar]
- Avanzini, M.; Piñuela, L.; Ruiz-Omeñaca, J.I.; García-Ramos, J.C. The crocodile track Hatcherichnus, from the Upper Jurassic of Asturias (Spain). NM Mus. Nat. Hist. Sci. Bull. 2010, 51, 89–92. [Google Scholar]
- Avanzini, M.; Piñuela, L.; García-Ramos, J.C. Late Jurassic footprints reveal walking kinematics of theropod dinosaurs. Lethaia 2011, 45, 238–252. [Google Scholar] [CrossRef]
- Ruiz-Omeñaca, J.I.; Piñuela, L.; García-Ramos, J.C. Una vértebra de un pequeño ornitópodo (Dinosauria: Ornithischia) del Kimmeridgiense (Formación Lastres) de Tazones (Villaviciosa, Asturias). Geogaceta 2007, 42, 83–86. [Google Scholar]
- Ruiz-Omeñaca, J.I.; Piñuela, L.; García-Ramos, J.C. El primer diente de ornitópodo del Jurásico Superior de España (Asturias). Geogaceta 2010, 48, 83–86. [Google Scholar]
- Piñuela Suárez, L. Huellas de dinosaurios y otros reptiles del Jurásico Superior de Asturias. Ph.D. Thesis, Department of Geology, University of Oviedo, Oviedo, Spain, 2015. [Google Scholar]
- Suárez Vega, L.C. Estratigrafía del Jurásico de Asturias. Cuad. Geol. Ibér. 1974, 3, 1–368. [Google Scholar]
- Dubar, G.; Mouterde, R. Extension du Kimméridgien marin dans les Asturies depuis Ribadesella jusqu’à Gijón. C. R. Acad. Sci. París Sér. D 1957, 244, 99–101. [Google Scholar]
- Delvene, G.; Munt, M.C.; Piñuela, L.; García-Ramos, J.C. New Unionida (Bivalvia) from the Kimmeridgian (Late Jurassic) of Asturias, Spain, and their palaeobiogeographical implications. Pap. Palaeontol. 2016, 2, 265–285. [Google Scholar] [CrossRef]
- Ramírez del Pozo, J.R. Bioestratigrafía y microfacies del Jurásico y Cretácico del Norte de España (región Cantábrica). Acta Geol. Hisp. 1969, 4, 49–59. [Google Scholar]
- Philippe, M.; Billon-Bruyat, J.P.; García-Ramos, J.C.; Bocat, L.; Gomez, B.; Piñuela, L. New occurrences of the wood Protocupressinoxylon purbeckensis Francis: Implications for terrestrial biomes in southwestern Europe at the Jurassic/Cretaceous boundary. Palaeontology 2010, 53, 201–214. [Google Scholar] [CrossRef]
- Mohr, B.A.R.; Schmidt, D. The Oxfordian/Kimmeridgian boundary in the region of Porto de Mós (Central Portugal): Stratigraphy, facies and palynology. N. Jb. Geol. Paläontol. Abh. 1988, 176, 245–267. [Google Scholar]
- Smelror, M. Biogeography of Bathonian to Oxfordian (Jurassic) dinoflagellates: Arctic, NW Europe and circum-Mediterranean regions. Palaeogeogr. Palaeoclimtol. Palaeoecol. 1993, 102, 121–160. [Google Scholar] [CrossRef]
- Borges, M.E.N.; Riding, J.B.; Fernandes, P.; Pereira, Z. The Jurassic (Pliensbachian to Kimmeridgian) palynology of the Algarve Basin and the Carrapateira outlier, southern Portugal. Rev. Palaeobot. Palynol. 2011, 163, 190–204. [Google Scholar] [CrossRef] [Green Version]
- Davies, E.H. The miospore and dinoflagellate cyst oppel-zonation of the Lias of Portugal. Palynology 1985, 9, 105–132. [Google Scholar] [CrossRef]
- Palliani, R.B.; Riding, J.B. Biostratigraphy, provincialism and evolution of European Early Jurassic (Pliensbachian to early Toarcian) dinoflagellate cysts. Palynology 2003, 27, 179–214. [Google Scholar] [CrossRef]
- Oliveira, L.C.V.; Dino, R.; Duarte, L.V.; Perilli, N. Calcareous nannofossils and palynomorphs from Pliensbachian–Toarcian boundary in the Lusitanian Basin, Portugal. Rev. Bras. Paleontol. 2007, 10, 5–16. [Google Scholar] [CrossRef]
