OpenBloodFlow: A User-Friendly OpenCV-Based Software Package for Blood Flow Velocity and Blood Cell Count Measurement for Fish Embryos
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Zebrafish and Medaka Maintenance and Embryo Collection
2.2. Chemical Treatment
2.3. Zebrafish and Medaka Video Processing
2.4. Video Stabilization
2.5. Python Processing Modules
2.6. Blood flow Velocity Measurement Algorithm
2.7. Computation of Blood Flow Velocity
2.8. Implementation of Algorithm
2.9. Blood Cell Counting
2.10. Statistical Test
2.11. Graphical User Interface Designing
3. Results
3.1. Overview of Analysis Pipeline for Blood Flow Measurement
3.2. Easy Operation of OpenCV to Measure Zebrafish Blood Flow
3.3. Methodology Validation Case 1: Blood Flow Measurement in Zebrafish Larvae at Different Ontological Stages
3.4. Methodology Validation Case 2: Comparison of Blood Flow Velocity in Zebrafish after PHZ Exposure
3.5. Methodology Validation Case 3: Comparison of Blood Flow Velocity in Zebrafish after RAC Exposure
3.6. Methodology Validation Case 4: Comparison of Blood Flow Velocity in Medaka
3.7. Methodology Validation Case 5: Blood Cell Count Validation
4. Discussion
4.1. Advantage of Current Reported OpenCV Method
4.2. Potential Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Somer, T.; Meiselman, H.J. Disorders of blood viscosity. Ann. Med. 1993, 25, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Salman, H.E.; Yalcin, H.C. Advanced blood flow assessment in Zebrafish via experimental digital particle image velocimetry and computational fluid dynamics modeling. Micron 2020, 130, 102801. [Google Scholar] [CrossRef] [PubMed]
- Benslimane, F.M.; Zakaria, Z.Z.; Shurbaji, S.; Abdelrasool, M.K.A.; Al-Badr, M.A.H.; Al Absi, E.S.K.; Yalcin, H.C. Cardiac function and blood flow hemodynamics assessment of zebrafish (Danio rerio) using high-speed video microscopy. Micron 2020, 136, 102876. [Google Scholar] [CrossRef] [PubMed]
- Krzykwa, J.C.; Olivas, A.; Sellin Jeffries, M.K. Development of cardiovascular and neurodevelopmental metrics as sublethal endpoints for the Fish embryo toxicity test. Environ. Toxicol. Chem. 2018, 37, 2530–2541. [Google Scholar] [CrossRef] [PubMed]
- Santoso, F.; Sampurna, B.P.; Lai, Y.-H.; Liang, S.-T.; Hao, E.; Chen, J.-R.; Hsiao, C.-D. Development of a simple imagej-based method for dynamic blood flow tracking in zebrafish embryos and its application in drug toxicity evaluation. Inventions 2019, 4, 65. [Google Scholar] [CrossRef] [Green Version]
- Yeo, S.; Yoon, C.; Lien, C.-L.; Song, T.-K.; Shung, K.K. Monitoring of adult zebrafish heart regeneration using high-frequency ultrasound spectral doppler and Nakagami imaging. Sensors 2019, 19, 4094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho-Chiang, C.; Huang, H.; Huang, C.-C. High-frequency ultrasound deformation imaging for adult zebrafish during heart regeneration. Quant. Imaging Med. Surg. 2020, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Parker, T.; Libourel, P.-A.; Hetheridge, M.J.; Cumming, R.I.; Sutcliffe, T.P.; Goonesinghe, A.C.; Ball, J.S.; Owen, S.F.; Chomis, Y.; Winter, M.J. A multi-endpoint in vivo larval zebrafish (Danio rerio) model for the assessment of integrated cardiovascular function. J. Pharmacol. Toxicol. Methods 2014, 69, 30–38. [Google Scholar] [CrossRef]
- Zickus, V.; Taylor, J.M. 3D+ time blood flow mapping using SPIM-microPIV in the developing zebrafish heart. Biomed. Opt. Express 2018, 9, 2418–2435. [Google Scholar] [CrossRef] [PubMed]
