Enzymatic and Antimicrobial Activity of Biologically Active Samples from Aloe arborescens and Aloe barbadensis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Efficacy of Lyophilization and Extraction of A. arborescens and A. barbadensis
2.2. Phenolics and Proanthocyanidins Content, Total Protein Concentration, and Antioxidant Activity of A. arborescens and A. barbadensis
2.3. Enzymatic Activities of A. arborescens and A. barbadensis
2.4. Qualitatively Determined Antimicrobial Activity of A. arborescens and A. barbadensis
2.5. Quantitatively Determined Antimicrobial Activity of A. aborescens and A. barbadensis
2.5.1. Lyophilized A. arborescens and A. barbadensis
2.5.2. Ethanol Extracts of A. arborescens and A. barbadensis
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material and Preparation of Samples
4.3. Determination of Total Phenolics (TP) Content
4.4. Determination of Proanthocyanidins (PAC) Content
4.5. Determination of Antioxidant Activity
4.6. Determination of Total Protein Concentration
4.7. Determination of Enzyme Activities
- α-Amylase activity was determined by the DNS method [87] with starch as the substrate and maltose as the standard. A volume of 0.5 mL of prepared sample solutions and 0.5 mL of 1% (w/v) starch solution prepared in sodium buffer solution was pipetted into suitable centrifuge tubes. Mixture was incubated for 3 min at 20 °C; then, color reagent (prepared with 5.3 M potassium sodium tartrate, tetrahydrate, and 96 mM DNS solution) was added. Covered containers were incubated in a boiling water for 15 min. A volume of 10 mL of distilled water was added to cooled solutions and mixed by inversion. The absorbance was measured at 540 nm. Results are expressed as units per gram of sample; one unit will liberate 1 mg of maltose from starch in 3 min at 20 °C at pH 6.9.
- Cellulase activity was measured using glucose as substrate [88]. A volume of 4 mL of a Sigmacell solution was pipetted into suitable containers, then 1 mL of sample was added. Mixture was incubated for 120 min at 37 °C with moderate shaking. Further, suspension was transferred into iced water bath. When suspension was settled, it was centrifuged at 11,000 rpm for 2 min, and 100 μL of supernatant was added to 3 mL of glucose solution. Absorbance was measured at 340 nm for 5 min, and the increase in absorbance was used to determine enzyme activity. Results are expressed as units per gram of sample; one unit liberates 1 μmol of glucose from cellulose in one hour at 37 °C and pH 5.0.
- Lipase activity was determined using p-NPB as substrate [89]. A volume of 0.9 mL of 100 mM sodium phosphate buffer with 150 mM sodium chloride and 0.5% triton was pipetted into suitable containers. A volume of 0.1 mL of sample was added, and the mixture was incubated for 5 min at 37 °C. Further, 0.01 mL of 50 mM p-NPB was added, and absorbance was measured at 400 nm for 5 min. The increase in absorbance was used to determine enzyme activity. The results are expressed as units per gram of sample; one unit will release 1 nmol of p-nitrophenol per minute at 37 °C and pH 7.2 using p-NPB.
- Peroxidase activity was determined using H2O2 as an inhibitor [90]. A volume of 1.4 mL of solution of 0.0025 M 4-APP with 0.17 M phenol was added into suitable containers, and 1.5 mL of 0.0017 M H2O2 and 0.1 mL of sample was added. Solution was mixed, and absorbance was immediately measured at 510 nm for 4 min. The results are expressed as units per gram of sample; one unit will decompose one μM of H2O2 per minute at 25 °C at pH 7.0.
- Protease activity was determined using casein as substrate [88]. A volume of 1 mL of casein solution prepared in phosphate buffer was incubated for 3 min at 35 °C. Then 0.5 mL of phosphate buffer and 0.5 mL of sample was added. Mixture was incubated for 20 min at 35 °C. After incubation, 3 mL of 5% (v/v) TCA was added and further incubated for 30 min at room temperature. Mixture was centrifuged at 6000 rpm for 20 min, and the absorbance of the obtained supernatant was measured at 280 nm. Results are expressed as Tucas g−1, which represents amount of casein hydrolyzed per g of sample per minute [91].