- Barrón, E.; Comas-Rengifo, M.J.; Duarte, L.V. Palynomorph succession of the Upper Pliensbachian-Lower Toarcian of the Peniche section (Portugal). Comun. Geol. 2013, 100, 55–61. [Google Scholar]
- Barrón, E.; Azerêdo, A.C. Palynology of the Jurassic (Callovian-Oxfordian) succession from Pedrógão (Lusitanian Basin, Portugal). Palaeoecological and palaeobiogeographical aspects. N. Jb. Geol. Paläont. Abh. 2003, 227, 259–286. [Google Scholar] [CrossRef]
- van Erve, A.; Mohr, B. Palynological investigations of the Late Jurassic microflora from the vertebrate locality Guimarota coal mine (Leiria, Central Portugal). N. Jb Geol. Paläont. Mh. 1988, 4, 246–262. [Google Scholar] [CrossRef] [PubMed]
- Sousa, L. Upper Jurassic (Upper Oxfordian–Tithonian) palynostratigraphy from the Lusitanian Basin (Portugal). Mem. Acad. Cienc. Lisboa Classe Sci. 1998, 37, 49–77. [Google Scholar]
- Mohr, B.A.R. New palynological information on the age and environment of Late Jurassic and Early Cretaceous vertebrate localities of the Iberian Peninsula (eastern Spain and Portugal). Berl. Geowiss. Abh. 1989, 106, 291–301. [Google Scholar]
- Smelror, M.; Århus, N.; Meléndez, G.; Lardies, M.D. A reconnaissance study of Bathonian to Oxfordian (Jurassic) dinoflagellates and acritarchs from the Zaragoza region (NE Spain) and Figueira da Foz (Portugal). Rev. Esp. Micropaleontol. 1991, 23, 47–82. [Google Scholar]
- Van Erve, A.W.; Besems, R.E.; Love, C.F. A palynological investigation of some Lower Kimmeridgian deposits from Spain. J. Micropalaeontology 1988, 7, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.A.; Villanueva-Amadoz, U.; Royo-Torres, R.; Sender, L.M.; Cobos, A.; Alcalá, L.; Diez, J.B. Palaeobotanical records associated with the first dinosaur defined in Spain: Palynostratigraphy, taxonomy and palaeoenvironmental remarks. Cretac. Res. 2018, 90, 318–334. [Google Scholar] [CrossRef]
- Rodríguez-Barreiro, I.; Santos, A.A.; Arribas, M.E.; Mas, R.; Arribas, J.; Villanueva-Amadoz, U.; Torcida, F.; Diez, J.B. The Jurassic–Cretaceous transition in the West Cameros Basin (Tera Group, Burgos, Spain): Sedimentological and palynostrati-graphical insights. Cretaceous Res. 2022, 139, 105300. [Google Scholar] [CrossRef]
- Barrón, E. Las sucesiones margo-calcáreas marinas del Jurásico Inferior y las series fluviales del Jurásico Superior. Acantilados de la playa de Vega (Ribadesella). Guía de campo (Excursión A). In Proceedings of the V Congreso del Jurásico de España, Colunga, Spain, 8–11 September 2010. [Google Scholar]
- Santos, A.A.; Sender, L.M.; Piñuela, L.; García-Ramos, J.C.; Diez, J.B. First evidence of Ricciaceae in the Jurassic of the Iberian Peninsula (Asturias, NW Spain): Ricciopsis asturicus sp. nov. Bot. Lett. 2022, 169, 557–567. [Google Scholar] [CrossRef]
- García-Ramos, J.C.; Piñuela, L.; Lires, J. Guía del Jurásico de Asturias. Rutas por los Yacimientos de Huellas de Dinosaurios; Zinco Comunicación: Gijón, Spain, 2004. [Google Scholar]
- Wood, G.D.; Gabriel, A.M.; Lawson, J.C. Palynological techniques-processing and microscopy. In Palynology: Principles and Applications; Jansonius, J., McGregor, D.C., Eds.; American Association of Stratigraphic Palynologists: Dallas, TX, USA, 1996; pp. 29–50. [Google Scholar]
- Cookson, I.C.; Dettmann, M.E. Cretaceous “Megaspores” and a Closely Associated Microspore from the Australian Region. Micropaleontology 1958, 4, 39. [Google Scholar] [CrossRef]
- Cookson, I.C.; Dettmann, M.E. Reappraisal of the Mesozoic microspore genus Aequitriradites. Palaeontology 1961, 4, 425–427. [Google Scholar]
