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Simple Summary: Artificial intelligence (AI) has been established to contribute in number of research
areas such as medical imaging, diagnostic tools, ultrasound, cardiac scans, X-rays and blood flow
analysis. OpenCV is a library having programming functions that provide ample of modules for
digital image processing and artificial intelligence. In this study, we introduced a software package
as OpenBloodFlow that can measure blood flow velocity and blood cell count precisely by selecting
the dorsal aorta of zebrafish. The program is based on python programing language, which is a
high-level, general-purpose language to solve biological problems. We present a cost-effective and
fully automatic tool to perform the analysis as compared to commercially available software(s) that
are not freely available to access. The key features of the program include a user-friendly graphical
user interface (GUI), blood flow velocity and blood cell count in the given video dataset. The results
are automatically saved in a CSV file without using any external plugins or third-party software and
the program does not require GPU average CPU can be used for the execution.

Abstract: The transparent appearance of fish embryos provides an excellent assessment feature
for observing cardiovascular function in vivo. Previously, methods to conduct vascular function
assessment were based on measuring blood-flow velocity using third-party software. In this study,
we reported a simple software, free of costs and skills, called OpenBloodFlow, which can measure
blood flow velocity and count blood cells in fish embryos for the first time. First, videos captured by
high-speed CCD were processed for better image stabilization and contrast. Next, the optical flow of
moving objects was extracted from the non-moving background in a frame-by-frame manner. Finally,
blood flow velocity was calculated by the Gunner Farneback algorithm in Python. Data validation
with zebrafish and medaka embryos in OpenBloodFlow was consistent with our previously published
ImageJ-based method. We demonstrated consistent blood flow alterations by either OpenBloodFlow
or ImageJ in the dorsal aorta of zebrafish embryos when exposed to either phenylhydrazine or
ractopamine. In addition, we validated that OpenBloodFlow was able to conduct precise blood cell
counting. In this study, we provide an easy and fully automatic programming for blood flow velocity
calculation and blood cell counting that is useful for toxicology and pharmacology studies in fish.
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1. Introduction

Blood flow velocity is one of the important parameters to assess the health of blood
circulation, which is affected by many factors including blood vessel size, the viscosity of
blood and heart pumping is controlled by the central nervous system [1]. Although this
parameter is important, few methods have been established [2] for measuring non-invasive
and reliable blood flow velocity in the low vertebrate model of zebrafish. Previously, most
studies used commercial software of either MicroZebraLab™ [3] or DanioScope™ [4] to
calculate the blood flow velocity in zebrafish with a robust calculation. However, since
they were paid software, it is not always feasible to use for every laboratory due to limited
resources. Therefore, our lab has established an ImageJ-based method to estimate blood
flow velocity in zebrafish from 2D videos using a simple light microscope coupled with a
high-speed camera [5]. Other previously published methods for blood flow measurement
in zebrafish are also summarized in Table 1 for comparison. Nevertheless, the intensive
labor and long steps needed to analyze the videos and more research to develop a fast,
low-cost, fully automatic, and reliable non-invasive method for measuring blood flow
velocity systems in fish.

Table 1. Comparison of the previous methods used to detect blood flow velocity and associated
endpoints in zebrafish.

Author and Publication Year Major Facility to Capture
Heartbeat Images Measurement Principle Region of Interests (ROI) Endpoints Measured

Santoso et al. (2019) [5] High-speed camera with an
inverted microscope

Dynamic pixel changes over
time

Dorsal Aorta, Posterior
Cardinal Vein

Blood flow velocity,
stroke volume

Yeo et al. (2019) [6]

Custom-built, 64-channel
high-frequency array imaging
system and a high-frequency
linear array transducer with

256 elements

Pulsed wave spectral Doppler
imaging Heart, dorsal aorta Blood flow velocity,

Heart regeneration

Chiang et al. (2020) [7]
A 70-MHz ultrasound
imaging system and

single-element transducer

2D autocorrelation velocity
estimation algorithm Heart, dorsal aorta

Blood flow, tissue velocity,
and cardiac deformation

measurement

Parker et al. (2014) [8] High-speed camera with an
inverted microscope

Change in pixel density on
cardiac muscles area

Dorsal Aorta, Posterior
Cardinal Vein

Blood flow velocity,
heart rate

Zickus and Taylor (2018) [9]

SPIM-µPIV (Selective plane
illumination microscopy

combined with Micro-particle
image velocimetry)

Fluorescence imaging over
interrogation windows to get

a correlation

Dorsal Aorta, Posterior
Cardinal Vein

Blood flow velocity,
stroke volume

Watkins et al. (2012) [10,11]
Inverted Fluorescence

Microscope with Hamamatsu
Flash 2.8 CMOS Camera

Subarray pixel differences
over time Dorsal Aorta Blood flow velocity

This study
High-speed digital charged

coupled Device with an
inverted microscope

Dense optical flow
measurement algorithm Dorsal Aorta Blood flow velocity and blood