- Watkins, S.C.; Maniar, S.; Mosher, M.; Roman, B.L.; Tsang, M.; St Croix, C.M. High resolution imaging of vascular function in zebrafish. PLoS ONE 2012, 7, e44018. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.R.; Green, J.M.; Moreman, J.; Gunnarsson, L.M.; Mourabit, S.; Ball, J.; Winter, M.J.; Trznadel, M.; Correia, A.; Hacker, C. Cardiovascular effects and molecular mechanisms of bisphenol a and its metabolite MBP in zebrafish. Environ. Sci. Technol. 2018, 53, 463–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakaria, Z.Z.; Benslimane, F.M.; Nasrallah, G.K.; Shurbaji, S.; Younes, N.N.; Mraiche, F.; Da’as, S.I.; Yalcin, H.C. Using zebrafish for investigating the molecular mechanisms of drug-induced cardiotoxicity. BioMed Res. Int. 2018, 2018, 1642684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisa-Beygi, S.; Benslimane, F.M.; El-Rass, S.; Prabhudesai, S.; Abdelrasoul, M.K.A.; Simpson, P.M.; Yalcin, H.C.; Burrows, P.E.; Ramchandran, R. Characterization of endothelial cilia distribution during cerebral-vascular development in zebrafish (Danio rerio). Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2806–2818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, A.; Vamossy, Z. OpenCV C# wrapper based video enhancement using different optical flow methods in the super-resolution. In Proceedings of the 2008 6th International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, 26–27 September 2008; pp. 1–6. [Google Scholar]
- Walls, G. The evolutionary history of eye movements. Vis. Res. 1962, 2, 69–80. [Google Scholar] [CrossRef]
- Matthis, J.S.; Muller, K.S.; Bonnen, K.; Hayhoe, M.M. Retinal optic flow during natural locomotion. BioRxiv 2021. [Google Scholar] [CrossRef]
- Gabriel, E.; Diggle, P.J. Second-order analysis of inhomogeneous spatio-temporal point process data. Stat. Neerl. 2009, 63, 43–51. [Google Scholar] [CrossRef]
- Widodo, C.; Adi, K.; Gernowo, R. Medical image processing using python and open cv. In Journal of Physics: Conference Series, Proceedings of the 9th International Seminar on New Paradigm and Innovation of Natural Sciences and Its Application, Central Java, Indonesia, 22 October 2019; IOP Publishing: Bristol, UK, 2020; p. 012003. [Google Scholar]
- Bumacod, D.S.F.; Delfin, J.V.; Linsangan, N.; Angelia, R.E. Image-Processing-based Digital Goniometer using OpenCV. In Proceedings of the 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 3–7 December 2020; pp. 1–6. [Google Scholar]
- Awaludin, M.; Yasin, V. Application of Oriented Fast and Rotated Brief (Orb) and Bruteforce Hamming in Library Opencv for Classification of Plants. J. Inf. Syst. Appl. Manag. Account. Res. 2020, 4, 51–59. [Google Scholar]
- Plyer, A.; Le Besnerais, G.; Champagnat, F. Massively parallel Lucas Kanade optical flow for real-time video processing applications. J. Real-Time Image Process. 2016, 11, 713–730. [Google Scholar] [CrossRef]
- Oron, S.; Bar-Hille, A.; Avidan, S. Extended lucas-kanade tracking. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 142–156. [Google Scholar]
- Ter Laan, M.; Van Dijk, J.; Elting, J.; Staal, M.; Absalom, A. Sympathetic regulation of cerebral blood flow in humans: A review. Br. J. Anaesth. 2013, 111, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Schmudderich, J.; Willert, V.; Eggert, J.; Rebhan, S.; Goerick, C.; Sagerer, G.; Korner, E. Estimating object proper motion using optical flow, kinematics, and depth information. IEEE Trans. Syst. Man Cybern. Part B 2008, 38, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, H. Zebrafish and medaka: Important animal models for human neurodegenerative diseases. Int. J. Mol. Sci. 2021, 22, 10766. [Google Scholar] [CrossRef]