- Schneider, A.C.; Heimhofer, U.; Heunisch, C.; Mutterlose, J. From arid to humid–The Jurassic–Cretaceous boundary interval in northern Germany. Rev. Palaeobot. Palynol. 2018, 255, 57–69. [Google Scholar] [CrossRef]
- Filatoff, J. Jurassic palynology of the Perth Basin, Western Australia. Palaeontogr. Abt. B 1975, 154, 1–120. [Google Scholar]
- Hubbard, R.N.L.B.; Boulter, M.C. Mid Mesozoic floras and climates. Palaeontology 1997, 40, 43–70. [Google Scholar]
- Hubbard, R.N.L.B.; Boulter, M.C. Phytogeography and paleoecology in western Europe and eastern Greenland near the Triassic-Jurassic boundary. Palaios 2000, 15, 120–131. [Google Scholar] [CrossRef]
- Delcourt, A.F.; Sprumont, G. Les spores et grains de pollen du Wealdien du Hainaut. Mem. Sóc. Belge Géol. 1955, 4, 1–73. [Google Scholar]
- Galloway, J.M.; Tullius, D.N.; Evenchick, C.A.; Swindles, G.T.; Hadlari, T.; Embry, A. Early Cretaceous vegetation and climate change at high latitude: Palynological evidence from Isachsen Formation, Arctic Canada. Cretac. Res. 2015, 56, 399–420. [Google Scholar] [CrossRef]
- Dettmann, M.E.; Clifford, H.T. Phylogeny and biogeography of Ruffordia, Mohria and Anemia (Schizaeaceae) and Ceratopteris (Pteridaceae): Evidence from in situ and dispersed spores. Alcheringa 1992, 16, 269–314. [Google Scholar] [CrossRef]
- Potonié, R. Synopsis der Gattungen der Sporae dispersae: III. Teil: Nachträge Sporites, Fortsetzung Pollenites mit Generalregister zu Teil I–III; Amt für Bodenforschung: Hannover, Germany, 1960; Volume 39. [Google Scholar]
- Potonié, R.; Gelletich, J. Über Pterodophyten-Sporen einer eozänen Braunkohle aus Dorog in Ungarn. Sipz-ber. Ges. Naturf. Fr. Berlin 1933, 33, 517–528. [Google Scholar]
- Cittert, J.V.K.-V.; Van Der Burgh, J. The flora from the Kimmeridgian (upper jurassic) of Culgower, Sutherland, Scotland. Rev. Palaeobot. Palynol. 1989, 61, 1–51. [Google Scholar] [CrossRef]
- Cittert, J.H.V.K.-V. A review of the matoniaceae based on in situ spores. Rev. Palaeobot. Palynol. 1993, 78, 235–267. [Google Scholar] [CrossRef]
- McArthur, A.D.; Jolley, D.W.N.; Hartley, A.J.; Archer, S.G.; Lawrence, H.M. Palaeoecology of syn-rift topography: A Late Jurassic footwall island on the Josephine Ridge, Central Graben, North Sea. Palaeogeogr. Palaeoclim. Palaeoecol. 2016, 459, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Abbink, O.A.; Van Konijnenburg-Van Cittert, J.H.A.; Visscher, H. A sporomorph ecogroup model for the Northwest European Jurassic-Lower Cretaceous: Concepts and framework. Neth. J. Geosci. 2004, 8, 17–31. [Google Scholar]
- Abbink, O.A. Palynological Investigations in the Jurassic of the North Sea Region; LPP Contribution Series 8; LPP Foundation: Utrecht, The Netherlands, 1998. [Google Scholar]
- Groot, J.J.; Groot, C.R. Plant microfossils from Aptian, Albian and Cenomanian deposits of Portugal. Com. Servs. Geol. Port. 1961, 46, 133–171. [Google Scholar]
- Balme, B.E. Fossil in situ spores and pollen grains: An annotated catalogue. Rev. Palaeobot. Palynol. 1995, 87, 81–323. [Google Scholar] [CrossRef]
- Potonié, R. Versuch der Einordnung der fossilen Sporae dispersae in das phylogenetische System der Pflanzenfamilien: I. Teil Thallophyta bis Gnetales: II. Teil Angiospermae. Forsch. Landes Nordrh.-Westfal. 1967, 1761, 1–130. [Google Scholar]
- Filatoff, J.; Price, P.L. A pteridacean spore lineage in the Australian Mesozoic. Mem. Ass. Austral. Palaeontol. 1988, 5, 89–124. [Google Scholar]
