Candidate Glaucoma Biomarkers: From Proteins to Metabolites, and the Pitfalls to Clinical Applications
Abstract
:Simple Summary
Abstract
1. Introducing Glaucoma
2. Molecular Biomarkers
3. Candidate Molecular Biomarkers Identified in Eye Fluids, Eye Tissues, and Blood/Sera
3.1. Aqueous Humor
3.1.1. Protein-Based Biomarkers
3.1.2. Metabolite-Based Biomarkers
Study | Fluid/Tissue | Strategy | Analytical Technique | List of Candidate Biomarkers (Fold Change vs. Controls) 1 | Samples 2 |
---|---|---|---|---|---|
Tripathi et al., 1994 [40] | Aqueous humor | Targeted proteomics | ELISA | Up 3: TGF-β2 (1.8-fold) | 15 POAG, 10 CT |
Tezel et al., 1997 [55] | Aqueous humor and plasma | Targeted proteomics | RIA | Up: ET (1.05-fold in aqueous humor) | 31 POAG, 24 CT |
Ferreira et al., 2004 [63] | Aqueous humor | Targeted quantitative analysis (activity assay) | Spectrophotometry | Up: SOD (1.7-fold), GPx (3.0-fold) | 24 POAG, 24 CT |
Määttä et al., 2005 [70] | Aqueous humor | Targeted proteomics | ELISA | Up: MMP-2 (2.1-fold PEXG vs. CT, 1.7-fold PEXG vs. POAG, 2.0-fold PES vs. CT), TIMP-2 (7.7-fold PEXG vs. CT, 3.0-fold POAG vs. CT, 6.0-fold PES vs. CT) | 15 POAG, 16 PEXG, 15 PES, 10 CT |
Min et al., 2006 [41] | Aqueous humor | Targeted proteomics | ELISA | Up: TGF-β2 (2.7-fold POAG vs. CT, 2.3-fold NVG vs. CT, 1.4-fold SOAG vs. CT) | 43 glaucoma (14 POAG, 14 NVG, 15 SOAG), 20 CT |
Yu et al., 2007 [42] | Aqueous humor | Targeted proteomics | ELISA | Up: TGF-β1 (control levels below detection limit), TGF-β2 (16-fold). | NVG, CT |
Nolan et al., 2007 [43] | Aqueous humor | Targeted proteomics | ELISA | Up: sCD44 (2.2-fold) | 90 POAG, 124 CT |
Grus et al., 2008 [86] | Aqueous humor | Untargeted (discovery) and targeted proteomics (verification) | SELDI-TOF-MS, 2D electrophoresis, LC-MS/MS &ELISA | Up: TTR (1.9-fold) | 52 POAG, 55 CT |
Mokbel et al., 2010 [44] | Aqueous humor and plasma | Targeted proteomics | ELISA | Up: sCD44 (1.8-fold in aqueous humor), EPO (1,8-fold in aqueous humor) | 39 POAG, 25 CT |
Duan et al., 2010 [87] | Aqueous humor | Untargeted proteomics | 2D electrophoresis and LC–MS/MS | Up: TTR (2.2-fold), CysC (5.2-fold), ALB (11.1-fold) | 5 POAG, 5 CT |
Ghanem et al., 2010 [66] | Aqueous humor | Targeted analysis | Spectrophotometric (enzymatic) | Up activity: GPx (2.9-fold), SOD (1.8-fold), MDA (8-fold) | 30 POAG, 25 CT |
Bai et al., 2011 [99] | Aqueous humor | Targeted proteomics | Quantitative WB | Up: α2M (3.5-fold) | 12 glaucoma, 9 CT |
Ghanem et al., 2011 [73] | Aqueous humor | Targeted proteomics | ELISA | Up: CTGF (3.1-fold PEXG vs. CT, 1.6-fold PEXG vs. POAG), TIMP-2 (4.8-fold PEXG vs. CT, 2.1-fold PEXG vs. POAG) | 30 POAG, 30 PEXG, 25 CT |
Browne et al., 2011 [75] | Aqueous humor | Targeted proteomics | ELISA | Up: CTGF (2.0-fold PEXG vs. CT, 1.9-fold PEXG vs. PES, 1.7-fold PEXG vs. POAG) | 20 POAG, 18 PEXG, 15 PES, 21 CT |