cells count

The assessment of fish cardiac endpoints [12] and cardiovascular physiology [13]
is complex and context dependent. In the world of computer vision, OpenCV has been
contributing for more than 30 years [14]. The intense work related to optical flow has been
done in gradient-based algorithms as a Spatio-temporal intensity module used to detect
surface objects [15–17]. OpenCV provides numerous applications in the biomedical signal
and medical image processing areas. The dimensions of analysis using OpenCV include
optical systems and clinical diagnosis through X-ray, ultrasound, magnetic resonance
imaging (MRI), nuclear medicine, and endoscopy [18]. Clinical examinations mostly rely
on these well-known techniques to follow up the physiological changes in treatment and
with help of AI number of advanced tools are available to investigate the clinical diagnosis.
Python programming language has an efficient level-data structure to incorporate object-
oriented programming (OOP) [19] and is compatible with working on modern operating
systems such as Windows and Linux. OpenCV library contains more than 300 functions
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and is widely applicable in videos to track, segment, recognize and detect the moving
objects [20]. OpenCV designs enable the user to implement real-time applications to capture
object features and this advantage is versatile to use in medical applications. The bounding
box theory in optical flow measurement has been well recognized for establishing the
concept of the region of interest (ROI) for detecting moving objects [21]. It is challenging to
determine the exact number of moving objects using traditional ROI-based algorithms [22].
Blood flow velocity measurement has computation barriers to detect the moving blood
cells due to poor visualization in the real-time analysis [23]. In this study, we proposed a
method by using an optical flow algorithm getting ROI selection that measures the blood
flow velocity and blood cell count in a given video dataset.

Zebrafish is a suitable animal model for practicing because its translucent body enables
researchers to perform studies as cardiac endpoints and blood velocity measurements.
Fish have different blood flow velocities due to the size and structure of blood vessels
in their circulatory system. Optical flow algorithms are designed to inquire about the
displacement of moving objects using sensory and visualization mechanisms depending
upon the acceleration of moving objects [24]. These algorithms are more precisely applicable
to the video frames that provide mean displacement of the moving objects from one frame
to another. Regarding powerful genetic and drug toxicity models, zebrafish and medaka
are relatively convenient to use for cardiovascular studies [25]. The translucent embryo
presents complete visibility to observe stages of embryogenesis. Zebrafish heart also
contains comparable morphological features to mammals and humans while having close
vascular anatomy to other vertebrates [26,27]. Moreover, the cardiovascular system in
zebrafish can be observed with great clarity in a non-invasive manner, which makes data
acquisition fast [28]. Similarly, medaka offers several advantages as a model organism for
human disease and drug discovery studies similar to zebrafish [29].

The blood velocity analysis method using animal models is highly significant in
biomedical research, and an automated approach for measuring blood flow velocity and
the blood cell count is very useful. Previously, the ImageJ-based method was considered
tedious and time-consuming for tracking blood cells. To overcome this disadvantage, this
study aimed to automatically measure blood flow velocity with blood cell counts in selected
ROI using cutting-edge computer technology. Additionally, several validation experiments
were conducted to compare blood flow velocity measurement side-by-side using ImageJ-
and OpenBloodFlow-based methods. Moreover, in our method, several videos can be batch
analyzed which is considered a solid breakthrough to facilitate data processing speed to
conduct cardiovascular physiology assessment.

2. Materials and Methods
2.1. Zebrafish and Medaka Maintenance and Embryo Collection

This study used wild-type AB strain zebrafish (Danio rerio) and wild-type Japanese
medaka (Oryzias latipes) as experimental animals. Both fish were maintained in a contin-
uously aerated water system. The temperature was maintained at 26 ◦C with 10/14 h of
dark/light cycle. The zebrafish and medaka maintenance was performed according to the
previous protocols [30,31]. All experiments were performed following the approval by
the International Animal Care and Use Committees (IACUCs) of Chung Yuan Christian
University (Approval No. 109001, issue date 15 January 2020).

To collect the embryos, sexually matured zebrafish with a 2:1 male/female ratio were
put into the breeding chamber at night. The following day, the separator was removed,
and the embryos were collected two hours after. The collected embryos were washed with
distilled water and kept in an incubator at 28 ◦C until further experimentation. On the
other hand, the medaka embryos were collected every morning and were labeled as 0 h
post-fertilization (hpf) for synchronization of the time. The embryos were washed using
distilled water and were kept in an incubator at 28 ◦C until further experimentation.
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2.2. Chemical Treatment

Phenylhydrazine (PHZ) and ractopamine (RAC) (Shanghai Macklin Biochemical Co.,
Ltd., Shanghai, China) were diluted as a stock solution of 1000 ppm (w/v) by using 100%
DMSO as a solvent and were further diluted using ddH2O. Zebrafish larvae at 48 hpf were
treated with either 0.15 ppm (w/v) PHZ or 4 ppm RAC for 24 h and the corresponding
blood flow alterations measured at 72 hpf. The control group was treated with 0.05% of
DMSO as the solvent control and the final DMSO concentration in the treatment group was
lower than 0.5%, which is still acceptable, according to the previous study [32,33].

2.3. Zebrafish and Medaka Video Processing

For blood vessel video acquisition, zebrafish embryos aged 2-, 3-, 4-, and 5-days post
fertilization (dpf) and medaka embryos aged 10 dpf were used and mounted with 3% methyl-
cellulose solution to immobilize body movement. A high-speed digital charged coupled
device (CCD) camera (AZ Instrument, Taichung City, Taiwan), mounted on an inverted mi-
croscope (ICX41, Sunny Optical Technology, Yuyao, China) was used to record high-speed
videos. In addition, a Hoffman modulation objective lens at 40× was used to enhance image
contrast for blood cells. The recording was focused on the dorsal aorta in the trunk area, and
the recording was done by HiBestViewer software (AZ Instrument, Taichung, Taiwan) to
obtain a 10-s short video with a frame rate of 200 frames per second (fps).

