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Simple Summary: The Upper Jurassic deposits of the Lastres Formation crop out on the Asturian
coast (northwest of the Iberian Peninsula), in the so-called “The Dinosaur Coast”. This formation
presents a high abundance of dinosaur remains and other vertebrates. Despite the deep knowledge
about its fauna and environment, practically nothing is known about the plant communities that
formed the landscape of the region at the end of the Jurassic. We present here the first palyno-
logical data of the Lastres Fm., identifying a rich and abundant palynological assemblage formed
by more than 60 different taxa. The presence of some taxa with biostratigraphic value suggests a
Kimmeridgian-Tithonian age for this formation. On the other hand, the botanical affinities of the
taxa found indicate that the vegetation of the “The Dinosaur Coast” would not be homogeneous,
but would be formed by a mosaic of different plant communities that would adapt to the variety of
environments present in the region. The presence of forest areas probably represented a protected
environment as well as a food source for herbivorous dinosaurs. Analysis of charcoalified wood
remains suggests that palaeofires were relatively recurrent in the study area.

Abstract: Abundant fossils of vertebrates (mainly footprints and bones of dinosaurs) and numerous
invertebrates occur in the Upper Jurassic deposits of the Lastres Formation in the Asturias region,
North of Spain. However, no palynological study has been published from this geological formation;
therefore, much palaeoenvironmental and palaeoecological information is still unknown. In this
study, a total of 62 morphospecies, belonging to 49 different morphogenera were identified, including
pollen, spores, algae remains, fungi spores, dinoflagellates, foraminifera, and scolecodonts from four
different locations on the Asturian coast. Spores are the dominant group of palynomorphs, both in
diversity and abundance, contrasting with the minor diversity of pollen grains. The age of some key
taxa indicates that the palynological assemblage cannot be older than the Kimmeridgian, suggesting
a Kimmeridgian-Tithonian age. The botanical and environmental affinities of the pollen and spores
indicate the presence of different plant assemblages, including plant communities from humid areas
such as the margin of rivers and small freshwater ponds that were dominated by bryophytes and
ferns, and a coastal plant community that would inhabit arid areas and would be dominated by
gymnosperms and some pteridophytes. The SEM analyses of wood remains show the abundance
of charcoalified remains suggesting that wildfires were usual in “The Dinosaur Coast” of Asturias
during the Kimmeridgian.

Keywords: palynology; plant communities; wildfires; Late Jurassic; “The Dinosaur Coast”; North Spain

1. Introduction

“The Dinosaur Coast” of Asturias in the Northwest of Spain extends over several
kilometers of Jurassic deltaic deposits exposed along the Asturian coast. Its Upper Jurassic
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deposits, specifically those from the Lastres Formation, are a benchmark in the study of
the coastal fauna of this period of time and an important touristic attraction in the re-
gion. The Lastres Formation has been widely studied both sedimentologically [1–5] and
palaeontologically [6–13]. The Lastres Formation yields a rich, diverse, and abundant fau-
nal assemblage. The fossils published so far include different groups of dinosaurs [10–13]
but other vertebrate remains and tracks have been found, such as turtles [8], crocodylo-
morphs [3,9], or pterosaurs [13]. In addition, these deposits are also rich in invertebrates
such as ammonites [6,14,15], bivalves [16], or ostracods [7,17].

This diversity of fossils of animals that characterizes the Lastres Formation contrasts
with the very scarce knowledge about their plant communities. Few studies concerning
palaeobotany of this formation have been published, including wood remains of conifers
attributed to Protocupressinoxylon sp. [2] and to Protocupressinoxylon purbeckensis [18]. So far,
no palynological studies have been published on the Lastres Formation.

Although the Lastres Formation is usually referred to as Kimmeridgian, its age is
still controversial. Some biostratigraphical data have suggested an early Kimmeridgian
age for the upper part of the Lastres Formation based on ammonites [6,14,15], but other
authors considered a late Kimmeridgian age for the lower and middle part and a Tithonian
age for the upper part of the formation based on both ammonites and ostracods [5,7,17].
Consequently, to solve this stratigraphic conundrum, it is necessary to provide new bios-
tratigraphical data; in this context, palynostratigraphy could be a useful tool.

The references to Jurassic palynological studies from the Iberian Peninsula are scarce
and mostly focused on Lower and Middle Jurassic deposits. In Portugal there are some
studies from the Algarve Basin in Pliensbachian to Kimmeridgian outcrops [19–21], and
from the Lusitanian Basin in Pliensbachian to Bajocian marine stratigraphic levels [22], in
marine Pliensbachian-Toarcian deposits [23–25] and from the Callovian-Oxfordian bound-
ary [26]. In addition, there are other studies focused on Upper Jurassic deposits from the
Oxfordian of Leiria [27], the Oxfordian-Kimmeridgian of Porto de Mos [19], and from the
Upper Oxfordian to Tithonian of the Lusitanian Basin [28].

In Spain, there are only a few palynological studies from Upper Jurassic deposits,
including the palynology from the Bathonian-Oxfordian stratigraphic levels in the Iberian
Range [20,29,30] and the Lower Kimmeridgian deposits from Jaen and Teruel provinces [31].
Recently, some palynological studies were focused on the J/K boundary in the Galve area
from Teruel [32], and the Cameros Basin in Burgos [33]. More specifically, in the studied
area, few palaeobotanical studies were performed: a preliminary palynological study of
the Vega Fm. [34] and a recent macroflora discovery in the Lastres Fm. [35].

