Molecular Characterization and Functional Localization of a Novel SUMOylation Gene in Oryza sativa
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Candidate Gene Amplification
2.2. RNA Extraction and Reverse-Transcription PCR
2.3. Sequencing and Bioinformatic Analysis of OsSUMO7
2.4. In Silico Characterization of the OsSUMO7 Protein
2.5. Construction of Expression Vectors Harboring Rice SUMO Components
2.6. Expression Analysis of SUMO Proteins
3. Results
3.1. Molecular Characterization of the OsSUMO7 Gene
3.2. Characterization of the OsSUMO7 Protein:
3.2.1. Physicochemical Properties Analyses
3.2.2. Structure–Model Prediction of the OsSUMO7 Protein
3.3. Expression and Subcellular Localization of the OsSUMO7 Protein
3.4. Expression and Co-Localization of OsSUMO7 with GFP:SCE1a
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Roux, M.L.; Kunert, K.J.; Van der Vyver, C.; Cullis, C.A.; Botha, A.-M. Expression of a small ubiquitin-like modifier protease increases drought tolerance in wheat (Triticum aestivum L.). Front. Plant Sci. 2019, 10, 266. [Google Scholar] [CrossRef] [Green Version]
- Augustine, R.C.; Vierstra, R.D. SUMOylation: Re-wiring the plant nucleus during stress and development. Curr. Opin. Plant Biol. 2018, 45, 143–154. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Sun, S.; Cui, F.; Han, Y.; Peng, Z.; Zhang, X.; Wan, S.; Li, G. Defining the function of SUMO system in pod development and abiotic stresses in Peanut. BMC Plant Biol. 2019, 19, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerscher, O.; Felberbaum, R.; Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 2006, 22, 159–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.-C.; Peterson, S.E.; Loring, J.F. Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res. 2014, 24, 143–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gareau, J.R.; Lima, C.D. The SUMO pathway: Emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol. 2010, 11, 861–871. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.I.; Baek, S.H.; Chung, C.H. Versatile protein tag, SUMO: Its enzymology and biological function. J. Cell. Physiol. 2002, 191, 257–268. [Google Scholar] [CrossRef]
- Saeki, Y. Ubiquitin recognition by the proteasome. J. Biochem. 2017, 161, 113–124. [Google Scholar] [CrossRef]
- Mahajan, R.; Delphin, C.; Guan, T.; Gerace, L.; Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 1997, 88, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Gill, G. Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr. Opin. Genet. Dev. 2003, 13, 108–113. [Google Scholar] [CrossRef]
- Morrell, R.; Sadanandom, A. Dealing with stress: A review of plant SUMO proteases. Front. Plant Sci. 2019, 10, 1122. [Google Scholar] [CrossRef] [PubMed]
- Bayer, P.; Arndt, A.; Metzger, S.; Mahajan, R.; Melchior, F.; Jaenicke, R.; Becker, J. Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 1998, 280, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Jin, J.B.; Hasegawa, P.M. Sumoylation, a post-translational regulatory process in plants. Curr. Opin. Plant Biol. 2007, 10, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Salman, A.; Kotb, A.; Ghazy, A.I.; Ibrahim, E.I.; Al-Ateeq, T.K. Structural and functional characterization of Tomato SUMO1 gene. Saudi J. Biol. Sci. 2020, 27, 352–357. [Google Scholar] [CrossRef]
- Lois, L.M.; Lima, C.D.; Chua, N.-H. Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 2003, 15, 1347–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, M.T.; Almeida, D.M.; Pires, I.S.; da Rosa Farias, D.; Martins, A.G.; da Maia, L.C.; de Oliveira, A.C.; Saibo, N.J.; Oliveira, M.M.; Abreu, I.A. Insights into the transcriptional and post-transcriptional regulation of the rice SUMOylation machinery and into the role of two rice SUMO proteases. BMC Plant Biol. 2018, 18, 349. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Kim, W.-Y.; Park, H.C.; Lee, S.Y.; Bohnert, H.J.; Yun, D.-J. SUMO and SUMOylation in plants. Mol. Cells 2011, 32, 305. [Google Scholar] [CrossRef] [Green Version]