- Playford, G. Palynology of Lower Cretaceous (Swan River) strata of Saskatchewan and Manitoba. Palaeontology 1971, 14, 533–565. [Google Scholar]
- Kvaček, J.; Mendes, M.M. Callialastrobus sousai gen. et sp. nov.; a new araucariaceous pollen cone from the Early Cretaceous of Catefica (Lusitanian Basin, western Portugal) bearing Callialasporites and Araucariacites pollen. Rev. Palaeobot. Palynol. 2020, 283, 104313. [Google Scholar] [CrossRef]
- Volkheimer, W.; Quattrocchio, M.E.; Cabaleri, N.G.; Narváez, P.L.; Rosenfeld, U.; Scafati, L.; Melendi, D.L. Environmental and climatic proxies for the Cañadón Asfalto and Neuquén basins (Patagonia, Argentina): Review of Middle to Upper Jurassic continental and near coastal sequences. Rev. Bras. Paléontol. 2015, 18, 71–82. [Google Scholar] [CrossRef]
- Van Konijnenburg-Cittert, J.H. Dicksoniaceous spores in situ from the Jurassic of Yorkshire, England. Rev. Palaeobot. Palynol. 1989, 61, 273–301. [Google Scholar] [CrossRef]
- Dejax, J.; Pons, D.; Yans, J. Palynology of the dinosaur-bearing Wealden facies in the natural pit of Bernissart (Belgium). Rev. Palaeobot. Palynol. 2007, 144, 25–38. [Google Scholar] [CrossRef]
- Alvin, K. Cheirolepidiaceae: Biology, structure and paleoecology. Rev. Palaeobot. Palynol. 1982, 37, 71–98. [Google Scholar] [CrossRef]
- Thusu, B.; Vigran, J.O. Middle–Late Jurassic (Late Bathonian–Tithonian) palynomorphs. J. Micropalaeontol. 1985, 4, 113–129. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.A.; Jain, S.; Diez, J.B. Upper Jurassic palynology from the Blue Nile Basin (Ethiopia). Rev. Palaeobot. Palynol. 2020, 285, 104361. [Google Scholar] [CrossRef]
- Ibrahim, M.I.A.; Ela, N.A.; Kholeif, S. Palynostratigraphy of Jurrasic to Lower Cretaceous sequences from the Eastern Desert of Egypt. J. Afr. Earth Sci. 2001, 32, 269–297. [Google Scholar] [CrossRef]
- Brideaux, W.W.; Fisher, M.J. Upper Jurassic-Lower Cretaceous dinoflagellate assemblages from Arctic Canada. Geol. Surv. Can. Bull. 1976, 259, 1–53. [Google Scholar]
- Williams, G.L. Dinoflagellate and spore stratigraphy of the Mesozoic-Cenozoic, offshore eastern Canada. Geol. Surv. Can. Pap. 1975, 74, 107–161. [Google Scholar]
- Gradstein, F.M.; Williams, G.L.; Jenkins, W.A.M.; Ascoli, P. Mesozoic and Cenozoic stratigraphy of the Atlantic continental margin, eastern Canada. Canada’s Continental Margins and Offshore Petroleum Exploration. Mem 1975, 4, 103–131. [Google Scholar]
- Schrank, E. Palaeozoic and Mesozoic palynomorphs from northeast Africa (Egypt and Sudan) with special reference to Late Cretaceous pollen and dinoflagellates. Berl. Geowiss. Abh. Reihe A Geol. Paläontologie 1987, 75, 249–310. [Google Scholar]
- Dörhöfer, G.; Norris, G. Discrimination and correlation of highest Jurassic and lowest Cretaceous terrestrial palynofloras in north-west Europe. Palynology 1977, 1, 79–93. [Google Scholar] [CrossRef]
- Higgs, K.T.; Jones, G.L. Palynological evidence for Mesozoic karst at Piltown, Co. Kilkenny. Proc. Geol. Assoc. 2000, 111, 355–362. [Google Scholar] [CrossRef]
- Riley, L.A. A palynological investigation of Upper Jurassic basal Cretaceous sediments from England, France and Iberia. Ph.D. Thesis, The Open University, Milton Keynes, UK, 1975. [Google Scholar]
- Legrand, J.; Pons, D.; Nishida, H.; Yamada, T. Barremian palynofloras from the Ashikajima and Kimigahama formations (Choshi Group, Outer Zone of south-west Japan). Geodiversitas 2011, 33, 87–135. [Google Scholar] [CrossRef]