- Sarmah, S.; Marrs, J.A. Zebrafish as a vertebrate model system to evaluate effects of environmental toxicants on cardiac development and function. Int. J. Mol. Sci. 2016, 17, 2123. [Google Scholar] [CrossRef] [PubMed]
- Vornanen, M.; Hassinen, M. Zebrafish heart as a model for human cardiac electrophysiology. Channels 2016, 10, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avdesh, A.; Chen, M.; Martin-Iverson, M.T.; Mondal, A.; Ong, D.; Rainey-Smith, S.; Taddei, K.; Lardelli, M.; Groth, D.M.; Verdile, G. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: An introduction. JoVE J. Vis. Exp. 2012, 69, e4196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, K.; Kinoshita, M.; Naruse, K.; Tanaka, M.; Kamei, Y. Medaka: Biology, Management, and Experimental Protocols; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2019. [Google Scholar]
- Hoyberghs, J.; Bars, C.; Ayuso, M.; Van Ginneken, C.; Foubert, K.; Van Cruchten, S. DMSO Concentrations up to 1% are Safe to be Used in the Zebrafish Embryo Developmental Toxicity Assay. Front. Toxicol. 2021, 3, 804033. [Google Scholar] [CrossRef]
- Hallare, A.; Nagel, K.; Köhler, H.-R.; Triebskorn, R. Comparative embryotoxicity and proteotoxicity of three carrier solvents to zebrafish (Danio rerio) embryos. Ecotoxicol. Environ. Saf. 2006, 63, 378–388. [Google Scholar] [CrossRef]
- Henao, A.; Apparicio, P.; Maignan, D. One metre plus (1M+): A multifunctional open-source sensor for bicycles based on Raspberry Pi. Sensors 2021, 21, 5812. [Google Scholar] [CrossRef]
- Pulli, K.; Baksheev, A.; Kornyakov, K.; Eruhimov, V. Real-time computer vision with OpenCV. Commun. ACM 2012, 55, 61–69. [Google Scholar] [CrossRef]
- Dharmawan, T.; Hanafiah, N. Clicker Bot for Gacha Games Using Image Recognition. Procedia Comput. Sci. 2021, 179, 598–605. [Google Scholar] [CrossRef]
- Bogdanchikov, A.; Zhaparov, M.; Suliyev, R. Python to learn programming. In Journal of Physics: Conference Series, Proceedings of the 2013 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2013), Jakarta, Indonesia, 24–25 January 2013; IOP Publishing: Bristol, UK, 2013; p. 012027. [Google Scholar]
- Malakhov, A. Composable multi-threading for python libraries. In Proceedings of the 15th Python in Science Conference, Austin, TX, USA, 10–16 July 2016; pp. 11–17. [Google Scholar]
- Bhagat, V.; Robins, B.; Pallavi, M.O. Sparx-Data Preprocessing Module. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019; pp. 1–6. [Google Scholar]
- Tanaka, Y.; Taura, K.; Sato, M.; Yonezawa, A. Performance evaluation of OpenMP applications with nested parallelism. In Proceedings of the 5th International Workshop on Languages, Compilers, and Run-Time Systems for Scalable Computers, Rochester, NY, USA, 25–27 May 2000; pp. 100–112. [Google Scholar]
- Singh, N.; Browne, L.-M.; Butler, R. Parallel astronomical data processing with Python: Recipes for multicore machines. Astron. Comput. 2013, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Farnebäck, G. Two-frame motion estimation based on polynomial expansion. In Proceedings of the Scandinavian Conference on Image Analysis, Halmstad, Sweden, 29 June–2 July 2003; pp. 363–370. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Mordvintsev, A.; Abid, K. Opencv-Python Tutorials Documentation. 2014. Available online: https://www.kaggle.com/blobs/download/forum-message-attachment-files/16192/OpenCV-Python%20Tutorials-2017.pdf (accessed on 22 March 2022).