- Teramura, H.; Yamada, K.; Ito, K.; Kasahara, K.; Kikuchi, T.; Kioka, N.; Fukuda, M.; Kusano, H.; Tanaka, K.; Shimada, H. Characterization of novel SUMO family genes in the rice genome. Genes Genet. Syst. 2021, 96, 1–8. [Google Scholar] [CrossRef]
- Conti, L.; Price, G.; O’Donnell, E.; Schwessinger, B.; Dominy, P.; Sadanandom, A. Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and-2 regulate salt stress responses in Arabidopsis. Plant Cell 2008, 20, 2894–2908. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, G.; Xu, Z.; Li, J.; Sun, M.; Guo, J.; Ji, W. Organization and regulation of soybean SUMOylation system under abiotic stress conditions. Front. Plant Sci. 2017, 8, 1458. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Lin, M.; Wang, J.; Zhang, L.; Lin, M.; Hu, Z.; Qi, Z.; Jiang, H.; Fu, Y.; Xin, D. Regulation of soybean SUMOylation system in response to Phytophthora sojae infection and heat shock. Plant Growth Regul. 2019, 87, 69–82. [Google Scholar] [CrossRef]
- Chaikam, V.; Karlson, D.T. Response and transcriptional regulation of rice SUMOylation system during development and stress conditions. BMB Rep. 2010, 43, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murtas, G.; Reeves, P.H.; Fu, Y.-F.; Bancroft, I.; Dean, C.; Coupland, G. A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates. Plant Cell 2003, 15, 2308–2319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, C.Y.; Miura, K.; Jin, J.B.; Lee, J.; Park, H.C.; Salt, D.E.; Yun, D.-J.; Bressan, R.A.; Hasegawa, P.M. SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol. 2006, 142, 1548–1558. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.e.; Han, Q.; Xiong, J.; Zheng, T.; Han, J.; Zhou, H.; Lin, H.; Yin, Y.; Zhang, D. Sumoylation of BRI1-EMS-SUPPRESSOR 1 (BES1) by the SUMO E3 ligase SIZ1 negatively regulates brassinosteroids signaling in Arabidopsis thaliana. Plant Cell Physiol. 2019, 60, 2282–2292. [Google Scholar] [CrossRef] [PubMed]
- Hammoudi, V.; Fokkens, L.; Beerens, B.; Vlachakis, G.; Chatterjee, S.; Arroyo-Mateos, M.; Wackers, P.F.; Jonker, M.J.; van den Burg, H.A. The Arabidopsis SUMO E3 ligase SIZ1 mediates the temperature dependent trade-off between plant immunity and growth. PLoS Genet. 2018, 14, e1007157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Zhuang, K.; Wang, S.; Lv, J.; Ma, N.N.; Meng, Q. A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco. J. Integr. Plant Biol. 2017, 59, 102–117. [Google Scholar] [CrossRef] [Green Version]
- Golebiowski, F.; Matic, I.; Tatham, M.H.; Cole, C.; Yin, Y.; Nakamura, A.; Cox, J.; Barton, G.J.; Mann, M.; Hay, R.T. System-wide changes to SUMO modifications in response to heat shock. Sci. Signal. 2009, 2, ra24. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.K.; Zhang, C.; Sadanandom, A. Rice OVERLY TOLERANT TO SALT 1 (OTS1) SUMO protease is a positive regulator of seed germination and root development. Plant Signal. Behav. 2016, 11, e1173301. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Sun, R.; Cao, Y.; Pei, W.; Sun, Y.; Zhou, H.; Wu, X.; Zhang, F.; Luo, L.; Shen, Q. OsSIZ1, a SUMO E3 ligase gene, is involved in the regulation of the responses to phosphate and nitrogen in rice. Plant Cell Physiol. 2015, 56, 2381–2395. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Xie, Y.; Du, J.; Yang, C.; Lai, J. A SUMO ligase OsMMS21 regulates rice development and auxin response. J. Plant Physiol. 2021, 263, 153447. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, M.; Xia, Z. Overexpression of a maize SUMO conjugating enzyme gene (ZmSCE1e) increases Sumoylation levels and enhances salt and drought tolerance in transgenic tobacco. Plant Sci. 2019, 281, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Hay, R.T. SUMO: A history of modification. Mol. Cell 2005, 18, 1–12. [Google Scholar] [CrossRef]