This scarcity of palynological studies in the studied area, especially for Upper Jurassic
deposits, raises many questions about the evolution and distribution of plant commu-
nities in the Iberian Peninsula during the Late Jurassic. Our work represents the first
palynological data from the Lastres Fm. of special interest due to its vertebrate fossil
abundance, also providing new data on the knowledge of the plant communities of this
period. Therefore, the main objectives of this work are: (1) to characterize the palynological
assemblage from the Lastres Fm.; (2) to provide new biostratigraphic data improving the
chronostratigraphic resolution of the formation; and (3) to discuss the palaeoecological and
palaeoenvironmental implications of this new palynological assemblage.

2. Geographical and Geological Context

The Upper Jurassic sedimentary rocks of Asturias crop out along the coast between
Gijón and Ribadesella (Figures 1 and 2). The succession is more than 600 m thick, and
consists of three lithostratigraphic units, which yielded an important sample of dinosaur
footprints and skeletal remains (Vega, Tereñes, and Lastres formations, see Figure 2).
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Figure 1. Geological and geographical map from the Asturias coast. The studied locations (Oles and
Lastres) are indicated with red stars.

The Lastres Formation represents a splendid Jurassic example of a fluvial-dominated
lagoonal delta sourced mostly by high-sinuosity rivers. It is characterized by alternating
grey sandstones, mudstones, marls and occasional conglomerate levels [3,36]. Although
the main environments of the delta system are well represented along the formation, all the
selected samples with palynomorphs are included mostly in the delta plain and locally in
the delta abandonment facies.

The apparent absence of tides in this restricted lagoonal delta prevents the distinction
between the upper and lower delta plain but it is possible to differentiate between a
subaerial well-drained delta plain and a subaqueous poorly drained delta plain (Figure 3).

The siliciclastic sedimentation was repeatedly interrupted by carbonate shell beds,
representing the typical delta abandonment facies. These last facies (shell beds) formed
during transgressive periods driven by regional or local increases in tectonic subsidence
(normal faults related to contemporary rifting processes), eustatic sea-level rise or less-
ening/stopping in sediment supply (i.e., avulsion processes). During the Kimmeridgian-
Tithonian, the Iberian Peninsula was a big island between the Euroasiatic, African and
American Plates.
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3. Material and Methods

For this work, three different sections from the Lastres Fm. were selected according to
the ones that are more complete sedimentologically and chronologically: Arroyo Solero in
Oles (Villaviciosa, Asturias) and Arroyo Gabús and San Roque, both in Lastres (Colunga,
Asturias). For the palynological study, the samples were taken from levels with fine-grain
sediment and rich in organic matter. A total of 16 palynological samples were collected,
seven from Arroyo Solero (JVLP1, JVLP2, JVLP3, JVLP4, JVLPA, JVLPB, and JVLPC), three
from Arroyo Gabús (JCLPA, JCLPB, JCLPC), and six from San Roque (JCLPD, JCLPE,
JCLPF, JCLPG, JCLPH, and JCLPI).

The samples were analysed using standard palynological techniques [37] at the Pa-
lynology Laboratory of the Department of Marine Geosciences at the University of Vigo.
Briefly, 10–15 g of material was crushed and treated with hydrochloric (HCl 10%) and
hydrofluoric acid (HF 70%) in order to dissolve carbonates and remove silicate components,
followed by application of hot 10% HCl to dissolve silica gel formed during HF treatment.
The residue was sieved using a nylon filter with a mesh of 10 µm; the organic residue was
washed with distilled water and sprayed on a coverslip using cellosize (hydroxyethyl cellu-
lose), dried, and mounted on a microscope slide. For the SEM observation (Figure 4), the
organic residue was dried and covered with gold. The palynological slides were observed
and photographed under a Leica ICC50W (Leica Camera, Wetzlar, Alemania) optical micro-
scope at 1000× magnification (Figures 5–9). Some palynomorphs and small wood remains
present in the slides were re-examined under the Scanning Electron Microscope (SEM) JEOL
JSM6010LA (JEOL Ldt., Tokyo, Japan) at CACTI (Centro de Apoio Científico-Tecnolóxico á
Investigación, University of Vigo). The position of each illustrated palynomorph is given in
the figure captions according to the “England Finder” graticule.

The relative dominance of the palynomorphs was analysed as an entire unity for all the
samples because of the lack of sedimentary rate continuity and the frequent reworked levels
in these sections. The palynomorph dominance data in this work, should be understood as
qualitative more than quantitative.

The botanical affinities of the palynomorphs found in the Lastres Fm. are shown in
the Table 1 after a selection of references where the relation between the palynomorph and
its producer is indicated.

Table 1. Palynomorphs identified in the Lastres Fm., with their botanical affinities.

Taxa Figure Botanical Affinity (Reference)

Spores

Aequitriradites spinulosus Figure 8A Bryophytes, Hepaticeae [38–40]

Apiculatisporites sp. Figure 5P Lycopodiaceae/Selaginellaceae-type [41–43]

Baculatisporites comaumensis Figure 5O Osmundaceae-type [41]

Biretisporites potoniaei Figure 5L Schizaeaceae [44,45]

Camarazonosporites rudis Figures 4F and 5H Lycopodiaceae [41,42]

Cibotiumspora jurienensis Figure 5M Cyatheaceae/Dicksoniaceae [41,42]

Cicatricosisporites sp. Figure 4A

Schizaeaceae [41,46]Cicatricosisporites pseudotripartitus Figure 7L

Cicatricosisporites sinuosus Figure 7M

Concavissimisporites montuosus Figure 7F Dicksoniaceae/Cyatheaceae [47]
Concavissimisporites variverrucatus Figure 7C

Contignisporites cooksoni Figure 4C

Schizaeaceae [41,48]Contignisporites fornicatus Figure 6H

Contignisporites globulentus Figure 6G
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Table 1. Cont.