- Hunt, C.O. Miospores from the Portland Stone Formation and the power part of the Purbeck Formation (Upper Jurassic/Lower Cretaceous) from Dorset, England. Pollen Spores 1985, 27, 419–451. [Google Scholar]
- Avram, E.; Szasz, L.; Antonescu, E.; Baltreš, A.; Iva, M.; Melinte, M.; Neagu, T.; Rādan, S.; Tomescu, C. Cretaceous terrestrial and shallow marine deposits in northern South Dobrogea (SE Rumania). Cretac. Res. 1993, 14, 265–305. [Google Scholar] [CrossRef]
- Villanueva-Amadoz, U.; Diez, J.B.; Pérez-Arlucea, M.; Bercovici, A.; Cascales-Miñana, B.; Ferrer, J.; Huerta, P.; Sánchez-Pellicer, R.; Sender, L.M.; Torcida Fernández-Baldor, F. Determinación de la edad y deducciones paleoecológicas de los yacimientos de dinosaurios de Vallazmorra (Burgos) en base a datos palinológicos. In Proceedings of the Actas de las V Jornadas Internacionales sobre Paleontología de Dinosaurios y su Entorno, Salas de los Infantes, Burgos, Spain, 16–18 September 2012; pp. 207–214. [Google Scholar]
- Taugourdeau-Lantz, J. Stratigraphic implications of Early Cretaceous spores and pollen grains at Holes 638B, 638C, and 641C, Leg 103, off the Iberian margin, eastern North Atlantic. In Proceedings of the Ocean Drilling Program, Scientific Results; Boillot, G., Winterer, E.L., Meyer, A.W., Audrey, W., Applegate, J., Baltuck, M., Bergen, J.A., Comas, M.C., Davies, T.A., Dunham, K.W., et al., Eds.; Ocean Drilling Program: College Station, TX, USA, 1988; Volume 103, pp. 419–428. [Google Scholar]
- Villanueva-Amadoz, U.; Santisteban, C.; Santos-Cubedo, A. Age determination of the Arcillas de Morella Formation (Maestrazgo Basin, Spain). Hist. Biol. 2015, 27, 389–397. [Google Scholar] [CrossRef]
- Barrón, E.; Comas-Rengifo, M.J.; Elorza, L. Contribuciones al estudio palinológico del Cretácico Inferior de la Cuenca Vasco-Cantábrica: Los afloramientos ambarígenos de Peñacerrada (España). Coloq. Paleontol. 2001, 52, 135–156. [Google Scholar]
- Mendes, M.M.; Barrón, E.; Dinis, P.; Rey, J.; Batten, D.J. A new palynoflora from upper Barremian–lower Aptian rocks at Casal do Borracho, Torres Vedras, western Portugal, and its palaeoecological significance. Cretaceous Res. 2018, 90, 363–374. [Google Scholar] [CrossRef]
- Mendes, M.M.; Polette, F.; Cunha, P.P.; Dinis, P.; Batten, D.J. A new Hauterivian palynoflora from the Vale Cortiço site (central Portugal), and its palaeoecological implications for western Iberia. Acta Palaeobot. 2019, 59, 215–228. [Google Scholar] [CrossRef]
- Sajjadi, F.; Hashemi, H.; Dehbozorgi, A. Middle Jurassic palynomorphs of the Kashafrud Formation, Koppeh Dagh Basin, Northeastern Iran. Micropaleontology 2007, 53, 391–408. [Google Scholar] [CrossRef] [Green Version]
- Mendes, M.M.; Dinis, J.; Pais, J.; Friis, E.M. Early cretaceous flora from Vale Painho (Lusitanian basin, western Portugal): An integrated palynological and mesofossil study. Rev. Palaeobot. Palynol. 2011, 166, 152–162. [Google Scholar] [CrossRef]
- Rodríguez-Barreiro, I.; Villanueva-Amadoz, U.; Santos, A.A.; Diez, J.B. Palynostratigraphical dating of the Lower Cretaceous Peñaferruz Formation, San Pedro de Antromero Beach (Asturias Region, northwestern Iberian Peninsula). Geobios 2018, 51, 579–589. [Google Scholar] [CrossRef]