- Transglutaminase activity was determined with a colorimetric method [92] using hydroxylamine as amine donor and Z-Gln-Gly as substrate. A volume of 20 mL of reaction cocktail was mixed with 30 μL of sample solution at 37 °C for 10 min. Then, 0.5 mL of 12% (v/v) TCA solution was pipetted, mixed, and finally, 0.5 mL of 5% (w/v) ferric chloride solution was added. Mixture was centrifuged for 5 min. Absorbance of supernatants was recorded at 525 nm. Results are expressed as units per gram of sample; one unit form 1 μmole of hydroxamate per minute at 37 °C and pH 6.0.
4.8. Determination of Antimicrobial Activity
4.8.1. Microorganisms
4.8.2. Disc Diffusion Method
4.8.3. Broth Microdilution Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kupnik, K.; Primožič, M.; Knez, Ž.; Leitgeb, M. Antimicrobial Efficiency of Aloe Arborescens and Aloe Barbadensis Natural and Commercial Products. Plants 2021, 10, 92. [Google Scholar] [CrossRef]
- Pommerville, J. Fundamentals of Microbiology, 10th ed.; Jones & Bartlett Learning: Burlington, MA, USA, 2013; ISBN 978-1-4496-8861-5. [Google Scholar]
- Cook, I. Antimicrobial Activity of Aloe Barbadensis Miller Leaf Gel Components. Internet J. Microbiol. 2007, 4, 17. [Google Scholar]
- Madigan, M.T.; Bender, K.S.; Buckley, D.H.; Sattley, W.M.; Stahl, D.A. Brock Biology of Microorganisms, 15th ed.; Pearson: New York, NY, USA, 2017; ISBN 978-0-13-426192-8. [Google Scholar]
- Dragaš, A.Z. Oralna Bakteriologija, 1st ed.; DZS: Ljubljana, Slovenia, 1996; ISBN 978-86-341-1882-7. [Google Scholar]
- Gharibi, D.; Khosravi, M.; Hosseini, Z.; Boroun, F.; Barzegar, S.; Far, A. Antibacterial Effects of Aloe Vera Extracts on Some Human and Animal Bacterial Pathogens. J. Med. Microbiol. Infec. Dis. 2016, 3, 6–10. [Google Scholar]
- Añibarro-Ortega, M.; Pinela, J.; Barros, L.; Ćirić, A.; Silva, S.P.; Coelho, E.; Mocan, A.; Calhelha, R.C.; Soković, M.; Coimbra, M.A.; et al. Compositional Features and Bioactive Properties of Aloe vera Leaf (Fillet, Mucilage, and Rind) and Flower. Antioxidants 2019, 8, 444. [Google Scholar] [CrossRef] [Green Version]
- Froldi, G.; Baronchelli, F.; Marin, E.; Grison, M. Antiglycation Activity and HT-29 Cellular Uptake of Aloe-Emodin, Aloin, and Aloe arborescens Leaf Extracts. Molecules 2019, 24, 2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.I.; Jo, T.H. Efficacy of Aloe. In New Perspectives on Aloe; Park, Y.I., Lee, S.K., Eds.; Springer: Boston, MA, USA, 2006; pp. 63–167. ISBN 978-0-387-34636-6. [Google Scholar]
- Sánchez, M.; González-Burgos, E.; Iglesias, I.; Gómez-Serranillos, M.P. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules 2020, 25, 1324. [Google Scholar] [CrossRef] [Green Version]
- Steenkamp, V.; Stewart, M.J. Medicinal Applications and Toxicological Activities of Aloe. Products. Pharm. Biol. 2007, 45, 411–420. [Google Scholar] [CrossRef]
- Manvitha, K.; Bidya, B. Aloe Vera: A Wonder Plant Its History, Cultivation and Medicinal Uses. J. Pharmacogn. Phytochem. 2014, 2, 85–88. [Google Scholar]
- Amoo, S.; Aremu, A.O.; Van Staden, J. Unraveling the medicinal potential of South African Aloe species. J. Ethnopharmacol. 2014, 153, 19–41. [Google Scholar] [CrossRef] [PubMed]