Taxa Figure Botanical Affinity (Reference)

Cyathidites australis Figure 5A Dicksoniaceae, Cyatheaceae, Dipteridaceae,
Matoniaceae [41,49,50]Cyathidites minor Figure 5B

Deltoidospora sp. Figure 5D Cyatheaceae [51,52]

Dictyophyllidites harrisii Figure 4K
Dipteridaceae/Matoniaceae [41]

Dictyophyllidites mortonii Figure 5Q

Gleicheniidites senonicus Figure 5C Gleicheniaceae [41]

Impardecispora apiverrucata Figure 7A
Cyatheaceae [52]

Impardecispora sp. Figure 7B

Ischyosporites marburgensis Figure 6I

Schizaeaceae [41]Klukisporites lacunus Figure 6J

Klukisporites sp. Figure 4D

Leptolepidites crassibalteus Figure 6S

Lycopodiaceae/Selaginellaceae [41,52,53]
Leptolepidites major Figure 6Q

Leptolepidites sp. Figures 4B and 6R

Leptolepidites verucatus Figure 6P

Matonisporites equiexinus Figure 5F

Dipteridaceae/Matoniaceae [41]

Matonisporites sp. Figure 5G

Murospora sp. Figure 5E

Neoraistriskia sp. Figure 6N

Densoisporites velatus Figure 8B

Nevesisporites vallatus Figure 5R

Obtusisporis canadansis Figure 5T Abortive spores [41]

Osmundacidites wellmanii Figure 6O Osmundaceae [41]

Patellasporites distaverrucosus Figure 6L,M Selaginellaceae [54]

Pilosisporites trichopapillosus Figure 7D Pteridophytes [40]

Polycingulatisporites crenelatus Figure 6K Bryophytic Spores
Sphagnaceae-type [41]

Retitriletes sp. Figure 6F

Bryophyte (Lycopodiaceae) [52,55,56]
Retitriletes pseudoreticulatus Figure 6D

Retitriletes clavatoides Figure 4G

Retitriletes sp. Figure 6E

Ruffordiaspora australiensis Figure 8H
Schizaeaceae Ruffordia-type [46]

Ruffordiaspora sp.1 Figure 8G

Staplinisporites caminus Figure 5I
Lycopodiaceae [41]

Staplinisporites sp. Figure 5J

Stereisporites antiquasporites Figure 5K Bryophyte, Sphagnaceae [41]

Striatella balmei Figures 4H and 6A

Pteridaceae [57]
Striatella cooksoniae Figure 6C

Striatella scanica Figure 4I

Striatella seebergensis Figure 6B
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Table 1. Cont.

Taxa Figure Botanical Affinity (Reference)

Todisporites minor Figure 5N Osmundaceae [41]

Trilobosporites canadensis Figure 7G

Schizaeaceae [41]Trilobosporites sp.1 Figure 7E

Trilobosporites sp.2 Figure 7I

Triporoletes sp. Figure 7H Bryophyte [58]

Pollen

Alisporites cf. similis Figure 9B Pinaceae/Podocarpaceae [41,52,53]

Alisporites grandis Figure 9A Pinaceae/Podocarpaceae [41,52,53]

Araucariacites australis Figure 8C

Araucariaceae [41,59,60]

Callialasporites dampieri Figure 4E

Callialasporites microvelatus Figure 8F

Callialasporites segmentatus Figure 8D

Callialasporites trilobatus Figure 8E

Cerebropollenites cf. mesozoicus Figure 7K Sciadopityaceae/Cupressaceae (former Taxodiaceae)
[52,53,61,62]Cerebropollenites macroverrucosus Figure 7J

Classopollis classoides Figure 8L

Cheirolepidiaceae [52,53,61]Classopollis simplex Figure 8M

Classopollis Figure 8N

Cycadopites follicularis Figure 8K Cycadopsida/Pteridospermopsida [41]

Exesipollenites tumulus Figure 8I Bennettitales [52,53]

Perinopollenites elatoides Figure 8J Cupressaceae (former Taxodiaceae) [52,63]

Pinuspollenites sp. Figures 4L and 9E Pinaceae/Podocarpaceae [41]

Spheripollenites sp. Figure 9H Cupressaceae (former Taxodiaceae)/Cheirolepidiaceae [52,53]

Others (Dinoflagellate, Achritarchs, cuticle . . . )

Botryococcus sp. Figure 4J

AlgaeChomotriletes fragilis Figure 9F

Chomotriletes minor Figure 9C

Wood remains Figure 4M,N Gymnosperms

Cuticle remains Figure 4O Plantae

Gonyaulacaceae gen. et sp. indet. Figure 9I Dinoflagellates

Michrystridium sp.1 Figure 9G Acamhomorphitae

Scolecodont Figure 9J Annelid

Tasmanites sp. Figure 9D Tasmanititae (prasinophytes)

Tracheid type 1 Figure 9L Gymnosperms (Araucariaceae?)