- Bujak, J.P.; Williams, G.L. Jurassic palynostratigraphy of offshore eastern Canada. In Developments in Palaeontology and Stratigraphy; Swain, F.M., Ed.; Elsevier: Amsterdam, The Netherlands, 1977; Volume 6, pp. 321–339. [Google Scholar]
- Barss, M.S.; Bujak, J.P.; Williams, G.L. Palynological zonation and correlation of sixty-seven wells, eastern Canada. Geol. Surv. Can. Pap. 1979, 78, 1–24. [Google Scholar]
- Norris, G. Palynology of the Jurassic-cretaceous boundary in southern England. Geosci. Man 1970, 1, 57–65. [Google Scholar] [CrossRef]
- Abbink, O.A.; Colloman, J.H.; Riding, J.B.; Williams, P.D.B.; Wolfard, A. Biostratigraphy of Jurassic–Cretaceous boundary strata in the Terschelling Basin, the Netherlands. Proc. Yorkshire Geol. Soc. 2001, 53, 275–302. [Google Scholar] [CrossRef]
- Passalia, M.; Iglesias, A.; Varela, A.; Santamarina, P.; Poiré, D.; Richiano, S. The fern Konijnenburgia alata in the mid-Cretaceous of Patagonia, and the Matoniaceae fossil record. Cretac. Res. 2018, 89, 264–278. [Google Scholar] [CrossRef]
- Van Konijnenburg-Van Cittert, J.H.A. In situ gymnosperm pollen from the Middle Jurassic of Yorkshire. Acta Bot. Neerl. 1971, 20, 1–97. [Google Scholar]
- Watson, J.; Alvin, K.L. The cheirolepidiaceous conifers Frenelopsis occidentalis Heer and Watsoniocladus valdensis (Seward) in the Wealden of Germany. Cretac. Res. 1999, 20, 315–326. [Google Scholar] [CrossRef]
- Francis, J.E. The dominant conifer of the Jurassic Purbeck Formation. Palaeontology 1983, 26, 277–294. [Google Scholar]
- Palliani, R.B.; Mattioli, E.; Riding, J.B. The response of marine phytoplankton and sedimentary organic matter to the early Toarcian (Lower Jurassic) oceanic anoxic event in northern England. Mar. Micropaleontol. 2002, 46, 223–245. [Google Scholar] [CrossRef]
- Galasso, F.; Schmid-Röhl, A.; Feist-Burkhardt, S.; Bernasconi, S.M.; Schneebeli-Hermann, E. Changes in organic matter com-position during the Toarcian Oceanic Anoxic Event (T-OAE) in the Posidonia Shale Formation from Dormettingen (SW-Germany). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 569, 110327. [Google Scholar] [CrossRef]
- Krupnik, J.; Ziaja, J.; Barbacka, M.; Feldman-Olszewska, A.; Jarzynka, A. A palaeoenvironmental reconstruction based on palynological analyses of Upper Triassic and Lower Jurassic sediments from the Holy Cross Mountains region. Acta Palaeobot. 2014, 54, 35–65. [Google Scholar] [CrossRef]
- Mendes, M.M.; Vajda, V.; Cunha, P.P.; Dinis, P.; Svobodová, M.; Doyle, J.A. A Lower Cretaceous palynoflora from Carregueira (Lusitanian Basin, westernmost Iberia): Taxonomic, stratigraphic and palaeoenvironmental implications. Cretac. Res. 2021, 130, 105036. [Google Scholar] [CrossRef]
- Santos, A.A.; Wang, X.; Fu, Q.; Diez, J.B. First palynological data from the Jurassic South Xiangshan Formation (Nanjing area, China). Geobios 2018, 51, 559–570. [Google Scholar] [CrossRef]
- Gutierrez, K.; Sheldon, N.D. Paleoenvironmental reconstruction of Jurassic dinosaur habitats of the Vega Formation, Asturias, Spain. GSA Bull. 2011, 124, 596–610. [Google Scholar] [CrossRef]
- Santos, A.A.; Nel, A.; Rodríguez-Barreiro, I.; Sender, L.M.; Wappler, T.; Diez, J.B. Insect and Plant Diversity in Hot-Spring Ecosystems during the Jurassic-Cretaceous Boundary from Spain (Aguilar Fm.; Palencia). Biology 2022, 11, 273. [Google Scholar] [CrossRef]
- Lockley, M.G.; García-Ramos, J.C.; Piñuela, L.; Avanzini, M. A review of vertebrate track assemblages from the Late Jurassic of Asturias, Spain with comparative notes on coeval ichnofaunas from the western USA: Implications for faunal diversity in siliciclastic facies assemblages. Oryctos 2008, 8, 53–70. [Google Scholar]