- Medhin, L.; Sibhatu, D.B.; Seid, M.; Ferej, F.M.; Mohamedkassm, N.; Berhane, Y.; Kaushek, A.; Humida, M.E.; Gasmalbari, E. Comparative Antimicrobial Activities of the Gel, Leaf and Anthraquinone Fractionates of Four Aloe Species (Aloe camperi, Aloe elegans, Aloe eumassawana and Aloe scholleri). Adv. Microbiol. 2019, 09, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, C.-J.E.; Burke, E.S.; Haley, M.E.; Bedi, K.T.; Gandhi, M.A. The use of aloe vera in cancer radiation: An updated comprehensive review. Complement. Ther. Clin. Pr. 2019, 35, 126–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nejatzadeh-Barandozi, F. Antibacterial activities and antioxidant capacity of Aloe vera. Org. Med. Chem. Lett. 2013, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Bashir, A.; Saeed, B.; Mujahid, T.Y.; Jehan, N. Comparative Study of Antimicrobial Activities of Aloe Vera Extracts and Antibiotics against Isolates from Skin Infections. Afr. J. Biotechnol. 2011, 10, 3835–3840. [Google Scholar]
- Upton, R.; Axentiev, P.; Swisher, D. Aloe Vera Leaf, Aloe Vera Leaf Juice, Aloe Vera Inner Leaf Juice. Standards of Identity, Analysis, and Quality Control; American Herbal Pharmacopoeia: Scotts Valley, CA, USA, 2012. [Google Scholar]
- Pooja, C.; Neha, P.; Bindu, N.; Ajay, S.; Vijay, K. Application of Aloe Vera for the Development of Functional Foods. Pharma Innov. J. 2019, 8, 621–625. [Google Scholar]
- Sathasivam, A.; Muthuselvam, M. Analysis of Phytochemical Constituents and Antimicrobial Activities of Aloe Vera L. Against Clinical Pathogens. World J. Agric. Sci. 2008, 5, 572–576. [Google Scholar]
- Park, Y.I.; Jo, T.H. Perspective of industrial application of Aloe vera. In New Perspectives on Aloe; Park, Y.I., Lee, S.K., Eds.; Springer: Boston, MA, USA, 2006; pp. 191–200. ISBN 978-0-387-34636-6. [Google Scholar]
- Pandey, R.; Mishra, A. Antibacterial Activities of Crude Extract of Aloe Barbadensis to Clinically Isolated Bacterial Pathogens. Appl. Biochem. Biotechnol. 2009, 160, 1356–1361. [Google Scholar] [CrossRef]
- Balaji, A.; Vellayappan, M.V.; John, A.A. Biomaterials based nano-applications of Aloe vera and its perspective: A review. RSC Adv. 2015, 5, 86199–86213. [Google Scholar] [CrossRef]
- Vogler, B.K.; Ernst, E. Aloe vera: A systematic review of its clinical effectiveness. Br. J. Gen. Pr. 1999, 49, 823–828. [Google Scholar]
- Majumder, R.; Das, C.K.; Mandal, M. Lead bioactive compounds of Aloe vera as potential anticancer agent. Pharmacol. Res. 2019, 148, 104416. [Google Scholar] [CrossRef] [PubMed]
- Javed, S. Atta-ur-Rahman Chapter 9—Aloe Vera Gel in Food, Health Products, and Cosmetics Industry. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 41, pp. 261–285. [Google Scholar]
- Hamman, J.H. Composition and Applications of Aloe vera Leaf Gel. Molecules 2008, 13, 1599. [Google Scholar] [CrossRef] [Green Version]
- Zago, F.R.; Zago, R. The Scientific Monographic History of Aloe Vera and Aloe Arborescens; Deca Aloe Arborescens US LP: Dallas, TX, USA, 2013. [Google Scholar]
- Alemdar, S.; Agaoglu, S. Investigation of In Vitro Antimicrobial Activity of Aloe Vera Juice. J. Anim. Vet. Adv. 2009, 8, 99–102. [Google Scholar]