Takai et al., 2012 [46] | Aqueous humor | Targeted proteomics | Multiplex immunoassays | Up: IL-8 (2.3-fold POAG vs. CT, 4.0-fold PEXG vs. CT), TGF-β1 (5.0-fold POAG vs. CT, 12.5 PEXG vs. CT) | 20 POAG, 23 PEXG, 21 CT |
Bagnis et al., 2012 [67] | Aqueous humor | Targeted proteomics | Antibody microarray | Down 4: SOD (0.4-fold), GST (0.3-fold) | 10 POAG, 10 CT |
Saccà et al., 2012 [97] | Aqueous humor | Targeted proteomics | Antibody microarray | Up: APOE (2.1-fold) | 14 POAG, 11 CT |
Inoue et al., 2013 [98] | Aqueous humor | Targeted proteomics | Multiplex immunoassays | Up: APOC3 (6.3-fold POAG vs. CT, 6.5 PEXG, vs. CT), APOE (3.6-fold POAG vs. CT, 3.4-fold PEXG vs. CT), TTR (2.1-fold POAG vs. CT, 2.3-fold PEXG vs. CT), α2M (7.0-fold POAG vs. CT, 7.5-fold PEXG vs. CT) | 20 POAG, 32 PEXG, 38 CT |
Goyal et al., 2014 [68] | Aqueous humor | Targeted analysis | Spectrophotometric (enzymatic or biochemical) | Up activity: SOD (2.1-fold POAG vs. CT, 2.0-fold PACG vs. CT), GPx (2.5-fold POAG vs. CT, 2.3-fold PACG vs. CT) | 30 POAG, 30 PACG, 30 CT |
Doudevski et al., 2014 [100] | Aqueous humor | Targeted proteomics | ELISA | Up: CLU (1.8-fold) | 68 PEXG, 107 CT |
Ahoor et al., 2016 [56] | Aqueous humor and serum | Targeted analysis | ELISA | Up: ET-1 (1.2-fold PEXG vs. CT and 1.1-fold PES vs. CT in aqueous humor; 1.4-fold PEXG vs. CT and 1.4-fold PES vs. CT in serum) | 15 PEXG, 15 PES, 15 CT |
Ban et al., 2017 [53] | Aqueous humor | Targeted proteomics | ELISA | Up: Growth differentiation factor 15 (GDF15, 31.7-fold POAG vs. CT) | 57 POAG, 23 CT |
Wang et al., 2018 [77] | Aqueous humor | Targeted proteomics | Multiplex immunoassays | Up: OPN (1.2-fold) | 41 PACG, 22 CT |
Nikhalashree et al., 2019 [78] | Aqueous humor | Untargeted proteomics | LC–MS/MS | Up: OPN (unknown-fold, POAG vs. GT and PACG vs. CT), CysC (unknown-fold, POAG vs. CT, PACG vs. CT) | 90 POAG, 72 PACG, 78 CT |
Guo et al., 2019 [49] | Aqueous humor | Targeted proteomics | ELISA | Up: TGF-β2 (1.3-fold in POAG vs. CT) | 25 POAG, 21 CACG, 9 PACS, 45 AACG, 26 CT |
Can Demirdöğen et al., 2019 [76] | Aqueous humor and tears | Targeted proteomics | ELISA | Up: CTGF (1.6-fold PEXG vs. CT, 1.5-fold PES vs. CT, in tear) | Tear: 78 PEXG, 77 PES, 78 CT. Aqueous Humor: 8 PEXG, 17 PES, 23 CTs |
ten Berge et al., 2019 [51] | Aqueous humor | Targeted proteomics | Multiplex immunoassays | Up: IL-8 (1.5-fold POAG vs. CT, 1.5-fold AMD vs. CT) | 28 glaucoma(22 POAG, 1 NTG, 4 NAG, 1 SGPDS), 12 AMD, 25 RP, 22 CT |
Can Demirdöğen, et al., 2020 [80] | Aqueous humor and tears | Targeted proteomics | ELISA | Up: CLU (2.0-fold PEXG vs. CT, 2.4 PEXG vs. PES, in aqueous humor) | 12 PEXG, 22 OES, 22 CT |
Sun et al., 2020 [52] | Aqueous humor | Targeted Proteomics | ELISA | Up: VEGF-A (1.4-fold Stable NVG vs. CT, 1.2-fold Stable-NVG vs. CRVO, 1.1-fold Stable-NVG vs. NPDR, 1.2-fold Stable-NVG vs. BRVO), IL-8 (1.4-fold Stable-NVG vs. CT, 1.1-fold Stable-NVG vs. CRVO), EPO (1.3-fold Stable-NVG vs. CT, 1.2-fold Stable-NVG vs. BRVO) | 12 NVG, 26 Stable-NVG, 11 CRVO, 18 PACG, 25 PDR, 7 BRVO, 22 CT |