- Jones, T.P.; Chaloner, W.G. Fossil charcoal, its recognition and palaeoatmospheric significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 97, 39–50. [Google Scholar] [CrossRef]
- Scott, A.C. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 291, 11–39. [Google Scholar] [CrossRef]
- Glasspool, I.J.; Scott, A.C. Identifying past fire events. In Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science; Belcher, C.M., Ed.; John Wiley and Sons: Chichester, UK, 2013; pp. 179–206. [Google Scholar]
Taxa | Figure | Botanical Affinity (Reference) |
---|---|---|
Spores | ||
Aequitriradites spinulosus | Figure 8A | Bryophytes, Hepaticeae [38,39,40] |
Apiculatisporites sp. | Figure 5P | Lycopodiaceae/Selaginellaceae-type [41,42,43] |
Baculatisporites comaumensis | Figure 5O | Osmundaceae-type [41] |
Biretisporites potoniaei | Figure 5L | Schizaeaceae [44,45] |
Camarazonosporites rudis | Figure 4F and Figure 5H | Lycopodiaceae [41,42] |
Cibotiumspora jurienensis | Figure 5M | Cyatheaceae/Dicksoniaceae [41,42] |
Cicatricosisporites sp. | Figure 4A | Schizaeaceae [41,46] |
Cicatricosisporites pseudotripartitus | Figure 7L | |
Cicatricosisporites sinuosus | Figure 7M | |
Concavissimisporites montuosus | Figure 7F | Dicksoniaceae/Cyatheaceae [47] |
Concavissimisporites variverrucatus | Figure 7C | |
Contignisporites cooksoni | Figure 4C | Schizaeaceae [41,48] |
Contignisporites fornicatus | Figure 6H | |
Contignisporites globulentus | Figure 6G | |
Cyathidites australis | Figure 5A | Dicksoniaceae, Cyatheaceae, Dipteridaceae, Matoniaceae [41,49,50] |
Cyathidites minor | Figure 5B | |
Deltoidospora sp. | Figure 5D | Cyatheaceae [51,52] |
Dictyophyllidites harrisii | Figure 4K | Dipteridaceae/Matoniaceae [41] |
Dictyophyllidites mortonii | Figure 5Q | |
Gleicheniidites senonicus | Figure 5C | Gleicheniaceae [41] |
Impardecispora apiverrucata | Figure 7A | Cyatheaceae [52] |
Impardecispora sp. | Figure 7B | |
Ischyosporites marburgensis | Figure 6I | Schizaeaceae [41] |
Klukisporites lacunus | Figure 6J | |
Klukisporites sp. | Figure 4D | |
Leptolepidites crassibalteus | Figure 6S | Lycopodiaceae/Selaginellaceae [41,52,53] |
Leptolepidites major | Figure 6Q | |
Leptolepidites sp. | Figure 4B and Figure 6R | |
Leptolepidites verucatus | Figure 6P | |
Matonisporites equiexinus | Figure 5F | Dipteridaceae/Matoniaceae [41] |
Matonisporites sp. | Figure 5G | |
Murospora sp. | Figure 5E | |
Neoraistriskia sp. | Figure 6N | |
Densoisporites velatus | Figure 8B | |
Nevesisporites vallatus | Figure 5R | |
Obtusisporis canadansis | Figure 5T | Abortive spores [41] |
Osmundacidites wellmanii | Figure 6O | Osmundaceae [41] |
Patellasporites distaverrucosus | Figure 6L,M | Selaginellaceae [54] |
Pilosisporites trichopapillosus | Figure 7D | Pteridophytes [40] |
Polycingulatisporites crenelatus | Figure 6K | Bryophytic Spores Sphagnaceae-type [41] |
Retitriletes sp. | Figure 6F | Bryophyte (Lycopodiaceae) [52,55,56] |
Retitriletes pseudoreticulatus | Figure 6D | |
Retitriletes clavatoides | Figure 4G | |
Retitriletes sp. | Figure 6E | |
Ruffordiaspora australiensis | Figure 8H | Schizaeaceae Ruffordia-type [46] |
Ruffordiaspora sp.1 | Figure 8G | |
Staplinisporites caminus | Figure 5I | Lycopodiaceae [41] |
Staplinisporites sp. | Figure 5J | |