- Surjushe, A.; Vasani, R.; Saple, D.G. Aloe vera: A short review. Indian J. Dermatol. 2008, 53, 163–166. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, J.; Hu, Y.; Wang, S.; Chen, M.; Wang, Y. Potential Antineoplastic Effects of Aloe-emodin: A Comprehensive Review. Am. J. Chin. Med. 2014, 42, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Dagne, E.; Bisrat, D.; Wyk, A.V.; Van Wyk, B.-E. Chemistry of Aloe Species. Curr. Org. Chem. 2000, 4, 1055–1078. [Google Scholar] [CrossRef]
- Habeeb, F.; Shakir, E.; Bradbury, F.; Cameron, P.; Taravati, M.R.; Drummond, A.J.; Gray, A.I.; Ferro, V.A. Screening methods used to determine the anti-microbial properties of Aloe vera inner gel. Methods 2007, 42, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Subramania, S. In vitro Antibacterial and Antifungal Activities of Ethanolic Extract of Aloe vera Leaf Gel. J. Plant Sci. 2006, 1, 348–355. [Google Scholar] [CrossRef]
- Saritha, V.; Anilakumar, K.; Khanum, F. Antioxidant and Antibacterial Activity of Aloe Vera Gel Extracts. Int. J. Pharm. Biol. Arch. 2010, 1, 376–384. [Google Scholar]
- Al-Fatimi, M.; Wurster, M.; Schröder, G.; Lindequist, U. Antioxidant, antimicrobial and cytotoxic activities of selected medicinal plants from Yemen. J. Ethnopharmacol. 2007, 111, 657–666. [Google Scholar] [CrossRef]
- Olaleye, T.; Bello-Michael, C. Comparative Antimicrobial Activities of Aloe Vera Gel and Leaf. Afr. J. Biotechnol. 2005, 4. [Google Scholar] [CrossRef]
- Mbajiuka, C.; Obeagu, E.; Eziokwu, O. Antimicrobial Effects of Aloe Vera on Some Human Pathogens. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 1022–1028. [Google Scholar]
- Keikhaie, K.R.; Fazeli-nasab, B.; Jahantigh, H.R.; Hassanshahian, M. Antibacterial Activity of Ethyl Acetate and Methanol Extracts of Securigera Securidaca, Withania Sominefra, Rosmarinus Officinalis and Aloe Vera Plants against Important Human Pathogens. J. Med. Bacteriol. 2018, 7, 13–21. [Google Scholar]
- Cataldi, V.; Di Bartolomeo, S.; DI Campli, E.; Nostro, A.; Cellini, L.; Di Giulio, M. In vitro activity of Aloe vera inner gel against microorganisms grown in planktonic and sessile phases. Int. J. Immunopathol. Pharmacol. 2015, 28, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, M.; Fazeli, M.; Azad, M.; Seyedjavadi, S.S.; Mousavi, R. Aloe vera Gel: Effective Therapeutic Agent against Multidrug-Resistant Pseudomonas aeruginosa Isolates Recovered from Burn Wound Infections. Chemother. Res. Pr. 2015, 2015, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Yamada, Y.; Azuma, K.; Hirozawa, S. Effect of Leaf Extracts of Aloe Arborescens Mill subsp. Natalensis Berger on Growth of Trichophyton mentagrophytes. Antimicrob. Agents Chemother. 1978, 14, 132–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventola, C.L. The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Charles, A.; Janeway, J.; Travers, P.; Walport, M.; Shlomchik, M.J. Infectious Agents and How They Cause Disease. Immunobiology: The Immune System in Health and Disease, 5th ed.; Garland Science: New York, NY, USA, 2001. [Google Scholar]
- Forno-Bell, N.; Bucarey, S.A.; García, D.; Iragüen, D.; Chacón, O.; Martín, B.S. Antimicrobial Effects Caused by Aloe barbadensis Miller on Bacteria Associated with Mastitis in Dairy Cattle. Nat. Prod. Commun. 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Haque, S.D.; Saha, S.K.; Salma, U.; Nishi, M.K.; Rahaman, M.S. Antibacterial Effect of Aloe vera (Aloe barbadensis) leaf gel against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Mymensingh Med. J. 2019, 28, 490–496. [Google Scholar] [PubMed]