- Farhan, A.; Kurnia, K.A.; Saputra, F.; Chen, K.H.-C.; Huang, J.-C.; Roldan, M.J.M.; Lai, Y.-H.; Hsiao, C.-D. An OpenCV-Based Approach for Automated Cardiac Rhythm Measurement in Zebrafish from Video Datasets. Biomolecules 2021, 11, 1476. [Google Scholar] [CrossRef]
- Husseini, S. A Survey of Optical Flow Techniques for Object Tracking. Bachelor’s Thesis, Tempere University, Tampere, Finland, 2017. [Google Scholar]
- Avdoshenko, S.M.; Makarov, D.E. Reaction coordinates and pathways of mechanochemical transformations. J. Phys. Chem. B 2016, 120, 1537–1545. [Google Scholar] [CrossRef]
- Gollapudi, S. Motion Analysis and Object Tracking. In Learn Computer Vision Using OpenCV; Springer: Berlin/Heidelberg, Germany, 2019; pp. 119–145. [Google Scholar]
- Singh, H. Advanced image processing using opencv. In Practical Machine Learning and Image Processing; Springer: Berlin/Heidelberg, Germany, 2019; pp. 63–88. [Google Scholar]
- Lobachev, O.; Steiniger, B.S.; Guthe, M. Compensating anisotropy in histological serial sections with optical flow-based interpolation. In Proceedings of the SCCG, Mikulov, Czech Republic, 15–17 May 2017; pp. 1–11. [Google Scholar]
- Sharmin, N.; Brad, R. Optimal filter estimation for Lucas-Kanade optical flow. Sensors 2012, 12, 12694–12709. [Google Scholar] [CrossRef] [Green Version]
- Panchenko, O.; Ramazanov, I. Investigation of the Method of Interpolation of Movement to Video Frames. In Proceedings of the 2021 International Russian Automation Conference (RusAutoCon), Sochi, Russia, 5–11 September 2021; pp. 745–750. [Google Scholar]
- Wood, M.A. Simple programing: Flow control. In Python and Matplotlib Essentials for Scientists and Engineers; Morgan & Claypool Publishers: San Rafael, CA, USA, 2015. [Google Scholar]
- Böttcher, A.; Wenzel, D. The Frobenius norm and the commutator. Linear Algebra Its Appl. 2008, 429, 1864–1885. [Google Scholar] [CrossRef] [Green Version]
- Ding, B.; Zheng, L.; Zhu, Y.; Li, N.; Jia, H.; Ai, R.; Wildberg, A.; Wang, W. Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics 2015, 31, 2225–2227. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.S.; Kushwaha, A.K.; Sagar, S.; Singh, S. Eye Tracking Using Deep Learning. Bachelor’s Thesis, Visvesvaraya Technological University, Belgaum, India, 2021. [Google Scholar]
- Kim, D.-H.; Gratchev, I. Application of Optical Flow Technique and Photogrammetry for Rockfall Dynamics: A Case Study on a Field Test. Remote Sens. 2021, 13, 4124. [Google Scholar] [CrossRef]
- Foy, W.H. Position-location solutions by Taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst. 1976, AES-12, 187–194. [Google Scholar] [CrossRef]
- Bruhn, A.; Weickert, J.; Schnörr, C. Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. Int. J. Comput. Vis. 2005, 61, 211–231. [Google Scholar] [CrossRef] [Green Version]
- Buxton, R.B.; Frank, L.R. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J. Cereb. Blood Flow Metab. 1997, 17, 64–72. [Google Scholar] [CrossRef]
- Khalilbayli, F.; Bayram, B.; İnce, G. Unsupervised Visual Ego-motion Learning for Robots. In Proceedings of the 2019 4th International Conference on Computer Science and Engineering (UBMK), Samsun, Turkey, 11–15 September 2019; pp. 676–681. [Google Scholar]
- Jiménez, A.; García-Díaz, V.; Anzola, J. Design of a system for vehicle traffic estimation for applications on IoT. In Proceedings of the 4th Multidisciplinary International Social Networks Conference, Bangkok, Thailand, 17–19 July 2017; pp. 1–6. [Google Scholar]