Sun et al., 2020 [48] | Aqueous humor and vitreous body | Targeted Proteomics | ELISA | Up: VEGF-A (1.2-fold NVG vs. PDR in aqueous humor) | 15 NVG, 17 PDR |
Hubens et al., 2020 [95] | Aqueous humor | Targeted proteomics | LC–MS/MS | Up: ALB, APOC3, CysC, TIMP2, A2M, PGTDS, ENPP2 | POAG vs. CT |
Down: SOD1 | |||||
Lin et al., 2020 [54] | Aqueous humor | Targeted proteomics | ELISA | Up: GDF15 (unknown-fold, POAG vs. CT, PEXG vs. CT) | 6 POAG, 6 PEXG |
Burgos-Blasco et al., 2020 [60] | Aqueous humor and tears | Targeted proteomics | Multiplex immunoassays | Up in aqueous humor: IFN-γ (1.7-fold), VEGF (2.3-fold). | 27 POAG, 29 CT |
Igarashi et al., 2021 [50] | Aqueous humor | Targeted proteomics | Immunoenzymatic assay and multiplex immunoassay | Up in aqueous humor: TGF-β1 (SOAG vs. CT, PEXG vs. CT, PEXG vs. SOAG, PEXG vs. POAG), TGF-β2 (POAG vs. CT, SOAG vs. CT, POAG vs. PEXG, SOAG vs. PEXG) | 97 POAG, 48 SOAG, 48 PEXG, 88 CT |
Down in tear: TGF-β2 (PEXG vs. CT) | |||||
Bleich et al., 2004 [102] | Aqueous humor and plasma | Targeted metabolomics | ELISA | Up: Hcy (2.0-fold in aqueous humor, 1.3-fold in plasma) | 29 PEXG, 31 CT |
Castany et al., 2011 [103] | Aqueous humor | Targeted metabolomics | HPLC 6–UV/Vis | Up: Ap4A (15-fold) | 16 POAG, 16 CT |
Chen, et al., 2019 [106] | Aqueous humor | Untargeted metabolomics | GC/TOF-MS | Up: Glycine-2 (8.9-fold PCG vs. CT, 3.9-fold PCG vs. POAG, 9.0-fold PCG vs. ARC), Phenylalanine-1 (1.8-fold PCG vs. CT, 1.5-fold PCG vs. ARC) | 45 PCG, 10 CCs, 10 ARCs, 10 POAG |
Down: Phenylalanine-1 (0.9-fold PCG vs. POAG), Urea (0.9-fold PCG vs. POAG, 0.6-fold PCG vs. CT, 0.8-fold PCG vs. ARC) |
3.2. Eye Tissues and Vitreous Body
3.2.1. Vitreous Body
3.2.2. Retina and Optic Nerve
3.2.3. Trabecular Meshwork
Study | Fluid/Tissue | Strategy | Analytical Technique | List of Candidate Biomarkers (Fold Change vs. Controls) 1 | Samples |
---|---|---|---|---|---|
Tezel, et al., 2001 [118] | Retina | Targeted proteomics | Immunohistochemistry | Up 2: TNF-α, TNFR1 (Not-applicable fold) | 14 POAG (20 eyes), 10 CT (20 eyes) |
Govindarajan et al., 2008 [128] | Trabecular meshwork | Targeted analysis | WB and spectrophotometric | Up: CAPN10 (unknown fold) | 15 POAG, 15 CT |
Down 3: CAPN10-activity (0.5-fold) | |||||
Tezel et al., 2010 [124] | Retina | Targeted proteomics | LC–MS/MS | Down: Complement factor H (CFH | 10 glaucoma, 10 CT |
Yang et al., 2011 [122] | Retina | Targeted proteomics | LC–MS/MS (label free) and WB | Up: TNF-α (3.1-fold), CAPN10 (2.0-fold). | 10 glaucoma, 10 CT |
Kovacs et al., 2015 [109] | Vitreous body | Targeted proteomics | Multiplex immunoassays | Up: VEGF-A (79.5-fold NVG vs. non-DM), IL-6 (164.9-fold NVG vs. non-DM), IL-8 (30.1-fold NVG vs. non-DM). | 12 NVG, 29 PDR, 10 DM 4, 29 non-DM |