- Ben Moussa, O.; Mahouachi, I.; Dammak, I.; Boulares, M.; Mahmoudi, I.; Hassouna, M. Antimicrobial activities of Aloe barbadensis Miller leaves and their effects on lactic acid bacteria behavior. J. New Sci. 2019, 64, 4008–4016. [Google Scholar]
- Vidic, D.; Tarić, E.; Alagić, J.; Maksimović, M. Determination of Total Phenolic Content and Antioxidant Activity of Ethanol Extracts from Aloe Spp. Glas. Hemičara I Tehnol. Bosne I Hercegovine 2014, 42, 5–10. [Google Scholar]
- Hu, Y.; Xu, J.; Hu, Q. Evaluation of Antioxidant Potential ofAloe vera(Aloe barbadensisMiller) Extracts. J. Agric. Food Chem. 2003, 51, 7788–7791. [Google Scholar] [CrossRef]
- Zargoosh, Z.; Ghavam, M.; Bacchetta, G.; Tavili, A. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Habulin, M.; Knez, Ž. Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane. J. Chem. Technol. Biotechnol. 2001, 76, 1260–1266. [Google Scholar] [CrossRef]
- Habulin, M.; Primožič, M.; Knez, Ž. Stability of proteinase form Carica papaya latex in dense gases. J. Supercrit. Fluids 2005, 33, 27–34. [Google Scholar] [CrossRef]
- Sharma, S.; Vaid, S.; Bhat, B.; Singh, S.; Bajaj, B.K. Chapter 17-Thermostable Enzymes for Industrial Biotechnology. In Advances in Enzyme Technology; Biomass, Biofuels, Biochemicals; Singh, R.S., Singhania, R.R., Pandey, A., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 469–495. ISBN 978-0-444-64114-4. [Google Scholar]
- Verderio, E.; Johnson, T.; Griffin, M. Transglutaminases in Wound Healing and Inflammation. Transglutaminases 2005, 38, 89–114. [Google Scholar] [CrossRef]
- Grzegorczyk, M.; Kancelista, A.; Łaba, W.; Piegza, M.; Witkowska, D. The effect of lyophilization and storage time on the survival rate and hydrolytic activity of Trichoderma strains. Folia Microbiol. 2018, 63, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Sundarram, A.; Murthy, T.P.K. α-Amylase Production and Applications: A Review. J. Appl. Environ. Microbiol. 2014, 2, 166–175. [Google Scholar] [CrossRef]
- Jayasekara, S.; Ratnayake, R. Microbial Cellulases: An Overview and Applications. Cellulose 2019, 22. [Google Scholar] [CrossRef] [Green Version]
- Seth, S.; Chakravorty, D.; Dubey, V.K.; Patra, S. An insight into plant lipase research–challenges encountered. Protein Expr. Purif. 2014, 95, 13–21. [Google Scholar] [CrossRef]
- Pandey, V.P.; Awasthi, M.; Singh, S.; Tiwari, S.; Dwivedi, U.N. A Comprehensive Review on Function and Application of Plant Peroxidases. Biochem. Anal. Biochem. 2017, 6, 308. [Google Scholar] [CrossRef]
- Shah, M.A.; Mir, S.A. Plant Proteases in Food Processing. Bioact. Mol. Food 2019, 443–464. [Google Scholar] [CrossRef]
- Luciano, F.B.; Arntfield, S. Use of transglutaminases in foods and potential utilization of plants as a transglutaminase source–Review. Biotemas 2012, 25, 1–11. [Google Scholar] [CrossRef] [Green Version]
- ISO 18415:2007. Cosmetics—Microbiology—Detection of Specified and Non-Specified Microorganisms. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/86/38686.html (accessed on 10 April 2021).