2.4. Video Stabilization

The overall schema of the experimental design is summarized in Figure 1. The first step
was to stabilize the video dataset of fish embryos, which is especially important for keeping
fish embryos in a fixed position to reduce shaky movements. The input video format was
mp4 and analyzed using the OpenCV module vidstab [34]. The stabilization module in
OpenCV was used to capture the interframe information. Later, optical flow metrics, such
as rigid Euclidean transformation, were used to show real-time video stabilization in shaky
frames [35]. The new transformed video in a separate window is exhibited (Video S1) by
using a sliding window smoothing trajectory. The moving objects as blood cells were
masked using the OpenCV function to block the rest of the area other than the dorsal
aorta [36]. A separate window was initiated for the masking in addition to the stabilization
window for a better view.
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Figure 1. The overall scheme for blood flow velocity and blood cell count in zebrafish and medaka.
(A) Overview of the entire analysis pipeline for blood flow measurement in fish embryos by OpenCV.
(B) Shaky video footage of a fish blood vessel. (C) After performing video stabilization, the masked
area presented for smooth oscillation. The motion illustration in estimating optical flow was applied
using the Gunnar Farneback method by OpenCV at time = t (D) and time = t + dt (E).

2.5. Python Processing Modules

While Python is common for using parallel operations to achieve the desired task
for a lot of crunching modules, such as pyautogui (https://pyautogui.readthedocs.io/en/
latest/ (accessed on 21 December 2021)), math (https://docs.python.org/3/library/math.
html (accessed on 21 December 2021)), matplotlib (https://matplotlib.org/ (accessed on
21 December 2021)), threadPool (https://docs.microsoft.com/en-us/dotnet/api/system.
threading.threadpool?view=net-5.0 (accessed on 21 December 2021), and deque (https://
www.geeksforgeeks.org/deque-in-python/ (accessed on 21 December 2021)) were applied
in this study to measure blood flow in zebrafish and medaka. Nested parallelism was
exposed on all possible levels to recognize the structural incidences in loops and functions
to pipeline the frame motion in the video dataset [37]. The Pyautogui module was used
to control the keyboard and mouse for the processing of videos. Deque module was
used for multi-threading to apply multi-processing [38,39], and the computational power
efficiency was utilized to speed up the results. These modules provided enriching blood
flow analysis and avoided the creation of subclasses to process the calling function for
respective operation directly. The Gunner Farneback optical flow algorithm was applied
to measure the displacement in adjacent video frames [40,41]. Separate measurement
scales were introduced for two types of fish data. To avoid exhaustive computational labor,
ThreadPool [42,43] class was initiated.

While medaka and zebrafish have different blood velocities, to recognize the best
level, SciPy (https://scipy.org/ (accessed on 23 December 2021)) library was used, and

https://pyautogui.readthedocs.io/en/latest/
https://pyautogui.readthedocs.io/en/latest/
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html
https://matplotlib.org/
https://docs.microsoft.com/en-us/dotnet/api/system.threading.threadpool?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.threading.threadpool?view=net-5.0
https://www.geeksforgeeks.org/deque-in-python/
https://www.geeksforgeeks.org/deque-in-python/
https://scipy.org/
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nested parallelism (https://github.com/esa/pygmo2/issues/24 (accessed on 23 December
2021)) was applied for combining blood velocity and blood cell count results in more than
one thread. The basic concept of applying these two modules is to call functions from a
parallel region to another region inside the script. The regular programming practice with
Scipy [44] packages was used to deal with the numerical problems.

2.6. Blood flow Velocity Measurement Algorithm

In measuring the blood flow velocity in the video dataset of fish embryos, we used a
previous measurement scale defined by our team based on the ImageJ platform [45]. The
current approach differs from the previous ImageJ-based, one because it can automatically
measure blood flow velocity and approximate number of moving blood cells compared
to ImageJ. The unit scale defined in this study was millimeters per second, followed
by the principle of optical flow measurement. First, we selected a video to initialize
the process and select ROI at the dorsal aorta in the input video. Then, we applied
the Opencv.createTrackbar (https://docs.opencv.org/3.4/da/d6a/tutorial_trackbar.html
(accessed on 6 May 2022)) function, which is helpful to tweak a variable value instantly
without closing and relaunching the program. By using this approach, we can read the
current position of the trackbar slider that works in OpenCV [46]. Next, the selected ROI
on each frame was processed to get blood flow velocity and average blood cell count
in the video dataset. For better performance, we used calcOpticalFlowFarneback [47],
np.linalg.norm [48], cv2.normalize [49] and cv2.threshold [50] functions.

CalcOpticalFlowFarneback [51] computes a dense optical flow under the principle
of Gunnar Farneback’s algorithm. Due to the viscosity property in the fish blood, the
Gunner Farneback algorithm was used to compute optical flow [52] for all the points in the
frame instead of sparse feature computation in the Lucas-Kanade algorithm [53]. As per
frame, optical flow attempts to determine where each pixel is being shifted. The practiced
grayscale images are mainly used as input, followed by the traditional logic that applied in
video frames analysis. Traditionally, programming practice was in larger values, and the
increased robustness of the algorithm showed image noise and yielded blur motion field.
To overcome this problem, np.linalg.norm [54] function was applied. To set the order to
None as default and to calculate the Frobenius norm [55], we implemented normalization
of streaming of blood flow velocity in consecutive frames. By using cv2 normalization [56],
the changing pixel intensity formula applied to increase the overall contrast. We used
cv2.threshold function to convert the color image to the binary image, which is an efficient
and well-known technique in image processing. In addition, we applied average optical
flow and counted analytic thresholds in moving objects. Finally, oscillation graphs [57]
were obtained to show overall blood flow velocity and blood cell count in all video frames.
Graph smoothing was performed using the SciPy library in python.