Micera et al., 2016 [129] | Trabecular meshwork | Targeted proteomics | Multiplex immunoassays | Upregulated: IL-10 (23.8-fold), IL-6 (14.6-fold), IL-5 (13.3-fold), IL-7 (12.5-fold), IL-12p70 (8.7-fold), IL-12p40 (7.7-fold), IL-3 (4.4-fold), IL-21 (3.7-fold), IL-4 (3.7-fold), IL-33 (3.2-fold), TNFα (4.5-fold), IFN-γ (2.3-fold), IL-15 (2.2.fold), IL-2 (2.1-fold), IL-1β (1.7-fold), IL-17 (1.6-fold), IL-8 (1.4-fold), IL-34 (1.3-fold), VEGF (6.1-fold), TGF-β1 (6.1-fold), FGF-β (3.9-fold), nerve growth factor β (NGF-β, 3.8-fold), BDN (3.1-fold), MMP1 (2.0-fold), MMP2 (3.2-fold), TIMP2 (1.8-fold) | 40 POAG, 23 CT |
Down: IL-18 (0.08-fold), IL-16 (0.02-fold), MMP7 (0.5-fold), TIMP4 (0.4-fold) | |||||
Tong et al., 2017 [111] | Vitreous body | Targeted proteomics | Multiplex immunoassays (cytometric) | Up: IL-2 (3.4-fold AACG vs. CT), IL-5 (1.34 AACG vs. CT), MCP-1 (5.4-fold AACG vs. CT, 1.4-fold POAG vs. CT), TNF-α (1.8-fold AACG vs. CT), IP-10 (7.0-fold AACG vs. CT, 2.4-fold CAGG vs. CT, 2.8-fold POAG vs. CT) | 29 glaucoma (8 AACG, 15 CACG, 6 POAG), 28 CT |
Dreyer et al., 1996 [113] | Vitreous body | Targeted metabolomics | HPLC | Upregulated: Glutamate (2.0-fold) | 26 Glaucoma, 21 CT |
Doganay et al., 2012 [114] | Vitreous body | Targeted metabolomics | Magnetic resonance spectroscopy (MRS) | Up: Glutamate/glutamine–creatine ratio (Glx/Cr, 4.8-fold) | 29 POAG, 13 CT |
3.3. Tear Film
3.3.1. Protein-Based Biomarkers
3.3.2. Metabolite-Based Biomarkers
Study | Fluid/Tissue | Strategy | Analytical Technique | List of Candidate Biomarkers (Fold Change vs. Controls) 1 | Samples |
---|---|---|---|---|---|
Ghaffariyeh et al., 2009 [139] | Tears | Targeted proteomics | ELISA | Up 2: BDNF (3.2-fold) | 20 NTG, 20 CT |
Pieragostino et al., 2012 [132] | Tears | Untargeted proteomics | LC–MS/MS (label free) and SDS-PAGE+MALDI-MS 3 | Altered: LYZ, LCN1, immunoglobulins, PIP, CST4 | Discovery: 4 POAG, 5 PEXG, 4 CTs. Validation: 9 POAG, 7 PEXG, 8 CT |
Pieragostino et al., 2013 [144] | Tears | Shotgun proteomics | LC–MS/MS | Up: ALB (1.7-fold), CST4 (1.7-fold), ACTG1 (1.9-fold), TF (2.1-fold), PIP (2.4-fold), LTF (2.6-fold), LYZ (2.7-fold), proline-rich protein 1 (PROL1, 2.9-fold), LCN1 (2.9-fold) | 9 POAG, 10 CT |
Down 4: IGHG3 (Unknown-fold) | |||||
Gupta et al., 2017 [145] | Tears | Targeted proteomics | Multiplexed ELISA | Down: IL-12P70 (0.6-fold) | 10 POAG, 9 CT |
Sahay et al., 2017 [140] | Tears | Targeted proteomics | Gelatin zymography | Up: MMP-9 (2.5-fold POAG vs. CT, 2.2-fold PACG vs. CT, 2.1-fold PES vs. CT), MMP-2 (1.1-fold POAG vs. CT, 1.1-fold PES vs. CT) | 27 POAG, 27 PACG, 22 PEXG, 40 PES, 35 CTs |
Down: MMP-2 (0.7-fold PACG vs. CT) | |||||
Shpak et al., 2017 [143] | Tears, aqueous humor, and serum | Targeted proteomics | ELISA | Down: CNTF (0.7-fold in Aqueous Humor of POAG vs. Cataract, 0.6-fold in Tear of POAG vs. Cataract) | 55 POAG, 61 Cataracts, 29 CT |