- Turgut, A.C.; Emen, F.M.; Canbay, H.S.; Demirdöğen, R.E.; Çam, N.; Kılıç, D.; Yeşilkaynak, T. Chemical characterization of Lavandula angustifolia Mill. which is a phytocosmetic species and investigation of its antimicrobial effect in cosmetic products. J. Turk. Chem. Soc. Sect. A Chem. 2016, 4, 283–298. [Google Scholar] [CrossRef] [Green Version]
- Lorenzetti, L.J.; Salisbury, R.; Beal, J.L.; Baldwin, J.N. Bacteriostatic Property of Aloe vera. J. Pharm. Sci. 1964, 53, 1287. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Yadav, A.; Yadav, M.; Yadav, J.P. Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm.f. BMC Res. Notes 2017, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, R.; Tripathi, P.; Jeyakumar, E. Isolation, Purification and Evaluation of Antibacterial Agents from Aloe vera. Braz. J. Microbiol. 2009, 40, 906–915. [Google Scholar] [CrossRef] [Green Version]
- Gangadharan, C.; Arthanareeswari, M.; Pandiyan, R.; Ilango, K.; Mohankumar, R. Enhancing the bioactivity of Lupeol, isolated from Aloe vera leaf via targeted semi-synthetic modifications of the olefinic bond. Mater. Today Proc. 2019, 14, 296–301. [Google Scholar] [CrossRef]
- Kambizi, L.; Sultana, N.; Afolayan, A. Bioactive Compounds Isolated from Aloe ferox.: A Plant Traditionally Used for the Treatment of Sexually Transmitted Infections in the Eastern Cape, South Africa. Pharm. Biol. 2005, 42, 636–639. [Google Scholar] [CrossRef]
- Aldayel, T.S.; Grace, M.H.; Lila, M.A.; Yahya, M.A.; Omar, U.M.; Alshammary, G. LC-MS characterization of bioactive metabolites from two Yemeni Aloe spp. with antioxidant and antidiabetic properties. Arab. J. Chem. 2020, 13, 5040–5049. [Google Scholar] [CrossRef]
- Tanaka, M.; Misawa, E.; Ito, Y.; Habara, N.; Nomaguchi, K.; Yamada, M.; Toida, T.; Hayasawa, H.; Takase, M.; Inagaki, M.; et al. Identification of Five Phytosterols from Aloe Vera Gel as Anti-diabetic Compounds. Biol. Pharm. Bull. 2006, 29, 1418–1422. [Google Scholar] [CrossRef] [Green Version]
- Hekmatpou, D.; Mehrabi, F.; Rahzani, K.; Aminiyan, A. The Effect of Aloe Vera Clinical Trials on Prevention and Healing of Skin Wound: A Systematic Review. Iran. J. Med. Sci. 2019, 44, 1–9. [Google Scholar] [CrossRef]
- Marshall, J.M. Aloe Vera Gel: What Is the Evidence. Pharm. J. 1990, 360–362. [Google Scholar]
- Allocati, N.; Masulli, M.; Alexeyev, M.F.; Di Ilio, C. Escherichia coli in Europe: An Overview. Int. J. Environ. Res. Public Heal. 2013, 10, 6235–6254. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H. Pathogenic Escherichia coli. Nat. Rev. Genet. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Yong, M.; Sujuan, D.; Yanquan, F.; Gang, L.; Hongmei, J.; Jun, F. Antimicrobial Activity of Anthocyanins and Catechins against Foodborne Pathogens Escherichia Coli and Salmonella. Food Control 2019, 106, 106712. [Google Scholar]
- Grundmann, H.; Aires-De-Sousa, M.; Boyce, J.; Tiemersma, E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 2006, 368, 874–885. [Google Scholar] [CrossRef] [Green Version]