Tracheid type 2 Figure 9M Gymnosperms
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Figure 4. Palynomorphs from the Lastres Fm. under SEM: (A) Cicatricosisporites sp., SEM-V1b-Lastres;
(B) Leptolepidites sp., SEM-VA-Lastres; (C) Contignisporites cooksonii, SEM-V1-Lastres; (D) Klukisporites sp.,
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SEM-CA4-Lastres; (E) Callialasporites dampieri, SEM-V1-Lastres; (F) cf. Camarazonosporites rudis,
SEM-V1b-Lastres; (G) Retitriletes clavatoides, SEM-V1b-Lastres; (H) Striatella balmei, SEM-
V3-Lastres; (I) Striatella scanica, SEM-CAb-Lastres; (J) Botryococcus sp., SEM-V1-Lastres;
(K) Dictyophyllidites harrisii (white arrow); pirite (red arrows), SEM-V1-Lastres; (L) Pinuspollenites sp.,
SEM-CA3-Lastres; (M) Remains of wood with almost totally fused cell walls, SEM-V1-Lastres;
(N) Detail of fused cell walls in wood (see red arrow), SEM-V1b-Lastres; (O) Unfused cell walls in
wood (see red arrow), SEM-VB-Lastres.
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Figure 5. Scale bar: 10 µm. (A) Cyathidites australis, JVLP-2-4-H160; (B) Cyathidites minor, JCLP-B-4-O270;
(C) Gleicheniidites senonicus, JVLP-C-2-T372; (D) Deltoidospora sp., JVLP-A-1-J054; (E) Murospora sp.,
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JVLP-B-2-C281; (F) Matonisporites equiexinus, JVLP-3-1-D510; (G) Matonisporites sp., JVLP-3-1-
Q430; (H) cf. Camarazonosporites rudis, JVLP-3-1-J360; (I) Staplinisporites caminus, JVLP-3-1-
G440; (J) Staplinisporites sp., JVLP-C-2-R280; (K) Stereisporites antiquasporites, JVLP-1-2-N470;
(L) Biretisporites potoniaei, JVLP-A-1-N211; (M) Cibotiumspora jurienensis, JVLP-3-2-L240;
(N) Todisporites minor, JVLP-3-2-F502; (O) Baculatisporites comaumensis, JVLP-1-2-
H083; (P) Apiculatisporites sp., JVLP-4-1-L222; (Q) Dictyophyllidites, mortonii, JVLP-2-
4-K370; (R) Nevesisporites vallatus, JVLP-3-1-G221; (S) Spore indeterminate, JVLP-B-2-F070;
(T) Obtusisporites sp., JVLP-A-3-O431.
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Figure 6. Scale bar: 10 µm. (A) Striatella balmei, JVLP-2-2-V421; (B) Striatella seebergensis, JVLP-1-1-X413;
(C) Striatella cooksoniae, JVLP-3-2-F332; (D) Retitriletes pseudoreticulatus, JVLP-B-2-M422; (E) Retitriletes sp.,
JVLP-2-4-M252; (F) cf. Retitriletes sp., JVLP-2-4-U373; (G) Contignisporites globulentus, JVLP-1-2-
N340; (H) Contignisporites fornicatus, JVLP-3-2-M503; (I) Ischyosporites marburgensis, JVLP-2-2-B220;
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(J) Klukisporites lacunus, JVLP-3-2-K531; (K) Polycingulatisporites crenelatus, JVLP-3-1-W300;
(L) Patellasporites distaverrucosus, JCLP-B-4-K402; (M) Patellasporites cf. distaverrucosus, JVLP-
3-2-M380; (N) Neoraistriskia sp. JVLP-B-1-S420; (O) Osmundacidites wellmanii, JCLP-C-1-L400;
(P) Leptolepidites verrucatus, JVLP-3-2-J261; (Q) Leptolepidites major, JVLP-B-2-H393; (R) Leptolepidites sp.,
JVLP-3-1-k410; (S) Leptolepidites crassibalteus, JVLP-C-1-G340.
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JVLP-B-2-P401; (E) Trilobosporites sp.1, JVLP-3-1-H190; (F) Concavissimisporites montuosus, JVLP-3-
2-J390; (G) Trilobosporites cf. canadensis, JVLP-1-2-L272; (H) Triporoletes sp.?; (I) Trilobosporites sp.2,
JCLP-C-2-K350; (J) Cerebropollenites macroverrucosus, JVLP-3-2-G420; (K) Cerebropollenites cf. meso-
zoicus, JVLP-2-4-O340; (L) Cicatricosisporites cf. pseudotripartitus, JVLP-3-1-S331; (M) Cicatricosisporites
sinuosus, JVLP-A-2-P051.
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Figure 8. Scale bar: 10 µm. (A) Aequitriradites spinulosus, JVLP-A-M260; (B) Densoisporites velatus,
JVLP-A-EX-G271; (C) Araucariacites australis, JVLP-1-2-J494; (D) Callialasporites segmentatus, JCLP-
E-1-U120; (E) Callialasporites trilobatus, JVLP-3-1-V240; (F) Callialasporites microvelatus, JVLP-
3-1-K494; (G) Ruffordiaspora sp.1, JVLP-A-EX-Q121; (H) Ruffordiaspora australiensis, JCLP-
C-1-D280; (I) Exesipollenites tumulus, JVLP-3-1-G391; (J) Perinopollenites elatoides, JVLP-3-1-
G490; (K) Cycadopites follicularis, JVLP-2-4-K310; (L) Classopollis classoides, JCLP-E-2-N254;
(M) Classopollis simplex, JVLP-3-2-D421; (N) Tetrad of Classopollis sp., JVLP-2-4-E210.
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Figure 9. Scale bar: 10 µm. (A) Alisporites grandis, JVLP-3-1-Q240; (B) Alisporites cf. similis, JVLP-3-1-
D132; (C) Chomotriletes minor, JVLP-2-2-J132; (D) Tasmanites sp., JVLP-3-1-E460; (E) Pinuspollenites sp.,
JVLP-2-4-T262; (F) Chomotriletes fragilis, JVLP-A-1-L272; (G) Michrystridium sp.1, JVLP-1-1-F490;
(H) Spheripollenites sp. JVLP-2-2-C352; (I) Gonyaulacaceae gen. et sp. indet., JVLP-3-2-M501; (J) Scole-
codont (annelid jaw), JCLP-C-1-D370; (K) Cluster of spores, JVLP-C-2-F490; (L) Tracheid: Biseriate
alternate pits (Araucarioxylon?), JCLP-E-1-C260; (M) Tracheid: Biseriate pits, JCLP-E-1-G431.
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4. Results