Martinez-de-la-Casa et al., 2017 [138] | Tears | Targeted proteomics | Multiplexed immunoassay | Up: IL-2, IL-5, IL-10, IL-12 p70, IL-13, IL-15, IL-17, FGF basic, PDGF-BB, TNF-α in POAG (preservative vs. CTs) | 20 POAG (preservative), 20 POAG (preservative-free), 39 CT |
Reddy et al., 2018 [142] | Tears | Targeted Proteomics | Gelatin zymography, ELISA, and multiplex immunoassay | Up: MMP-9 (7.1-fold POAG vs. CT, 5.7-fold NTG vs. CT, 1.2-fold POAG vs. NTG), MMP-2 (2.6-fold POAG vs. CT, 3.3-fold NTG vs. CT, 0.8-fold POAG vs. NTG), TIMP-1 (1.3-fold POAG vs. CT, 1.2-fold POAG vs. NTG), IP-10 (1.8-fold POAG vs. NTG), macrophage derived chemokine (MDC, 1.9-fold POAG vs. NTG), platelet derived growth factor-AA (PDGF-AA, 3.8-fold POAG vs. NTG), IL-1α (1.2-fold POAG vs. NTG), IL-8 (1.6-fold POAG vs. NTG), IL-7 (1.3-fold NTG vs. POAG), MCP-1 (1.3-fold NTG vs. POAG), TNF-β (1.3-fold NTG vs. POAG) | 30 POAG, 30 NTG, 30 CT |
Down: MMP-1 (0.8-fold POAG vs. CT, 0.8-fold POAG vs. NTG) | |||||
Csősz et al., 2019 [136] | Tears and aqueous humor | Targeted proteomics | Multiplexed immunoassay | Down: IFN-γ, IL-5 in tears of patients who developed complications after one year | 12 POAG, 8 PACG |
Sedlak et al., 2020 [137] | Tears | Targeted analysis | Spectrophotometric (enzymatic and non-enzymatic) | Up: SOD (unknown-fold), CAT (unknown-fold), GPx (unknown-fold), AOPP (1.1 BR+BAC vs. CT or T, 1.1-fold T+BAV vs. CT or T), Total Oxidant Status (TOS, 1.2-fold BR+BAC vs. CT or T), 1.2-fold T+BAC vs. CT or T), Oxidative Stress Index (OSI, 1.1-fold BR+BAC vs. CT or T, 1.21 T+BAC vs. CT or T). | 17 glaucoma-preservative-free, 24 glaucoma-BAC-preserved 0.5% timolol (T+BAC), 19 glaucoma-BAC-preserved brimonidine (BR+BAC), 25 CT |
Roedl et al., 2007 [147] | Tears and plasma | Targeted metabolomics | HPLC-fluorescence | Up: Hcy (1.8-fold in tear fluid, 1.4-fold in plasma) | 30 PEXG, 30 CT |
Rossi et al., 2019 [148] | Tears | Targeted metabolomics and untargeted proteomics | Direct infusion UPLC–MS/MS (DIMS, metabolomics) and LC–MS/MS (label-free proteomics) | Up-proteins: LYZ | 16 POAG, 17 CT |
Down-proteins: ACTG1 | |||||
Down-metabolites: Alanine (0.7-fold), arginine (0.6-fold), glycine\lysine (0.7-fold), leucine\isoleucine\proline-OH (0.6-fold), methionine (0.7-fold), phenylalanine (0.6-fold), proline (0.7-fold), valine (0.7-fold), C2 (0.5-fold), C22:0-LPC (0.5-fold), C24:0-LPC (0.5-fold) |
3.4. Serum/Blood
3.4.1. Protein-Based Biomarkers
3.4.2. Metabolite-Based Biomarkers
Study | Fluid/Tissue | Strategy | Analytical Technique | List of Candidate Biomarkers (Fold-Change vs. Controls) 1 | Samples |
---|---|---|---|---|---|
Tezel et al., 1999 [171] | Serum | Targeted proteomics | WB and ELISA | Up 2: HS (1.8-fold NTG vs. CT, 1.5-fold NTG vs. POAG), CS (2.2 NTG vs. CT, 1.5-fold NTG vs. POAG) | 60 NTG, 36 POAG, 20 CT |