- Wertheim, H.F.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.; Nouwen, J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef]
- Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J. Antimicrobial Activity of Carvacrol toward Bacillus cereus on Rice. J. Food Prot. 2000, 63, 620–624. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Fricker, M.; Scherer, S. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 2004, 48, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, M.; Patil, S.; Shettigar, H.; Gangwar, M.; Jana, S. Antimicrobial Sensitivity Pattern of Pseudomonas fluorescens after Biofield Treatment. J. Infect. Dis. Ther. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Harriott, M.M.; Noverr, M.C. Candida albicans and Staphylococcus aureus Form Polymicrobial Biofilms: Effects on Antimicrobial Resistance. Antimicrob. Agents Chemother. 2009, 53, 3914–3922. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, 1–18. [Google Scholar] [CrossRef]
- Wu, W.; Jin, Y.; Bai, F.; Jin, S. Chapter 41—Pseudomonas aeruginosa. In Molecular Medical Microbiology, 2nd Ed.; Tang, Y.-W., Sussman, M., Liu, D., Poxton, I., Schwartzman, J., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 753–767. ISBN 978-0-12-397169-2. [Google Scholar]
- Stover, C.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nat. Cell Biol. 2000, 406, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Žitek, T.; Leitgeb, M.; Golle, A.; Dariš, B.; Knez, Ž.; Hrnčič, M.K. The Influence of Hemp Extract in Combination with Ginger on the Metabolic Activity of Metastatic Cells and Microorganisms. Molecules 2020, 25, 4992. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Kanimozhi, M.; Johny, M.; Gayathri, N.; Subashkumar, R. Optimization and Production of α -Amylase from Halophilic Bacillus Species Isolated from Mangrove Soil Sources. J. Appl. Environ. Microbiol. 2014, 2, 70–73. [Google Scholar] [CrossRef]
- Primožič, M.; Čolnik, M.; Knez, Ž.; Leitgeb, M. Advantages and disadvantages of using SC CO2 for enzyme release from halophilic fungi. J. Supercrit. Fluids 2019, 143, 286–293. [Google Scholar] [CrossRef]
- Sigma Aldrich Lipoprotein Lipase Enzyme Assay. Available online: https://www.sigmaaldrich.com/catalog/product/sigma/l2254?lang=en®ion=SI (accessed on 7 April 2021).
- Nicell, J.; Wright, H. A model of peroxidase activity with inhibition by hydrogen peroxide. Enzym. Microb. Technol. 1997, 21, 302–310. [Google Scholar] [CrossRef]
- McLean, M.; Mycock, D.; Berjak, P. A preliminary investigation of extracellular enzyme production toy some species of Aspergillus. South. Afr. J. Bot. 1985, 51, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Gajšek, M.; Jančič, U.; Vasić, K.; Knez, Ž.; Leitgeb, M. Enhanced activity of immobilized transglutaminase for cleaner production technologies. J. Clean. Prod. 2019, 240, 118218. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 149–158. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
Lyophilization | A. arborescens | A. barbadensis |
---|---|---|
Mass of fresh material used for lyophilization [g] | 148.5 | 196.6 |
Mass of dried material obtained after lyophilization [g] | 0.9 | 1.2 |