2.7. Computation of Blood Flow Velocity

The computation of blood flow velocity in 2D videos was performed using relative
frame estimation metrics in the motion of a moving object. As the pixel moves to a certain
distance in the video, the time series based on fps is satisfied following the equation [58]:

I(x, y, t) = I(x + dx, y + dy, t + dt) (1)

where I denoted as pixel intensity, x, y are the vectors to calculate the average velocity of
blood at fps as t and movement of the pixel at a distance (dx, dy). Each time increment was
shown as dt, and approximation was calculated using the Taylor series [59]:

fxu + fyv + ft = 0 (2)

fx =
∂ f
∂x

; fy =
∂ f
∂y

(3)

https://github.com/esa/pygmo2/issues/24
https://docs.opencv.org/3.4/da/d6a/tutorial_trackbar.html


Biology 2022, 11, 1471 7 of 22

u =
dx
dt

; v =
dy
dt

(4)

where fx and fy are the gradients of the frame, and f t is the gradient along time with u
and v vectors.

There are other methods to compute optical flow, such as Horn-Schunck, Buxton [59],
Black-Jepson [60], Lucas-Kanade and Farne and Farneback. In this study, the Gunner
Farneback algorithm was implemented since it was well-known for testing the two frames
estimation in polynomial expansion. The blood flow velocity was categorized into an
average ratio to determine the maximum displacement in frames. Two separate scales were
defined in the program to execute two different videos dataset by adjusting the range for
normal zebrafish embryos from 0.3 to 1.5 mm/s, followed by the general values recorded
for 2–5 dpf. This is because OpenCV can analyze the velocity of moving objects at a time
(second) in selected ROI. For medaka, the scale was defined by computing the blood flow
velocity in ImageJ, and settings were adjusted by creating two input values as an option to
select 1 for medaka and 0 for the zebrafish to get results for two different types of fish. This
feature does not require in case of using the program with GUI.

2.8. Implementation of Algorithm

The consecutive frames difference was computed in the selected ROI of zebrafish
and medaka videos. Contours were detected by using OpenCV in all joining points of
the frame which have the same intensity [61]. The motion field estimation in 2D videos
was combined with horizontal and vertical optical flow components. To get the blood
flow velocity in uniform analysis, the direction of contours was defined as per Gurav and
Kadbe’s method [62]. Gunnar Farneback algorithm is highly extensive in estimating dense
optical flow and the computation of this method is slower than the Lucas-Kanade method;
however, its accuracy and results are more conducive. The algorithm detects a relative
change in pixel intensity between the two images using polynomial expansions and shows
the pixels with the most significant change. The method depends on the approximation of
neighborhood pixels in relative frames. The displacement in frames was used to count in
the transformation of polynomials.

As per equations 1 to 4, results can be satisfied by equating an iterative pixel solution.
This study applied the principle with corresponding high values in frame approximation.
The quadratic polynomial expression is defined with adjacent frames at times t1 and t2 as
follows [63]:

f1 (x) = xT A1x + bT
1 x + c1 (5)

A presenting symmetric matrix, b is the vector, and c is used as a scalar. To consider
respective quadratic polynomials, a refined signal f 2 was constructed for the global
displacement (d) [64]. Using the global displacement concept shown in Equations (6) and
(7), we equated the pixel with an iterative result to get the average blood flow velocity in
each zebrafish video.

f2(x) = f1(x − d)= (x − d)T A1(x − d) + bT
1 (x − d) + c

= xT A1x + (b1 − 2A1d)Tx + dT A1d − bT
1 d + c1 = xT A2x + bT

2 x + c2
(6)

d =
1
2

A−1
1 (b2 − b1) (7)

2.9. Blood Cell Counting

The blood cell count is an important feature of this study. The method was tested
using two directional optical flow standards to measure the blood cells concerning the
contours in the selected ROI. In this study, the blood cells of medaka and zebrafish were
computed based on velocity per frame and the number of blood cells positioned next to
each other.
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Later, the calculation was enlarged to the width of ROI to get an average of how many
rows of blood cells were present. Then, the total number of blood cells was counted for
each second. Get velocity/frame = velocity/frames_interval_value, as we have the velocity
in frames that we see in millimeters, instead of seconds. Then we assigned count_1_sec = 0
as we take the computation until the time is 1 s.

count_1_sec =
count 1 sec + (avg_blood_cells_rows × avg_cell_width)

velocity_per_frame
(8)

To determine the relative blood cell count for one second, we used the average from
the total number of blood cells passing from each frame. The limitation of OpenCV is that
it cannot detect 100% moving blood cells in ROI for each frame. We used an automated
feature to get ROI using the OpenCV cv.drawContours module [65]. The average blood
cell count was performed by extracting the per-frame data in an array and then dividing
the sum by the time of video processing (1 min) approximately. The total blood cell count
was dependent on the time and the velocity of moving blood cells in each frame. For
data validation, we manually counted the blood cells passing through the video frames
in a horizontal direction (left to right) using the naked eye. We validated a total of 20 fish
embryos aged at different development stages. For manual counting, 10 frames were
selected at a fixed interval for a specific fish embryo and we validated 20 fish embryos for
each developmental stage. By using the following equations, the horizontal direction flow
of blood was computed:

H (x, y) = h1(x, y) + h2(x, y) (9)

V(x, y) = v1(x, y) + v2(x, y) (10)