Yang et al., 2001 [169] | Serum | Untargeted analysis (discovery) and targeted analysis (validation) | WB, 2DGE, and LC–ESI–MS (discovery) and ELISA (validation) | Up: anti-GST antibody (1.4-fold POAG vs. CT, 1.3-fold NTG vs. CT) | 40 NTG, 25 POAG, 25 CT |
Lip et al., 2002 [179] | Plasma | Targeted proteomics | ELISA | Up: VEGF (1.8-fold POAG vs. CT, 2.7-fold NTG vs. CT, 1.5-fold NTG vs. POAG) | 24 POAG, 26 NTG, 26 CT |
Down 3: sFlt-1 (0.2-fold POAG vs. CT, 0.6-fold NTG vs. CT) | |||||
Golubnitschaja et al., 2004 [197] | Blood (leukocytes) | Targeted proteomics | WB | Up: MT1-MMP (Unknown-fold) | 6 NTG, 6 CT |
Emre et al., 2005 [183] | Plasma | Targeted proteomics | Radioimmunoassay | Up: ET-1 (1.3-fold) | 16 POAG, 15 CT |
Gherghel et al., 2005 [150] | Blood | Targeted proteomics | Spectrophotometric (enzymatic) | Down: GSH (0.7-fold) | 21 POAG, 34 CT |
Yildirim et al., 2005 [149] | Blood | Targeted analysis | Spectrophotometric (analysis of activity) | Up: Plasma MDA (2.3-fold) | 40 POAG, 60 CT |
Grus et al., 2006 [172] | Serum | Untargeted analysis (discovery) and targeted analysis (validation) | WB (discovery) and ELISA (validation) | Up: α-fodrin (1.4-fold NTG vs. CT, 1.2-fold NTG vs. POAG) | 40 POAG, 40 NTG, 40 CT |
Acar et al., 2009 [181] | Red blood cells | Targeted proteomics | LC–ESI–MS/MS | Down: DHA-PC | 31 POAG, 16 CT |
Huang et al., 2010 [184] | Serum | Targeted proteomics | ELISA | Up: IL-4 (1.5-fold), IL-6 (1.5-fold), IL-12p70 (1.4-fold) | 32 POAG, 26 CT |
Down: TNF-α (0.9-fold) | |||||
Engin et al., 2010 [151] | Serum | Targeted analysis | Spectrophotometric (Enzymatic) and HPLC–UV | Up: MDA (1.2.fold), serine (1.2-fold), TF (1.1-fold), vitamin A (1.2-fold), vitamin E (1.5-fold) | 160 glaucoma (type non-indicated), 31 CT |
Down: TAC (0.9-fold), SOD (0.9-fold), GPx (0.8-fold) | |||||
Sorkhabi et al., 2011 [162] | Serum and aqueous humor | Targeted analysis | ELISA and spectrophotometric | Up: 8-OHdG (2.3-fold in aqueous humor, 1.3-fold in serum) | 15 POAG, 13 PEXG, 27 CT |
Down: TAS (0.7-fold in aqueous humor, 0.8-fold in serum) | |||||
Chang et al., 2011 [159] | Serum | Targeted analysis | Spectrophotometric | Up: MDA (1.2-fold), conjugated diene (1.1-fold), AOPP (1.1-fold), protein carbonyl (1.2-fold), ischemia-modified ALB (1.05-fold), 8-OHdG (1.1-fold). | 50 PACG, 50 CT |
Majsterek et al., 2011 [152] | Red blood cells | Targeted analysis | Spectrophotometric (analysis of activity) | Down: CAT (0.6-fold), SOD (0.6-fold), GPx (0.8-fold). | 20 POAG, 20 CT |
Ghaffariyeh et al., 2011 [191] | Serum | Targeted proteomics | ELISA | Down-regulated: BDNF (0.7-fold) | 25 POAG, 25 CT |
Zanon-Moreno et al., 2013 [153] | Plasma | Targeted analysis | LC–UV, LC(RP)–electrochem, and spectrophotometric | Up: GPx (1.5-fold) | 250 POAG, 250 CT |
Down: vitamin E (0.9-fold) | |||||
Abu-Amero et al., 2013 [161] | Plasma | Targeted analysis | Spectrophotometric (enzymatic) | Down: TAS (0.5-fold) | 139 POAG, 148 CT |