- Mendes, P.A.; Mendes, M.; Coimbra, A.P.; Crisóstomo, M.M. Movement detection and moving object distinction based on optical flow. In Proceedings of the Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering, London, UK, 3–5 July 2019; pp. 3–5. [Google Scholar]
- Gurav, R.M.; Kadbe, P.K. Real time finger tracking and contour detection for gesture recognition using OpenCV. In Proceedings of the 2015 International Conference on Industrial Instrumentation and Control (ICIC), Pune, India, 28–30 May 2015; pp. 974–977. [Google Scholar]
- Asyhari, M.W.; Sigit, R.; Dewantara, B.S.B. Comparison of Optical Flow Methods: Study About Left Ventricular Tracking in Multi View Echocardiographic Images. In Proceedings of the 2021 International Electronics Symposium (IES), Surabaya, Indonesia, 29–30 September 2021; pp. 137–143. [Google Scholar]
- Li, Q.; Chen, X.; Zhang, H.; Yin, L.; Chen, S.; Wang, T.; Lin, S.; Liu, X.; Zhang, X.; Zhang, R. Automatic human spermatozoa detection in microscopic video streams based on OpenCV. In Proceedings of the 2012 5th International Conference on BioMedical Engineering and Informatics, Chongqing, China, 16–18 October 2012; pp. 224–227. [Google Scholar]
- Poda, X.; Qirici, O. Shape Detection and Classification Using OpenCV and Arduino Uno. RTA-CSIT 2018, 2280, 128–136. [Google Scholar]
- Suzuki, S. Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 1985, 30, 32–46. [Google Scholar] [CrossRef]
- Hughes, P. Python and tkinter programming. Linux J. 2000, 1, 23–77. [Google Scholar]
- Saoji, S.; Dua, N.; Choudhary, A.K.; Phogat, B. Air Canvas Application Using OpenCV and Numpy in Python. IRJET 2021, 8, 1761–1765. [Google Scholar]
- Wang, L.-W.; Cui, X.-Y.; He, J.-F.; Duan, S.; Liu, C.-R.; Shan, C.-B.; Wang, Y.; Ma, C.-M. Hydroxysafflor yellows alleviate thrombosis and acetaminophen-induced toxicity in vivo by enhancing blood circulation and poison excretion. Phytomedicine 2021, 87, 153579. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Kaehler, A.; Bradski, G. Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2016. [Google Scholar]
- Chandan, G.; Jain, A.; Jain, H. Real time object detection and tracking using Deep Learning and OpenCV. In Proceedings of the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2018; pp. 1305–1308. [Google Scholar]
- Sharma, T.; Kumar, S.; Yadav, N.; Sharma, K.; Bhardwaj, P. Air-swipe gesture recognition using OpenCV in Android devices. In Proceedings of the 2017 International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET), Chennai, India, 16–18 February 2017; pp. 1–6. [Google Scholar]
- Koch, S.; Schneider, T.; Williams, F.; Panozzo, D. Geometric computing with python. In ACM SIGGRAPH 2019 Courses; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–45. [Google Scholar]
- Verma, A.K. A Python-based tool for constructing observables from the DSN’s closed-loop archival tracking data files. SoftwareX 2022, 19, 101190. [Google Scholar] [CrossRef]
- Schwerte, T.; Uberbacher, D.; Pelster, B. Non-invasive imaging of blood cell concentration and blood distribution in zebrafish Danio rerio incubated in hypoxic conditions in vivo. J. Exp. Biol. 2003, 206, 1299–1307. [Google Scholar] [CrossRef]
Author and Publication Year | Major Facility to Capture Heartbeat Images | Measurement Principle | Region of Interests (ROI) | Endpoints Measured |