H and V are the frames of horizontal and vertical optical flow while (x, y) are the
pixel coordinates. The pixel value was set as per grey scale (0, 255) for 8-bit greyscale
images and each cycle of blood streaming in the video was observed in automated ROI.
The success of unidirectional blood cell counts under optical flow was obtained. To get
the stable oscillation for blood cell count, we used distinction moving contours that are
being calculated in binary images using the traditional data structure approach for contour
listing. The contours defining the blood cell counting method were implemented similarly
to Suzuki [66] and Abe’s approach [67]. It has been observed during analysis that automatic
ROI failed to detect the blood cell count for some videos with poor resolution, and cells
were covered with masking. In those videos with low quality or poor contrast, the blood cell
count was underestimated by using OpenBloodFlow. To solve this problem, we developed
a multitasking Python feature to get manual ROI for the blood cell count in the dorsal aorta.
Two options would be displayed in the OpenBloodFlow platform for users to select either
the automatic ROI feature or the manual ROI option. Both scenarios would work efficiently,
and manual ROI selection could help to overcome the problem of capturing missing blood
cells in a given video dataset.

2.10. Statistical Test

Statistical analysis was done using GraphPad Prism (GraphPad Inc., La Jolla, CA,
USA). Normality and relative standard deviation measurements were performed to select
the appropriate statistical test. Either parametric or non-parametric tests were performed
according to the normality of data distribution. The variance of the data and the significance
were calculated based on the appropriate post-hoc multiple comparison test.

2.11. Graphical User Interface Designing

The GUI was also developed in this study to achieve a more user-friendly platform
than the command line process to save and follow up the results. The original GUI was
structured in Python, and the basic idea involved uploading the folder containing videos
and starting the analysis with a single click. For GUI development, we used tkinter
(https://docs.python.org/3/library/tkinter.html (accessed on 3 June 2022)) python library.

https://docs.python.org/3/library/tkinter.html
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This tkinter library is widely used to create GUI-based desktop applications for Windows
and Linux operating systems. We applied the Canvas for video control with tkinter.Tk
function and masked window having dorsal aorta view, placed in the center of the main
GUI window. Four functional buttons were created as presented in Figure 2. For selecting
the video folder filedialog.askdirectory function was used. The selection of ROI was
designed with two choices, automatic and manual options presenting to run function and
execute the program. The final frame was processed to generate the image of the dorsal
aorta in the video, aligned in the center of the GUI window. Finally, the result button was
designed to show the folder having oscillations of each video’s blood flow velocity and
blood cell count on average.
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Figure 2. Simple graphical user interface of OpenBloodFlow GUI Package with complete functions
for blood flow velocity and blood cell count analysis. OpenBloodFlow can automatically or manually
select the blood vessel as dorsal aorta depending on video contrast and quality. We suggest using
the manual function to determine specific ROI for blood cell count analysis for low contrast or poor
videos quality.

3. Results
3.1. Overview of Analysis Pipeline for Blood Flow Measurement

In a previous study, our team developed an ImageJ-based method to manually com-
pute blood velocity and blood cell tracking in zebrafish embryos. To reduce the operational
complexity of the previous method, we aimed to develop an efficient and automatic
method for measuring blood flow velocity and blood cell count for zebrafish and medaka
fish embryos.

In this study, the new platform is based on OpenCV, which provides many convenient
modules for video analysis (analysis pipeline summarized in Figure 1A) presented. Due
to fast blood flow velocity, a camera with the capability to record at a high frame rate
(200 frames per second, fps) was preferred to record the dorsal aorta region to minimize
the loss of information. The original video was transformed to 30 fps with slow motion
having a 6.6-fold slowdown effect. The recorded videos were processed with the OpenCV
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program in Python. In this study, the dorsal aorta region was selected as the targeted ROI.
The rectangular feature of ROI selection integrated with a separated window shows the
dorsal aorta in a masked region under video stabilization. Figure 1B,C show the difference
between the original and stabilized videos. The video stabilization aims to increase the
quality and remove the shaking movements of the fish in the video. The local motion
estimation focused on the dorsal aorta view, and masking was performed to better visualize
a stabilized result compared to the original (destabilized) video. Figure 1D,E shows the
motion illustration in estimating optical flow using the Gunnar Farneback method in
OpenCV. After the methodology was established, we conducted validation by making a
side-by-side comparison between OpenCV and ImageJ (or manual counting) to calculate
zebrafish and medaka blood flow velocity and blood cell count respectively.

3.2. Easy Operation of OpenCV to Measure Zebrafish Blood Flow

To reduce the operational difficulty, we developed a user-friendly GUI package Open-
BloodFlow, to conduct blood flow velocity and blood cell count measurements in the dorsal
aorta of zebrafish and medaka embryos (Figure 2). We used zebrafish embryos as a model to
demonstrate the operation and the data outlook. After video uploading and ROI selection
in the dorsal aorta region (Figure 3A), the OpenBloodFlow can automatically mask the area
with barely any motion change from frame-to-frame manner (Figure 3B). This masking step
is important to extract dynamic blood flow information precisely. By optical flow analysis
with the Gunnar Farneback method, the OpenBloodFlow program could generate good
quality figures reporting the average blood flow velocity (Figure 3C, left panel) and the
average blood cell count (Figure 3C, right panel). All this process can be finished within
120 s since 66 s-long videos had been converted first from 200 to 30 fps. In the current
program setting and video recording, we found OpenBloodFlow auto ROI function can
precisely select the entire dorsal aorta with 85% accuracy (68/80 videos tested). The other
15% of videos with low quality need to conduct manual ROI selection to avoid potential
underestimation problems for blood cell count. The OpenBloodFlow GUI package and
user manual were provided as supplementary File S1.