All the palynological samples yielded palynomorphs, showing a high diversity with
different levels of preservation. The samples taken from Colunga municipality (JCLP)
presented an acceptable richness and preservation, while the samples collected in the
Villaviciosa municipality (JVLP) presented, in general, greater richness and preservation
due to taphonomical processes. A total of 62 different (morpho)species were identified,
belonging to at least 49 (morpho)genera (see Table 1). The different stratigraphic levels
showed very similar compositions among them. This fact, in addition to the complexity
to correlate the different sections of the Lastres Fm. based on its sedimentology, led us to
consider all the studied palynological samples as a single assemblage.

The diversity of this palynoflora present sporo-pollen dominance, where the dominant
groups are the spores of pteridophytes and bryophytes (representing half of the identified
palynomorphs), while the other half corresponded to pollen from different groups of
gymnosperms. Less than 5% of palynomorphs are non-pollen-palynomorphs (NPPs),
including dinoflagellates, algae, and fungi spores. During the palynological analysis,
different wood fragments, unidentifiable cuticle remains, and phytoclasts with different
grades of opacity were also found.

The relative abundance of the taphonomy in this assemblage is dominated by Spheripol-
lenites psilatus, which is usually linked to conifers. The second most abundant palynomorph
was Leptolepidites followed by bisaccate pollen of the genus Alisporites, pollen from Clas-
sopollis spp., and trilete spores of Cyathidites spp. The other genera identified had a minor
representation of relative abundance.

5. Discussion
5.1. Palynostratigraphical Implications

Most of the taxa present in the Lastres Fm. have a wide biostratigraphic range, and
many of the genera found are very common and representative of palynological assem-
blages from the Upper Jurassic and Lower Cretaceous of Europe, such as Leptolepidites, Cal-
lialasporites, Classopollis, Concavissimisporites, Retitriletes, Striatella, Cyathidites, Contignisporites,
or Dyctiophyllidites. Nevertheless, some of the genera, such as Cicatricosisportes, Ruffordias-
pora, Pilosisporites, or Aequitriradites, have species with a more restricted range.

The first occurrences of Cicatricosisporites-Ruffordiaspora complex in the fossil record
occur in the Upper Jurassic. Dettmann and Clifford [46] suggested that their first records
could take place in the Oxfordian or even in the Callovian. However, the first clear
appearances of Cicatricosisporites in Europe and Africa occur in the Kimmeridgian of
Norway [64], Ethiopia [65], and Egypt [66]. The first occurrence of Cicatricosisporites in the
Iberian Peninsula has been placed in Lower Kimmeridgian deposits from Segura de la
Sierra in Jaen province, Spain [31].

The Cicatricosisporites-Ruffordiaspora morphospecies present in this palynological as-
semblage are C. cf. pseudotripartitus, C. sinuosus, and R. (C.) australiensis. The older oc-
currences of Ruffordiaspora australiensis were found in the Kimmeridgian of North Amer-
ica [67,68], the North Atlantic offshore [69], Egypt [70], and other parts of Europe [71,72]. In
the Iberian Peninsula, it is also known from the Kimmeridgian deposits of Portugal [73]. The
first occurrence of Cicatricosisporites pseudotripartitus is in the Kimmeridgian of Egypt [66]
while, in the Iberian Peninsula, it is only found in Cretaceous deposits, more specifically
in the Berriasian of the Cameros Basin in Northern Spain [33]. However, although the
distal face of the specimen from the Lastres Formation (see Figure 7L) is compatible with C.
pseudotripartitus, the proximal face is not observable, so we cannot be sure if it corresponds
to this species, therefore we prefer to be cautious with its biostratigraphic utility. The pres-
ence of Cicatricosisporites sinuosus is a bit more problematic in the Upper Jurassic Lastres
Formation since its presence is more common in the Cretaceous [74]. Currently, its first
occurrence is in the Purbeck Group (Tithonian-Berriasian) of England, where the holotype
of this species was found [75], so this record from Asturias would be the first record of this
taxon in pre-Tithonian deposits.
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The first appearance of Aequitriradites spinulosus was in the Upper Jurassic, and in
Europe, the oldest record was found in the Tithonian of Romania [76]. However, in the
Iberian Peninsula this taxon was only recorded in Cretaceous deposits, having its first
occurrence in this region in the lowermost Berriasian of the Galve sub-Basin in the Teruel
province [32] and the Early Berriasian of the Cameros Basin in Burgos province [33]. It was
also frequently found along the Early Cretaceous in the Valanginian-Barremian of Burgos
province [77], the Lower Valanginian of the NW Iberian offshore [78], the Barremian from
Maestrazgo Basin [79] and Peñacerrada in Alava province [80], and also in the Hauterivian,
Barremian and Aptian from Portugal [81,82]. Consequently, the presence of A. spinulosus
in the Kimmeridgian strata of the Lastres Formation represents the oldest record of this
species in Europe.