Moisture removed [%] | 99.4 | 99.4 |
Dry matter [%] | 0.6 | 0.6 |
Extraction | ||
Mass of dried material used for extraction [g] | 0.9 | 1.2 |
Mass of obtained extract [g] | 0.21 | 0.17 |
Extraction yield [%] | 23.3 | 14.2 |
Yield after lyophilization and extraction [%] | 0.14 | 0.09 |
Sample | Total Phenolic Content | Proanthocyanidin Content | Total Protein Concentration | Antioxidant Activity |
---|---|---|---|---|
[mg/g] 1,2 | [mg/g] 3 | [mg/g] 4 | [% inhibition] 5 | |
A. arborescens gel | - | - | 0.94 ± 0.24 | 5.54 ± 0.84 |
A. barbadensis gel | - | - | 1.32 ± 0.09 | 5.46 ± 0.62 |
Lyophilized A. arborescens | - | 0.01 ± 0.00 | 9.77 ± 1.22 | 8.31 ± 1.13 |
Lyophilized A. barbadensis | - | 0.01 ± 0.00 | 6.06 ± 0.98 | 7.86 ± 1.58 |
Ethanol extract of A. arborescens | 1.42 ± 0.15 | 0.22 ± 0.08 | 5.93 ± 0.43 | 61.55 ± 7.31 |
Ethanol extract of A. barbadensis | 7.25 ± 1.04 | 1.35 ± 0.18 | 4.11 ± 1.07 | 59.29 ± 5.29 |
Sample | α-amylase | Cellulase | Lipase | Peroxidase | Protease | Transglutaminase |
---|---|---|---|---|---|---|
[U/g] 1 | ||||||
A. arborescens gel | 0.01 ± 0.00 | 413.75 ± 11.18 | - | 0.02 ± 0.01 | - | 0.39 ± 0.10 |
A. barbadensis gel | 0.01 ± 0.00 | 56.49 ± 6.42 | - | 0.09 ± 0.01 | - | 0.15 ± 0.04 |
Lyophilized A. arborescens | 0.21 ± 0.01 | 314.88 ± 14.95 | - | 0.21 ± 0.03 | 0.20 ± 0.09 | 1.46 ± 0.22 |
Lyophilized A. barbadensis | 0.09 ± 0.01 | 245.36 ± 8.61 | 1.62 ± 0.04 | 0.94 ± 0.21 | 0.03 ± 0.01 | 0.86 ± 0.03 |
Ethanol extract of A. arborescens | 21.51 ± 2.16 | 1165.34 ± 57.22 | - | 1.41 ± 0.19 | 1.15 ± 0.36 | 1.81 ± 0.24 |
Ethanol extract of A. barbadensis | 5.59 ± 1.03 | 768.82 ± 29.16 | 36.03 ± 3.41 | 2.00 ± 0.54 | 2.31 ± 0.48 | 1.12 ± 0.18 |
Microorganism | Concentration [CFU/mL] | Microbial Growth Inhibition Zone Diameter [mm] | |
---|---|---|---|
Ethanol Extract of A. Arborescens | Ethanol Extract of A. Barbadensis | ||
E. coli | 106 | 11 ± 0 | 13 ± 1 |
107 | 11 ± 0 | 12 ± 1 | |
B. cereus | 106 | 12 ± 1 | 12 ± 1 |
107 | 10 ± 0 | 10 ± 0 | |
P. fluorescens | 106 | 13 ± 1 | 11 ± 1 |
107 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leitgeb, M.; Kupnik, K.; Knez, Ž.; Primožič, M. Enzymatic and Antimicrobial Activity of Biologically Active Samples from Aloe arborescens and Aloe barbadensis. Biology 2021, 10, 765. https://doi.org/10.3390/biology10080765
Leitgeb M, Kupnik K, Knez Ž, Primožič M. Enzymatic and Antimicrobial Activity of Biologically Active Samples from Aloe arborescens and Aloe barbadensis. Biology. 2021; 10(8):765. https://doi.org/10.3390/biology10080765
Chicago/Turabian StyleLeitgeb, Maja, Kaja Kupnik, Željko Knez, and Mateja Primožič. 2021. "Enzymatic and Antimicrobial Activity of Biologically Active Samples from Aloe arborescens and Aloe barbadensis" Biology 10, no. 8: 765. https://doi.org/10.3390/biology10080765
APA StyleLeitgeb, M., Kupnik, K., Knez, Ž., & Primožič, M. (2021). Enzymatic and Antimicrobial Activity of Biologically Active Samples from Aloe arborescens and Aloe barbadensis. Biology, 10(8), 765. https://doi.org/10.3390/biology10080765