For performance comparison in blood flow velocity calculation, we analyzed videos
using either ImageJ or OpenBloodFlow in the same system environment of Intel Core™
i9-9900KF CPU processor with 32.0 GB RAM. Results showed better performance for
OpenBloodFlow than ImageJ due to its relatively faster and consistent calculation speed on
the contrary, high inter-video variations and relatively two times longer analysis time were
detected in the ImageJ method (Appendix A Figure A1).
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Figure 3. The computation of blood velocity and blood cell count in selected ROI and the displayed
oscillation pattern over time in zebrafish aged 3 dpf. (A) ROI was chosen within the dorsal aorta
for blood flow measurement. (B) Shaky video footage of blood vessels after performing video
stabilization and the masked area presented for smooth oscillation. (C) The red line points to the
average blood flow velocity (left panel) and blood cell count (right panel).

3.3. Methodology Validation Case 1: Blood Flow Measurement in Zebrafish Larvae at Different
Ontological Stages

To validate the utility of the OpenBloodFlow GUI package, we initially compared
the blood flow velocity in zebrafish embryos at different developmental stages using
either OpenCV or ImageJ methods. Video datasets for zebrafish aged at 2, 3, 4, and 5 dpf
(day post-fertilization) were obtained from our previous publication. Later, the same
video dataset was analyzed by both OpenCV and ImageJ in parallel, and the statistical
significance was determined by a paired t-test. In 2 dpf, the average blood flow velocity was
386.9 ± 144.4 µm/s for OpenCV and 394 ± 133.9 µm/s for ImageJ methods (Figure 4A). In
3 dpf, the average blood flow velocity was measured as 418.2 ± 123.4 µm/s for OpenCV
and 375.3 ± 90.04 µm/s for ImageJ methods (Figure 4B). In 4 dpf, the average blood flow
velocity was calculated as 480.3 ± 153.9 µm/s for OpenCV and 542 ± 131.7 µm/s for
ImageJ methods (Figure 4C). In 5 dpf, the average blood flow velocity was measured as
505.4 ± 151.6 µm/s for OpenCV and 569.9 ± 134 µm/s for ImageJ methods (Figure 4D).
Despite gaps in values obtained per age group, paired t-test results showed no significant
difference in every age group between OpenCV and ImageJ methods (2 dpf, p = 0.6743;
3 dpf, p = 0.0712; 4 dpf, p = 0.0779, and 5 dpf, p = 0.0551). Those results show that the
average blood flow velocity obtained by OpenCV is consistent with ImageJ from 2 to 5 dpf.
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Figure 4. Validation of the performance of OpenBloodFlow GUI package for blood flow velocity
measurement through comparison with ImageJ method. Zebrafish embryos aged (A) 2 dpf, (B) 3 dpf,
(C) 4 dpf, or (D) 5 dpf were subjected to ImageJ and OpenCV methods to measure the average blood
flow velocity. The data were shown as mean with standard deviation (circle dots show the data
analyzed by OpenCV, while square dots show the data analyzed by ImageJ), and the significant
difference was calculated by paired t-test. (ns = no significance, n = 18–26).

3.4. Methodology Validation Case 2: Comparison of Blood Flow Velocity in Zebrafish after PHZ Exposure

To validate the OpenCV method for detecting blood flow alteration, we induced
thrombosis in zebrafish embryos using PHZ (phenylhydrazine) to reduce blood flow
velocity. PHZ is a chemical compound that can cause thrombosis in several animal models
like rats and fish. In line with a previous study [68], a significant decrease in blood flow
was observed after incubation with PHZ at 0.15 ppm (p < 0.0001, Figure 5C). Compared to
control embryos aged at 3 dpf, the blood flow in PHZ-exposed embryos sharply decreased
from 349.3 ± 80.3 to 177.9 ± 41.5 µm/s as detected by OpenCV, and from 359.6 ± 89.4 to
175.4 ± 39.2 µm/s via ImageJ methods. Paired t-test displays no significant difference for
OpenCV and ImageJ methods for the control group (p = 0.5201) or PHZ-exposed group
(p = 0.1827) (Figure 5C). Those results show that OpenCV can be used to detect reduced or
slow blood flow velocity induced by PHZ, consistent with the results obtained from the
ImageJ calculation.
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Figure 5. Validation of OpenBloodFlow method through comparison with ImageJ performance for
blood flow velocity measurement in zebrafish larvae after exposure to control (A) and 0.15 ppm PHZ
(Phenylhydrazine) (B). PHZ exposure significantly reduced the blood flow velocity in zebrafish larvae.
(C) Side-by-side comparison of the average blood flow velocity measurement by ImageJ and OpenCV
methods. The data were presented as mean with standard deviation, and statistical significance was
determined by paired t-test for intra-group comparison or unpaired t-test for inter-group comparison.
(ns = no significance, **** p < 0.0001, n = 10) (circle dots show the data analyzed by OpenCV, while
square dots show the data analyzed by ImageJ).

3.5. Methodology Validation Case 3: Comparison of Blood Flow Velocity in Zebrafish after RAC
Exposure

To validate the OpenCV method for blood flow velocity detection, we used RAC
(ractopamine), a beta-adrenoreceptors agonist, to elevate oxygen consumption, locomotor
activities, and blood flow velocity in zebrafish. In line with a previous study [69], a
significant increase in blood flow was observed following incubation with RAC at 4 ppm by
either ImageJ (p < 0.001, Figure 6A) or OpenCV (p < 0.001, Figure 6B) method. Validation by
paired t-test display no differences between OpenCV and ImageJ methods for either control
(p = 0.424) or RAC-exposed group (p = 0.616) (Figure 6C). Those results show OpenCV
method can be used to analyze elevated blood flow velocity induced by RAC, comparably
consistent with the results of the ImageJ method.