López-Riquelme et al., 2014 [182] | Plasma | Targeted analysis | ELISA, chemiluminescence immunoassay, HPLC–UV | Up: ET-1 (1.9-fold POAG vs. CT, 1.4-fold NTG vs. CT), Hcy (1.3-fold POAG vs. CT, 1.1-fold NTG vs. CT) | 48 POAG, 15 NTG, 75 CT |
Down: Vitamin E (0.7-fold NTG vs. CT, 0.7-fold NTG vs. POAG) | |||||
González-Iglesias et al., 2014 [195] | Serum | Untargeted proteomics (discovery) and targeted proteomics (validation) | 2D-DIGE, LC–MS/MS, and MALDI-TOF/TOF (discovery) and ELISA (validation) | Up: APOA4 (2.7-fold POAG vs. CT, 1.5-fold PEXG vs. CT, 1.8-fold POAG vs. CT), C3 (1.5-fold POAG vs. CT, 1.4 fold POAG vs. PEXG), TTR (1.8-fold POAG vs. CT, 1.5-fold POAG vs. PEXG), TF (1.7-fold POAG vs. CT, 1.5-fold POAG vs. PEXG), VTN (2.2-fold POAG vs. CT, 1.6-fold PEXG vs. CT), fibulin-1 (FBLN1, 1.9-fold POAG vs. CT, 1.5-fold PEXG vs. CT), APOA1, 1.3-fold POAG vs. CT), alpha-1 antitrypsin (SERPINA1, 1.5-fold POG vs. CT, 1.3-fold POAG vs. PEXG), CFH (1.3-fold POAG vs. CT), apolipoprotein L1 (APOL1, 1–4-fold POAG vs. CT), ficolin-3 (FCN3, 1.3-fold POAG vs. CT, 1.3-fold POAG vs. PEXG) | Discovery: 53 POAG, 45 PEXG, 41 CT. Validation: 20 POAG, 14 PEXG, 17 CT. |
Down: IGHG2 (0.7-fold POAG vs. CT, 0.7-fold PEXG vs. CT), C4A (0.8-fold POAG vs. CT) | |||||
Ozgonul et al., 2016 [187] | Blood | Targeted analysis | Spectroscopy (hematology and chemistry analyzers) | Up: NLR (1.2-fold POAG vs. CT, 1.1-fold OHT vs. CT) | 84 POAG, 94 OHT, 80 CT |
Li et al., 2017 [196] | Plasma | Targeted proteomics | Immunoturbidimetry | Down: C3 (0.9-fold PACG vs. CT, 0.9-fold female PACG vs. female CT) | 237 PACG, 158 CT |
Oddone et al., 2017 [192] | Serum | Targeted proteomics | ELISA | Down: BDNF (0.8-fold), NGF (0.7-fold) | 45 POAG, 15 CT |
Li et al., 2017 [188] | Blood | Targeted analysis | Biochemical analyzer | Up: White blood cell (1.05.fold), neutrophil (1.2-fold), NLR (1.4-fold). | 771 PACG, 770 CT |
Down: LMR (0,7-fold) | |||||
Rokicki et al., 2017 [154] | Serum | Targeted proteomics | Spectrophotometric | Up: Lipofuscin (1.2-fold), MDA (1.5-fold), TOS (2.8-fold). | 30 POAG, 25 CT |
Down: Total SOD activity (0.8-fold), mitochondrial SOD (0.8-fold) | |||||
Kondkar et al., 2018 [185] | Plasma | Targeted proteomics | ELISA | Up: TNF-α (2.0-fold) | 51 POAG, 88 CT |
Kondkar et al., 2018 [186] | Plasma | Targeted proteomics | ELISA | Upregulated: TNF-α (6.0-fold) | 49 PEXG, 88 CT |
Yaz et al., 2019 [155] | Serum | Targeted analysis | Spectrophotometric | Up: MDA (5.0-fold PEXG vs. CT, 2.1-fold PES vs. CT, 1.3-fold PEXG vs. PES), GSH (1.6-fold PEXG vs. CT, 1.6-fold PES vs. CT) | 58 PEXG, 47 PES, 134 CT |
Down: SOD activity (0.3-fold PEXG vs. CT, 0.3-fold PES vs. CT), CAT activity (0.6-fold PEXG vs. CT, 0.5-fold PES vs. CT), nitric oxide (0.8-fold PEXG vs. CT, 0.7-fold PEXG vs. PES) | |||||
Yang et al., 2019 [167] | Blood | Targeted analysis | Flow cytometry and ELISA | Up: IL-1β (unknown-fold), IFN-γ (unknown-fold), TNF-α (unknown-fold) | 32 POAG, 21 CT |