- Lima, C.D.; Reverter, D. Structure of the human SENP7 catalytic domain and poly-SUMO deconjugation activities for SENP6 and SENP7. J. Biol. Chem. 2008, 283, 32045–32055. [Google Scholar] [CrossRef] [Green Version]
- Dou, H.; Huang, C.; Van Nguyen, T.; Lu, L.-S.; Yeh, E.T. SUMOylation and de-SUMOylation in response to DNA damage. FEBS Lett. 2011, 585, 2891–2896. [Google Scholar] [CrossRef] [Green Version]
- Tozluoğlu, M.; Karaca, E.; Nussinov, R.; Haliloğlu, T. A mechanistic view of the role of E3 in sumoylation. PLoS Comput. Biol. 2010, 6, e1000913. [Google Scholar] [CrossRef]
- Ikarashi, Y.; Noguchi, N.; Attia, K.; Kitajima-Koga, A.; Mitsui, T.; Itoh, K. Cloning, expression, and intracellular localization of rice SUMO genes. Bull. Fac. Agric. Niigata Univ. 2012, 65, 77–83. [Google Scholar]
- Chaikam, V.; Karlson, D.T. Functional characterization of two cold shock domainproteins from Oryza sativa. Plant Cell Environ. 2008, 31, 995–1006. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.D.; Tate, J.; Mistry, J.; Coggill, P.C.; Sammut, S.J.; Hotz, H.-R.; Ceric, G.; Forslund, K.; Eddy, S.R.; Sonnhammer, E.L. The Pfam protein families database. Nucleic Acids Res. 2007, 36, D281–D288. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 2010, 5, 725–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guruprasad, K.; Reddy, B.B.; Pandit, M.W. Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. Des. Sel. 1990, 4, 155–161. [Google Scholar] [CrossRef]
- Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem. 1980, 88, 1895–1898. [Google Scholar] [PubMed]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef] [Green Version]
- Vieira, J.; Messing, J. Production of single-stranded plasmid DNA. Recomb. DNA Methodol. 1989, 153, 3–11. [Google Scholar]
- Kitajima, A.; Asatsuma, S.; Okada, H.; Hamada, Y.; Kaneko, K.; Nanjo, Y.; Kawagoe, Y.; Toyooka, K.; Matsuoka, K.; Takeuchi, M. The rice α-amylase glycoprotein is targeted from the Golgi apparatus through the secretory pathway to the plastids. Plant Cell 2009, 21, 2844–2858. [Google Scholar] [CrossRef] [Green Version]
- Kurepa, J.; Walker, J.M.; Smalle, J.; Gosink, M.M.; Davis, S.J.; Durham, T.L.; Sung, D.-Y.; Vierstra, R.D. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis: Accumulation of SUMO1 and-2 conjugates is increased by stress. J. Biol. Chem. 2003, 278, 6862–6872. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, M.S.; Dargemont, C.; Hay, R.T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 2001, 276, 12654–12659. [Google Scholar] [CrossRef] [Green Version]
- Joo, J.; Choi, D.H.; Kim, S.H.; Song, S.I. Cellular Localization of rice SUMO/SUMO conjugates and in vitro sumoylation using rice components. Rice Sci. 2020, 27, 1–4. [Google Scholar] [CrossRef]
- Hammoudi, V.; Vlachakis, G.; Schranz, M.E.; van den Burg, H.A. Whole-genome duplications followed by tandem duplications drive diversification of the protein modifier SUMO in Angiosperms. New Phytol. 2016, 211, 172–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, J.; Choi, D.H.; Lee, Y.H.; Seo, H.S.; Song, S.I. The rice SUMO conjugating enzymes OsSCE1 and OsSCE3 have opposing effects on drought stress. J. Plant Physiol. 2019, 240, 152993. [Google Scholar] [CrossRef] [PubMed]
- Nurdiani, D.; Widyajayantie, D.; Nugroho, S. OsSCE1 encoding SUMO E2-conjugating enzyme involves in drought stress response of Oryza sativa. Rice Sci. 2018, 25, 73–81. [Google Scholar] [CrossRef]
- Castro, P.H.; Tavares, R.M.; Bejarano, E.R.; Azevedo, H. SUMO, a heavyweight player in plant abiotic stress responses. Cell. Mol. Life Sci. 2012, 69, 3269–3283. [Google Scholar] [CrossRef] [PubMed]