Biology 2022, 11, 1471 14 of 22
Biology 2022, 11, x FOR PEER REVIEW 15 of 23 
 

 

 

Figure 6. Validation of OpenBloodFlow performance for blood flow velocity measurement in 

zebrafish larvae through comparison with ImageJ method. Average blood flow velocity measured 

by ImageJ (A) and OpenBloodFlow (B) after exposure to ractopamine. Ractopamine exposure sig-

nificantly elevated the average blood flow in zebrafish. (C) Side-by-side comparison of the average 

blood flow velocity measurement by ImageJ or OpenCV methods. The data were shown as mean 

with standard deviation and statistical significance determined by paired t-test for intra-group com-

parison (ns = no significance, * p < 0.05, ** p < 0.01, n = 20) (circle dots show the control data, while 

square dots show the ractopamine data in A and B). 

3.6. Methodology Validation Case 4: Comparison of Blood Flow Velocity in Medaka 

Next, we checked the versatility of the OpenCV method in Japanese Medaka fish 

(Oryzias latipes), another important freshwater fish model for ecotoxicity studies. The 
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Figure 6. Validation of OpenBloodFlow performance for blood flow velocity measurement in ze-
brafish larvae through comparison with ImageJ method. Average blood flow velocity measured by
ImageJ (A) and OpenBloodFlow (B) after exposure to ractopamine. Ractopamine exposure signifi-
cantly elevated the average blood flow in zebrafish. (C) Side-by-side comparison of the average blood
flow velocity measurement by ImageJ or OpenCV methods. The data were shown as mean with
standard deviation and statistical significance determined by paired t-test for intra-group comparison
(ns = no significance, * p < 0.05, ** p < 0.01, n = 20) (circle dots show the control data, while square
dots show the ractopamine data in A and B).

3.6. Methodology Validation Case 4: Comparison of Blood Flow Velocity in Medaka

Next, we checked the versatility of the OpenCV method in Japanese Medaka fish
(Oryzias latipes), another important freshwater fish model for ecotoxicity studies. The newly
hatched Japanese medaka fish embryos aged 10 dpf were subjected to blood flow veloc-
ity measurement using the OpenCV or ImageJ methods (Appendix A Figure A2A). The
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target ROI was selected within the area of the dorsal aorta, similar to the position used
in zebrafish (Appendix A Figure A2B). The OpenCV measured a blood flow velocity of
402.3 ± 87.16 µm/s and 419.9± 79.06µm/s for the ImageJ method (Appendix A Figure A2C).
These values are not significantly different according to paired t-test (p = 0.136). This result
demonstrated the versatility of our advanced OpenCV method in analyzing the blood flow
velocity of other fish like medaka.

3.7. Methodology Validation Case 5: Blood Cell Count Validation

For the blood cell count function in the OpenBloodFlow GUI package, we conducted
performance validation by comparing it with the data obtained from manual counting. For
manual counting, we measured the average blood cell count in 20 zebrafish embryos (each
embryo with 10 frames) aged at 2, 3, 4, and 5 dpf and compared the average values to Open-
BloodFlow results. Results showed that the blood cell count obtained from OpenBloodFlow
is not significantly different from the results of manual counting in 2 dpf (65 ± 25 vs.
69 ± 26 cell/frame, p = 0.9931), 3 dpf (76 ± 13 vs. 79 ± 13 cells/frame, p = 0.9991), 4 dpf
(44 ± 10 vs. 50 ± 11 cells/frame, p = 0.9832) and 5 dpf (33 ± 16 vs. 37 ± 17 cells/frame,
p = 0.9975) embryos after one-way ANOVA statistical analysis (Figure 7). In addition, the
average blood cell count per frame increased at 2 to 3 dpf and gradually declined at 4 and
5 dpf (Figure 7). At the time of writing, no detailed prior studies in the field have achieved
this. However, this might have happened because of the differentiation that happen at that
time that might change the composition of blood cells, but more studies have to be done to
support this hypothesis. Overall, the OpenBloodFlow established in this study indeed can
be used to measure blood cell count in zebrafish embryos in a relatively precise manner as
supported by manual counting.
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Figure 7. Validation of blood cell count in zebrafish embryos calculated by OpenBloodFlow through
comparison with manual counting method. Zebrafish embryos aged at 2 dpf, 3 dpf, 4 dpf, or 5 dpf
were subjected to blood cell counting using the naked eye (Manual) and OpenCV method. The data
were shown as mean with standard deviation, and statistical significance was determined by an
ordinary one-way ANOVA test (ns = no significance, n = 20). (circle dots show the data analyzed
manually by manual counting, while square dots show the data analyzed by OpenCV).
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4. Discussion

Digital image processing approaches have been widely applied in examining fish
physiology and development in a non-invasive manner. The most important finding in
this study is that we offer a simple, cost-effective, and fully automated tool for blood flow
velocity and blood cell counting in zebrafish and medaka by employing an OpenCV-based
approach for the first time. With detailed and careful validation, this OpenCV-based tool
called OpenBloodFlow indeed can be used for blood flow velocity and blood cell count
measurement in both important fish species that can be widely applied for toxicology,
pharmacology, and drug screening studies. Batch processing is an additional feature of this
tool to analyze multiple videos at once, which may reduce the effort of selecting data one
by one manually. The following section presents the potential Pros and Cons of our newly
established OpenBloodFlow GUI package [70].