The oldest record of Impardecispora apiverrucata apparently occurs in the Bathonian
of Iran (see plate 1, Figure 8 in [83]), nevertheless the quality of the illustration provided
by these authors does not allow to check the correct identification of this palynomorph.
Anyway, the first appearance in the Iberian Peninsula is from the Tithonian-Berriasian
deposits of Porto Pinheiro and Vale Painho in Portugal [29,84] and in the Berriasian of the
Cameros Basin in Spain [33]. In Europe, the presence of this morphospecie in pre-Tithonian
deposits is rare, and its presence in the Lastres Fm. constitutes the oldest record in the
Iberian Peninsula.

The genus Patellasporites is relatively common in the Cretaceous of the Iberian Penin-
sula [79,84,85], while the oldest record of this genus in this region comes from the Tithonian
deposits of Portugal [28]. Therefore, the presence of P. distaverrucosus in the studied levels
represents the oldest record of this genus in the Iberian Peninsula and the first Jurassic
record for this morphospecies worldwide.

The oldest record of Pilosisporites trichopapillosus comes from the Upper Kimmeridgian
of Canada [86,87], but this species only becomes common from the Berriasian onwards. In
northern Europe, the oldest evidence of this species is in the Berriasian [71,88], and in the
Iberian Peninsula its first occurrence was found in Vale Painho, Portugal [84,85].

Previous studies have indicated that the age of the Lastres Fm. is clearly Upper Jurassic,
and the formation was assigned to the late Lower Kimmeridgian (Cymodoce chronozone)
by Olóriz et al. [6] based on the presence of some ammonites. On the other hand, the middle
part of the Lastres Fm. was referred to the Upper Kimmeridgian (Eudoxus chronozone),
also with ammonites by Dubar and Mouterde [15] and Suárez-Vega [14]. Otherwise,
Ramírez del Pozo [17] suggests a Portlandian (=late Tithonian) age for the upper part of
this formation. Moreover, recent interpretations also suggest a late Kimmeridgian age for
the lower and middle part of the formation and an early Tithonian age for its upper part
based on the ostracod assemblages [7]. Additionally, González-Fernández et al. [5], based
on correlation of sedimentary sequences, suggested a Kimmeridgian-early Tithonian age
for the lower and middle part of the Lastres Fm. and a Tithonian age for the upper part,
and the presence of Protocupressinoxylon purbeckensis in the Tereñes and Lastres formations
is in tune with the Kimmeridgian-Tithonian age for these strata [18].

Most of the taxa found in the palynological assemblage of the Lastres Fm. deposits
present a wide stratigraphic range that encompasses much of the Jurassic and Cretaceous
periods. However, no evidence was found to suggest a Cretaceous age. The eventual
presence of some taxa such as Cicatricosisporites cf. pseudotripartitus, C. sinuosus, R. (C.)
australiensis, Aequitriradites spinulosus, Impardecispora apiverrucata, Patellasporites distaver-
rucosus, and Pilosisporites trichopapillosus, are not compatible with pre-Kimmeridgian de-
posits, having affinities with the classical Tithonian palynofloras (or relatively close to the
Jurassic-Cretaceous boundary). However, the presence of ammonites in one of the studied
sections [6] shows that the age of the lower part of the Lastres Fm., is probably late Early
Kimmeridgian even though our palynological assemblage presents more Tithonian than
Kimmeridgian affinities. The Lastres Fm. extends for tens of kilometres along the Asturian
coast, so further palynological and biostratigraphic studies are necessary in new sections of
this formation in order to make a more detailed interpretation of its age range.
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5.2. Palaeoenvironment and Palaeoecology

This palynological assemblage from the Lastres Formation is mainly dominated by
palynomorphs of continental origin (spores fundamentally). However, prasinophytes,
dinoflagellate cysts, and scolecodonts probably of autochthonous origin, have also been
found indicating that the depositional setting was a transitional environment with marine
influence like a paralic sedimentary environment. This interpretation is consistent with a
deltaic environment previously reported for the Lastres Fm. by other authors [3,36] that is
in tune with the occasional presence of remains of open marine ammonites in the studied
sections [6]. The possibility of an open marine depositional setting close to the coast is
not consistent with this palynological assemblage, since palynological slides are plenty of
well-preserved cuticles and wood remains with little transport. In addition, the presence of
tree trunks preserved in situ in life position and also the presence of different remains of
macroflora [2] reinforce this interpretation of a transitional (paralic) environment.