- Castro, P.H.; Couto, D.; Freitas, S.; Verde, N.; Macho, A.P.; Huguet, S.; Botella, M.A.; Ruiz-Albert, J.; Tavares, R.M.; Bejarano, E.R. SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. Plant Mol. Biol. 2016, 92, 143–159. [Google Scholar] [CrossRef] [PubMed]
- Novatchkova, M.; Tomanov, K.; Hofmann, K.; Stuible, H.P.; Bachmair, A. Update on sumoylation: Defining core components of the plant SUMO conjugation system by phylogenetic comparison. New Phytol. 2012, 195, 23–31. [Google Scholar] [CrossRef] [Green Version]
OsSUMO | GenBank | No. of AA | Chr. No. | SUMOplotTM Prediction of SUMOylation Sites | |||||
---|---|---|---|---|---|---|---|---|---|
Motifs with High Probability | Motifs with Low Probability | ||||||||
Motif | Pos. | Score | Motif | Pos. | Score | ||||
OsSUMO1 | P55857 | 100 | 1 | DKKP | K9 | 0.39 | |||
OsSUMO2 | Q8RZU9 | 101 | 1 | EKKP | K10 | 0.39 | |||
OsSUMO3 | Q6ZL08 | 110 | 7 | VKVE | K12 | 0.93 | GKTP | K20 | 0.57 |
OsSUMO4 | BAB84389.1 | 114 | 1 | VKVE | K22 | 0.93 | |||
OsSUMO5 | XP_015646034.1 | 110 | 7 | LKGD and AKAP | K72 and K53 | 0.91 and 0.69 | |||
OsSUMO6 | XP_025882647.1 | 130 | 7 | VKVE | K12 | 0.93 | WKTP and WKAP | K20 and K28 | 0.54 and 0.54 |
OsSUMO7 | Query | 100 | 7 | LKGD | K58 | 0.91 | HKVD | K23 | 0.52 |
Formula | MW (kDa) | T. Pi | TNNCR | TNPCR | Ii | Stability | Ai | GRAVY | |
---|---|---|---|---|---|---|---|---|---|
OsSUMO1 | C464H744N138O153S7 | 10.93 | 4.95 | 18 | 13 | 51.75 | Unstable | 64.5 | −0.681 |
OsSUMO2 | C471H756N138O156S5 | 11.01 | 5.1 | 17 | 13 | 54.05 | Unstable | 66.73 | −0.721 |
OsSUMO3 | C542H834N156O173S4 | 12.43 | 4.77 | 21 | 15 | 42.58 | Unstable | 59.45 | −0.718 |
OsSUMO4 | C532H859N145O176S5 | 12.26 | 4.73 | 17 | 12 | 37.37 | Stable | 80.44 | −0.264 |
OsSUMO5 | C545H858N142O164S10 | 12.34 | 5.01 | 16 | 12 | 37.87 | Stable | 71.73 | −0.174 |
OsSUMO6 | C657H995N183O195S4 | 14.71 | 5.23 | 19 | 16 | 41.52 | Unstable | 62.31 | −0.605 |
OsSUMO7 | C492H795N127O146S5 | 10.99 | 4.92 | 17 | 11 | 30.35 | Stable | 111.9 | 0.031 |
AtSUMO1 | C462H740N140O158S6 | 10.98 | 4.91 | 18 | 13 | 47.48 | Unstable | 59.60 | −0.84 |
AtSUMO2 | C578H903N159O177S6 | 13.10 | 5.13 | 19 | 15 | 31.96 | Stable | 72.33 | −0.47 |
AtSUMO3 | C550H866N154O170S7 | 12.58 | 5.09 | 19 | 15 | 47.57 | Unstable | 76.49 | −0.58 |
AtSUMO4 | C586H939N173O185S5 | 13.53 | 6.85 | 21 | 21 | 49.47 | Unstable | 65.73 | −0.85 |
AtSUMO5 | C524H844N148O164S8 | 12.10 | 8.91 | 12 | 15 | 51.41 | Unstable | 64.07 | −0.61 |
AtSUMO6 | C588H934N170O175S7 | 13.41 | 9.13 | 18 | 21 | 43.92 | Unstable | 62.28 | −0.76 |
AtSUMO7 | C478H756N136O145S6 | 10.92 | 6.03 | 15 | 13 | 30.69 | Stable | 76.00 | −0.55 |
AtSUMO8 | C498H782N138O150S5 | 11.26 | 6.05 | 16 | 14 | 53.29 | Unstable | 76.29 | −0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, E.I.; Attia, K.A.; Ghazy, A.I.; Itoh, K.; Almajhdi, F.N.; Al-Doss, A.A. Molecular Characterization and Functional Localization of a Novel SUMOylation Gene in Oryza sativa. Biology 2022, 11, 53. https://doi.org/10.3390/biology11010053
Ibrahim EI, Attia KA, Ghazy AI, Itoh K, Almajhdi FN, Al-Doss AA. Molecular Characterization and Functional Localization of a Novel SUMOylation Gene in Oryza sativa. Biology. 2022; 11(1):53. https://doi.org/10.3390/biology11010053
Chicago/Turabian StyleIbrahim, Eid I., Kotb A. Attia, Abdelhalim I. Ghazy, Kimiko Itoh, Fahad N. Almajhdi, and Abdullah A. Al-Doss. 2022. "Molecular Characterization and Functional Localization of a Novel SUMOylation Gene in Oryza sativa" Biology 11, no. 1: 53. https://doi.org/10.3390/biology11010053
APA StyleIbrahim, E. I., Attia, K. A., Ghazy, A. I., Itoh, K., Almajhdi, F. N., & Al-Doss, A. A. (2022). Molecular Characterization and Functional Localization of a Novel SUMOylation Gene in Oryza sativa. Biology, 11(1), 53. https://doi.org/10.3390/biology11010053