Stereisporites antiquasporites | Figure 5K | Bryophyte, Sphagnaceae [41] |
Striatella balmei | Figure 4H and Figure 6A | Pteridaceae [57] |
Striatella cooksoniae | Figure 6C | |
Striatella scanica | Figure 4I | |
Striatella seebergensis | Figure 6B | |
Todisporites minor | Figure 5N | Osmundaceae [41] |
Trilobosporites canadensis | Figure 7G | Schizaeaceae [41] |
Trilobosporites sp.1 | Figure 7E | |
Trilobosporites sp.2 | Figure 7I | |
Triporoletes sp. | Figure 7H | Bryophyte [58] |
Pollen | ||
Alisporites cf. similis | Figure 9B | Pinaceae/Podocarpaceae [41,52,53] |
Alisporites grandis | Figure 9A | Pinaceae/Podocarpaceae [41,52,53] |
Araucariacites australis | Figure 8C | Araucariaceae [41,59,60] |
Callialasporites dampieri | Figure 4E | |
Callialasporites microvelatus | Figure 8F | |
Callialasporites segmentatus | Figure 8D | |
Callialasporites trilobatus | Figure 8E | |
Cerebropollenites cf. mesozoicus | Figure 7K | Sciadopityaceae/Cupressaceae (former Taxodiaceae) [52,53,61,62] |
Cerebropollenites macroverrucosus | Figure 7J | |
Classopollis classoides | Figure 8L | Cheirolepidiaceae [52,53,61] |
Classopollis simplex | Figure 8M | |
Classopollis | Figure 8N | |
Cycadopites follicularis | Figure 8K | Cycadopsida/Pteridospermopsida [41] |
Exesipollenites tumulus | Figure 8I | Bennettitales [52,53] |
Perinopollenites elatoides | Figure 8J | Cupressaceae (former Taxodiaceae) [52,63] |
Pinuspollenites sp. | Figure 4L and Figure 9E | Pinaceae/Podocarpaceae [41] |
Spheripollenites sp. | Figure 9H | Cupressaceae (former Taxodiaceae)/Cheirolepidiaceae [52,53] |
Others (Dinoflagellate, Achritarchs, cuticle…) | ||
Botryococcus sp. | Figure 4J | Algae |
Chomotriletes fragilis | Figure 9F | |
Chomotriletes minor | Figure 9C | |
Wood remains | Figure 4M,N | Gymnosperms |
Cuticle remains | Figure 4O | Plantae |
Gonyaulacaceae gen. et sp. indet. | Figure 9I | Dinoflagellates |
Michrystridium sp.1 | Figure 9G | Acamhomorphitae |
Scolecodont | Figure 9J | Annelid |
Tasmanites sp. | Figure 9D | Tasmanititae (prasinophytes) |
Tracheid type 1 | Figure 9L | Gymnosperms (Araucariaceae?) |
Tracheid type 2 | Figure 9M | Gymnosperms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.A.; Piñuela, L.; Rodríguez-Barreiro, I.; García-Ramos, J.C.; Diez, J.B. Jurassic Palynology from “The Dinosaur Coast” of Asturias (Lastres Fm., Northwestern Spain): Palynostratigraphical and Palaeoecological Insights. Biology 2022, 11, 1695. https://doi.org/10.3390/biology11121695
Santos AA, Piñuela L, Rodríguez-Barreiro I, García-Ramos JC, Diez JB. Jurassic Palynology from “The Dinosaur Coast” of Asturias (Lastres Fm., Northwestern Spain): Palynostratigraphical and Palaeoecological Insights. Biology. 2022; 11(12):1695. https://doi.org/10.3390/biology11121695
Chicago/Turabian StyleSantos, Artai A., Laura Piñuela, Iván Rodríguez-Barreiro, José Carlos García-Ramos, and José B. Diez. 2022. "Jurassic Palynology from “The Dinosaur Coast” of Asturias (Lastres Fm., Northwestern Spain): Palynostratigraphical and Palaeoecological Insights" Biology 11, no. 12: 1695. https://doi.org/10.3390/biology11121695
APA StyleSantos, A. A., Piñuela, L., Rodríguez-Barreiro, I., García-Ramos, J. C., & Diez, J. B. (2022). Jurassic Palynology from “The Dinosaur Coast” of Asturias (Lastres Fm., Northwestern Spain): Palynostratigraphical and Palaeoecological Insights. Biology, 11(12), 1695. https://doi.org/10.3390/biology11121695