The quality of preservation of the palynomorphs is not homogeneous. This could
be explained because some of them probably suffer long-distance transport representing
allochthonous pollen/spores, which is the case with some poorly preserved taxa such as
Pilosisporites and Aequitriradites, with affinities related to ferns and mosses, respectively [40].
These two groups of plants are less tolerant to salinity, living in more protected and
continental environments. On the other hand, most of the bisaccate pollen grains present a
deficient to bad preservation and they could be allochthonous in origin. Abbink [53] and
Abbink et al. [52] argue that most of the bisaccate pollen (such as Alisporites) could have
their origin in upland SEGs (sporomorph eco-group) which is consistent with previous
interpretation since these upland areas would be located several kilometres away from the
depositional setting.

On the other hand, in addition to the parautochthonous or allochthonous prasino-
phytes, dinoflagellate cysts, scolecodonts, and foraminiferal test lining, the presence of
unseparated tetrads of Classopollis sp. is suggestive of a little transport from the parent-plant
that is likely representative of the autochthonous flora. Classopollis, is a pollen commonly
related to tree-size conifers belonging to the Cheirolepidiaceae family, that show xero-
phytic and halophytic adaptations inhabiting disturbed environments as they are coastal
areas [52,55]. In particular, Volkheimer et al. [60] considered Classopollis from the Lajas
Formation in the Middle Jurassic of the Neuquén Basin (Argentina) as a thermophilic
coastal proxy related to extraordinary flooding in well-drained soils of the delta plain.

The mixture of taxa related to different botanical affinities and associated with different
types of environments, such as marine-influenced brackish environments (dinoflagellate
cyst, foraminiferal test linings, prasinophytes, etc.), coastal (Classopollis spp. was one of the
more abundant palynomorphs with Araucariacites, as well as Callialasporites; Exesipollenites
are also present), high-sinuosity rivers/lowlands (most of the fern and bryophyte spores;
see Table 1) and uplands (Alisporites was the third most common genera in the Lastres
assemblage) suggests that during the Late Jurassic the Asturian coast dominated by deltas
would be composed of different subenvironments each of them dominated by different
botanical communities. Taking into account previous sedimentological data and observa-
tions during the collection of the palynological samples, we have drawn an interpretation of
the most probable distribution of the plant communities in the Asturian environments of the
Upper Jurassic, based on the classification in SEGs (Sporomorphs Eco-groups; sensu [52,53])
of the different palynomorphs (Figure 10).

On the one hand, there are a group of palynomorphs that would be related to upland
eco-groups, as would be the case of the bisaccate pollen such as Alisporites (the third
most frequent genus in the assemblage) or Pinuspollenites. These palynomorphs present
worse preservation than other taxa which could indicate an allochthonous origin, which
would be consistent with upland areas [52,53] that were further away from the depositional
setting. Most of these groups of bisaccate forms have been related to conifers of families
Podocarpaceae and Pinaceae [41], which would inhabit areas of higher altitude.
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Many of the taxa present in the Lastres Fm. show affinities with lowland SEG (e.g.,
Cicatricosisporites, Concavissimisporites, Cycadopytes, Contignisporites, Deltoidosora, Striatella,
Gleicheniidites, Impardecispora, Ischyosporites, Matonisporites, Monosulcites, Osmundacidites,
Perinopollenites, or Trilobosporites). These lowland communities probably would be vege-
tation close to freshwater swamps and ponds in flood plains, with combination of taxa
adapted to drier and wetter environmental conditions [52,53], likely without influence of
salt water. In the case of the Lastres Fm., these plant communities would be placed in the
lower delta plain, which is an area with little marine influence dominated by swampy
conditions and areas of freshwater. Most types of ferns need shady and humid environ-
ments to grow, and hence they would be located closer to the freshwater masses. However,
other taxa of this SEG could be located in less humid areas of the lowland. For example,
the ferns of the Family Matoniaceae (represented in this assemblage by both form-genera
Dictyophyllidites and Matonisporites) currently inhabit the mountain slopes in the Malaysian
Archipelago and present cuticles that make them resistant to differences of temperature
during the day [89,90]. Nevertheless, the distribution of this family of ferns during the
Mesozoic was wider and its possible habitats were more diverse [90]. It is also the case
of the ferns of the family Gleicheniaceae, represented in the Lastres Fm. by the genus
Gleicheniidites, which are resistant to direct sunlight. These ferns are currently common in
subtropical regions [89]. Although most of the taxa of this type of plant community would
correspond to pteridophytes (see botanical affinities in Table 1), woody plants from other
groups such as Cycadophytes [41] or taxodiaceous conifers would also be common in Late
Jurassic communities [52,91].

Some species related to river SEG would be placed associated with freshwater flu-
vial channels [52,53], such as Leptolepidites spp. (the second most abundant taxon), or
Stereisporites and Staplinisporites, which are related to Bryophytes and Lycopodiaceae-
Selaginellaceae [41]. These plant groups present high water requirements consistent with
riverbank communities that offered constant humidity and were possibly periodically
submerged [52,53].