4.1. Advantage of Current Reported OpenCV Method

NIH initially designed ImageJ to conduct image editing and measurement as an
open-access platform. Although ImageJ has expanded its function, it is less powerful
than OpenCV in video analysis [71]. Compared to ImageJ, OpenCV consists of more
functions and modules that are well established in image processing to solve critical image
processing problems [72,73]. It provides many visual processing features that can assist
users in compiling heavy datasets in an executive programming environment in Python. It
has been widely applied in Human-Computer Interaction (HCI) object recognition, image
segmentation, motion tracking, and object tracking [74].

Compared to previous techniques, our study provides an innovative and fully auto-
matic approach to detecting blood flow velocity and blood cell count together in a real-time
video by using the OpenCV approach. The most effective application of our OpenBlood-
Flow tool can precisely detect the blood flow alterations after chemical treatment which
provides a very important tool for toxicology and pharmacology studies by using fish
embryos as a simple model. Finally, by calculating the geometric area mean [75] using
the GetOptimalDFTSize function, we can deduce the average count of blood cells in this
OpenBloodFlow GUI package. To make the program efficient and process multiple videos
to save analysis time, there was a loop-wise operation [76] was performed for the number
of videos inputted at once. In addition, the data calculation is also about 2-fold faster than
our previously reported ImageJ-based method (Appendix A Figure A1).

Key features involved in this study do not require fluorescence probes/fish or heavy
mechanical microscopic equipment to measure blood flow velocity and blood cell count
in zebrafish or medaka which makes it applicable for low- or middle-sized laboratories.
Furthermore, ordinary CCD videography in the current study exhibited good results
compared to other methods that used expensive equipment. Schwerte et al. [77] have
previously reported blood cell count in zebrafish based on greyscale value and motion in
the frame. Compared to Schwerte’s method, our method does not necessitate numerical
transformation for greyscale values, and it also provides a more user-friendly interface for
user operation in a fully automated manner. A summary of the available software package
to measure blood flow velocity is available in Table 2.

Table 2. Comparison of available software packages to measure blood flow velocity or blood cell
count in zebrafish.

Software Name ROI Selection Availability Batch Processing

MicroZebraLab Manual Paid software No
Danioscope Manual Paid software No

Trackmate ImageJ Manual Freeware No
OpenBloodFlow

(This study) Automatic Freeware Yes
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4.2. Potential Limitations and Future Work

There are some potential limitations in the current version of OpenBloodFlow that
require more studies to address these limitations. First, video recording quality plays a
significant role in measuring blood flow velocity and blood cell count. The poor resolution
would reflect incorrect ROI selection at blood cells. However, this problem does not affect
the blood velocity measurement. If the video has poor quality contrast to differentiate
moving blood cells, the automated ROI selection function cannot select the whole blood
vessel as dorsal aorta. It might get partial ROI selected in the trunk area, which reduces
the blood cell count value but not the blood velocity. Second, another scenario that may
potentially reduce the blood cell count performance of OpenCV is cell overlapping. This
problem is challenging to solve based on the OpenCV method. Future studies that will
try to develop better cell segmentation and objective recognition features might be able to
overcome this limitation. Third, the current cell counting method for fish blood vessels is
based on 2D videography. To get more reliable data, 3D image construction by advanced
microscopic techniques for real-time blood flow velocity with an exact number of moving
blood cells is considered necessarily. Finally, in the current version, two different scale
settings are incorporated based on the intensity of moving blood cells in videos of zebrafish
and medaka. The sensitivity of the recent study is based on slight movements of blood
cells that are restricted in the ROI boundary line for all frames. More efforts are required in
the future to adjust the algorithm setting for a more unified scale setting that can measure
blood flow at different speeds.

5. Conclusions

The concept used in this study was to analyze blood flow velocity and blood cell
count in zebrafish and medaka embryos using versatile and user-friendly OpenCV-based
software. Video stabilization was used to normalize the shaky video footage of the dorsal
aorta. The positioning of blood cells in the video was attempted to describe the tracking in
the desired contour. The relative positions were determined based on two adjacent frame
differences. The study implemented the Gunner Farneback algorithm to determine optical
flow and compute the blood flow velocity in the zebrafish and medaka videos dataset. The
utility of the Gunner Farneback algorithm is consistent in blood flow velocity measurement
and the number of levels at each labeling of scales recorded in millimeters per second
unit. The oscillation of blood flow velocity and blood cell count are shown in separate
graphs. Overall performance of the tool was tested by comparing the operation time side
by side with the ImageJ software in the same environment system. The analysis showed
that OpenBloodFlow has faster processing compared to the ImageJ method. This study
proposed a convenient method to compute blood flow velocity and blood cell count in
zebrafish and medaka embryos to ease the burden of the manual job and semi-automated
processing. In the future, it is suggested that this approach might assist professionals,
researchers, and medical practitioners in analyzing thrombosis and blood flow velocity
problems for clinical findings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11101471/s1, Supplementary File S1: OpenBloodFlow
GUI package and user guide. Supplementary File S2: Video File.
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Figure A1. Comparison of calculation speed between OpenBloodFlow and ImageJ methods. Ze-
brafish embryos aged at 3 dpf were subjected to blood flow velocity measurement using either
OpenCV or ImageJ methods. Sample size n = 10. The data were shown as mean with standard
deviation, and statistical significance was determined by paired t-test comparison (** p < 0.01, n = 10).
(circle dots show the data analyzed by OpenCV, while square dots show the data analyzed by ImageJ).
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