---|---|---|---|---|
Santoso et al. (2019) [5] | High-speed camera with an inverted microscope | Dynamic pixel changes over time | Dorsal Aorta, Posterior Cardinal Vein | Blood flow velocity, stroke volume |
Yeo et al. (2019) [6] | Custom-built, 64-channel high-frequency array imaging system and a high-frequency linear array transducer with 256 elements | Pulsed wave spectral Doppler imaging | Heart, dorsal aorta | Blood flow velocity, Heart regeneration |
Chiang et al. (2020) [7] | A 70-MHz ultrasound imaging system and single-element transducer | 2D autocorrelation velocity estimation algorithm | Heart, dorsal aorta | Blood flow, tissue velocity, and cardiac deformation measurement |
Parker et al. (2014) [8] | High-speed camera with an inverted microscope | Change in pixel density on cardiac muscles area | Dorsal Aorta, Posterior Cardinal Vein | Blood flow velocity, heart rate |
Zickus and Taylor (2018) [9] | SPIM-μPIV (Selective plane illumination microscopy combined with Micro-particle image velocimetry) | Fluorescence imaging over interrogation windows to get a correlation | Dorsal Aorta, Posterior Cardinal Vein | Blood flow velocity, stroke volume |
Watkins et al. (2012) [10,11] | Inverted Fluorescence Microscope with Hamamatsu Flash 2.8 CMOS Camera | Subarray pixel differences over time | Dorsal Aorta | Blood flow velocity |
This study | High-speed digital charged coupled Device with an inverted microscope | Dense optical flow measurement algorithm | Dorsal Aorta | Blood flow velocity and blood cells count |
Software Name | ROI Selection | Availability | Batch Processing |
---|---|---|---|
MicroZebraLab | Manual | Paid software | No |
Danioscope | Manual | Paid software | No |
Trackmate ImageJ | Manual | Freeware | No |
OpenBloodFlow (This study) | Automatic | Freeware | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farhan, A.; Saputra, F.; Suryanto, M.E.; Humayun, F.; Pajimna, R.M.B.; Vasquez, R.D.; Roldan, M.J.M.; Audira, G.; Lai, H.-T.; Lai, Y.-H.; et al. OpenBloodFlow: A User-Friendly OpenCV-Based Software Package for Blood Flow Velocity and Blood Cell Count Measurement for Fish Embryos. Biology 2022, 11, 1471. https://doi.org/10.3390/biology11101471
Farhan A, Saputra F, Suryanto ME, Humayun F, Pajimna RMB, Vasquez RD, Roldan MJM, Audira G, Lai H-T, Lai Y-H, et al. OpenBloodFlow: A User-Friendly OpenCV-Based Software Package for Blood Flow Velocity and Blood Cell Count Measurement for Fish Embryos. Biology. 2022; 11(10):1471. https://doi.org/10.3390/biology11101471
Chicago/Turabian StyleFarhan, Ali, Ferry Saputra, Michael Edbert Suryanto, Fahad Humayun, Roi Martin B. Pajimna, Ross D. Vasquez, Marri Jmelou M. Roldan, Gilbert Audira, Hong-Thih Lai, Yu-Heng Lai, and et al. 2022. "OpenBloodFlow: A User-Friendly OpenCV-Based Software Package for Blood Flow Velocity and Blood Cell Count Measurement for Fish Embryos" Biology 11, no. 10: 1471. https://doi.org/10.3390/biology11101471
APA StyleFarhan, A., Saputra, F., Suryanto, M. E., Humayun, F., Pajimna, R. M. B., Vasquez, R. D., Roldan, M. J. M., Audira, G., Lai, H. -T., Lai, Y. -H., & Hsiao, C. -D. (2022). OpenBloodFlow: A User-Friendly OpenCV-Based Software Package for Blood Flow Velocity and Blood Cell Count Measurement for Fish Embryos. Biology, 11(10), 1471. https://doi.org/10.3390/biology11101471