Finally, in the Lastres Fm., the palynomorphs related to coastal environments are
abundant (Coastal SEG), corresponding to pollen or spore plant producers that would grow
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close to the coast possibly supporting conditions of certain salinity. Taking into account
the sedimentology of the study area, these plant communities were possibly located in the
delta plain and the palynomorphs related to this SEG would be Classopollis (=Corollina),
Callialasporites, Araucariacites, and Exesipollenites [52,53]. Exesipollenites presents affinities
with the family Cupressaceae and both Callialasporites and Araucariacites have been re-
lated to Araucaraceae conifers [65,66,69,73]. Classopollis was one of the most abundant
pollen grains, clearly related to Cheirolepidiaceae [63]. This is a group of abundant and
diversified conifers in the Mesozoic, many of which would be adapted to coastal condi-
tions and with tendency to establish extensive forests in tropical to subtropical lowland
areas [63]. Although their ecological affinities are controversial, they have been widely
related to thermophilus and drought-resistant shrubs and trees [52,53]. In the Lastres Fm.,
Cheirolepidiaceae was already known due to the presence of wood remains attributed to
Protocupressinoxylon purbeckensis [18,92], a tree-like taxon (about 13 m in altitude) that has
also been associated with coastal ecosystems and with a certain tolerance to salinity (spray
or salty soils) [18,93].

On the other hand, the most abundant palynomorph, Spheripollenites, presents an
ambiguous biological affinity [94,95], frequently assigned to gymnosperm pollen. It was
related to the inner bodies of Cheirolepidiaceae-Cupressaceae pollen [52,53,96] while some
authors have associated it with other families such as Cupressaceae [97] or Araucari-
aceae [74]. The presence of a large number of Spherinopollenites spp., as occurs in the Lastres
Fm. together with a large number of Classopollis, was related in some cases to a more
developed annual dry season [29,52,53,63,98]. The interpretation of a seasonal climate
during the Kimmeridgian in the Asturias area is also supported by the presence of several
palynomorphs linked with different climate and environmental conditions. These climatic
interpretations are partially consistent with previous data for the underlying Lower Kim-
meridgian Vega Formation based on palaeosoil studies. The sediments of Vega Fm. were
deposited during a subhumid to semiarid seasonal climate [99], and these conditions are
also compatible with the palynological assemblage found in the Lastres Fm. At the same
time, this is in tune with the palaeoecological conditions observed for the Upper Jurassic
of other regions in Northern Spain according to the palaeobotanical macro remains [100].
In addition, similarities in the fauna assemblages [99,101] and in the palaeoenvironmental
conditions between the Upper Jurassic formations from Asturias and the Morrison Fm.
(western North America) have been found [99]. In the Morrison Fm. and in the Vega
Fm., a seasonally variable precipitation regime was interpretated, although the Morrison
Formation would represent a drier and warmer environment [99].

Moreover, the abundant tracks and remains of giant plant-eating dinosaurs such as
sauropods, stegosaurs, and ornithopods in the studied strata of the Lastres Fm. [3,13,101]
suggest the presence of abundant and diverse vegetation. Therefore, the denser vegetation
areas (possibly the plant communities associated with river channels and ponds or swamps
in the most protected area of the delta; see Figure 10) served as food sources for these
groups of dinosaurs.

5.3. Evidence of Wildfires

The detailed analysis of the samples in the scanning electron microscope (SEM) al-
lowed us to identify the frequent presence of charcoalified wood remains. Small fragments
showing homogenised cell walls (see Figure 4M,N) occur when the wood is exposed to
the fire. Some of the remains are composed of secondary xylem with wood cells that
present both empty cell lumina and walls with homogenised middle lamellas (Figure 4M)
indicating high temperatures during the combustion process ranging from 220–230 ◦C [102]
to 300–325 ◦C [103] depending on the different studies and the possible oxygen ingress on
the fire system [104]. Nevertheless, some of the charcoalified remains still preserve a thin
separation between lamellas (Figure 4M) while other records show middle lamellas that
are not fused (Figure 4O) indicating a variety of regimes of wildfires in the Kimmeridgian
palaeoenvironments of Asturias during the deposition of the Lastres Formation. In addition,
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the presence of these charcoalified remains in all the studies samples suggests that the
wildfires were recurrent in this formation.

6. Conclusions

The studied sections from the Lastres Fm. in northwestern Spain reveal a very homo-
geneous palynofloral assemblage, in terms of diversity, along the different stratigraphical
levels. A total of 62 morphospecies and 49 morphogenera of palynomorphs have been
identified, including pteridophyte and bryophyte spores, gymnosperm pollen, acritarchs,
dinoflagellate cysts, marine, and freshwater algae, scolecodonts, as well as cuticle and wood
debris. The relative dominance of continental palynomorphs and the presence of some
dinoflagellate cysts, Prasinophyceae, and scolecodonts suggest a transitional depositional
setting, with an occasional marine influence, but with indicators of freshwater, compatible
with interdistributary depositional environments. The age of some key taxa indicates
that the palynological assemblage cannot be older than the Kimmeridgian, indicating a
Kimmeridgian-Tithonian age. The botanical and environmental affinities of the pollen and
spores suggest the presence of different vegetation, including plant communities in humid
areas such as riverbanks (riparian) and small freshwater ponds (dominated by bryophytes
and ferns) and a coastal plant community that would inhabit more arid areas (dominated
by gymnosperms and some pteridophytes), where these masses of vegetation probably
offered food and protection to some of the herbivorous dinosaurs of the Lastres Fm. The
mixed climatic preferences of the studied taxa suggest a seasonal environment for the
Kimmeridgian of Asturias, in tune with previous palaeontological and sedimentological
studies. In addition, the dominance of some palynomorphs is indicative of arid and warm
conditions at least during some periods or seasons. Finally, the SEM analyses of micro-
scopical wood remains indicate the presence of wildfires during the Kimmeridgian in “The
Dinosaur Coast” affecting the plant communities in this zone.
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