Karakurt et al., 2019 [158] | Serum | Targeted analysis | Bioanalyzer and spectrophotometric | Up: Ischemia-modified ALB (1.2-fold), disulfide (1.3-fold), disulfide/native thiol (1.1-fold), disulfide/total thiol (1.1-fold) | 70 POAG, 87 CT |
Down: Total thiol (0.8-fold), native thiol (0.8-fold) | |||||
Maric et al., 2019 [198] | Serum | Targeted analysis | ELISA | Up: Serum HS (1.2-fold PEXG vs. CT, 1.5-fold PEXG vs. POAG), CS (1.2-fold PEXG vs. CT) | 47 PEXG, 43 POAG, 22 PES, 53 CT |
Igarashi et al., 2020 [193] | Serum | Targeted proteomics | ELISA | Down: BDNF (0.6.fold POAG vs. CT, 0.5-fold NTG vs. CT, 1.3-fold POAG vs. NTG) | 16 POAG, 11 NTG, 51 CT |
Shin et al., 2020 [177] | Serum | Targeted proteomics | ELISA | Down: Anti-α-fodrin antibody (IgG, 0.6-fold NTG vs. CT, 0.4-fold NTG vs. HTG), Anti-α-fodrin antibody (IgA, 0.6-fold NTG vs. HTG) | 17 NTG (OAG), 7 HTG (OAG), 17 CT |
Li et al., 2020 [160] | Serum | Targeted analysis | Spectrophotometric (enzymatic) | Up: MDA (5.5-fold PACG vs. CT), hydrogen peroxide (2.2-fold PCAG vs. CT) | 94 PACG, 89 CT |
Down: SOD (0.8.fold PACG vs. CT), TAS (0.8-fold PACG vs. CT) | |||||
Kondkar et al., 2020 [163] | Plasma | Targeted analysis | ELISA | Up: 8-OHdG (1.4-fold) | 50 POAG, 45 CT |
Gulpamuk et al., 2020 [157] | Serum | Targeted proteomics | Spectrophotometric (enzymatic) | Up: Ischemia-modified ALB (1.1-fold POAG vs. CT) | 30 POAG, 30 OHT, 30 CT |
Down: Native thiol (0.9-fold POAG vs. CT, 0.9-fold OHT vs. CT), total thiol (0.9-fold POAG vs. CT, 0.9-fold OHT vs. CT) | |||||
Zhang et al., 2021 [190] | Blood | Targeted analysis | Bioanalyzer | Up: White blood cell (1.3-fold NVG-RVO vs. CT, 1.2-fold NVG-DR vs. CT), neutrophil (1.4-fold NVG-RVO vs. CT, 1.3-fold NVG-DR vs. CT), NLR (1.3-fold NVG-RVO vs. CT, 1.3-fold NVG-DR vs. CT). | 38 NVG (secondary to RVO), 46 NVG (secondary to DR), 59 CT |
Down: LMR (0.7-fold NVG-RVO vs. CT, 0.7-fold NVG-DR vs. CT) | |||||
Ren et al., 2006 [208] | Plasma and red blood cells | Targeted metabolomics | GC–MS and spectrophotometry | Down: DHA (0.8-fold in red cell colline phosphoglycerides, 0.7-fold in plasma) | 10 POAG, 8 CT |
Fraenkl et al., 2011 [204] | Plasma and urine | Targeted metabolomics | Ion chromatography | Down: Citrate (0.8-fold in plasma) | 12 NTG, 8 POAG, 1 PEXG, 21 CT |
Tranchina et al., 2011 [202] | Plasma | Targeted metabolomics | Competitive chemiluminescent enzyme immunoassay | Up: Hcy (1.3-fold PEXG vs. CT, 1.2-fold PEXG vs. POAG). | 36 PEXG, 40 POAG, 40 CT |
Michalczuk et al., 2017 [205] | Plasma and urine | Targeted metabolomics | Enzymatic | Down: Citrate (0.8-fold in plasma, 0.6-fold urine) | 34 glaucoma, 34 CT |
Lin et al., 2020 [203] | Plasma | Targeted metabolomics | Spectroscopy (Spectrophotometry or LC-fluorimeter) | Up: Hcy (1.1-fold POAG vs. CT, 1.2-fold NTG vs. CT), Cys (1.1-fold POAG vs. CT, 1.2-foldNTG vs. CT) | 42 POAG, 20 NTG, 52 OHT, 78 CT |
Nzoughet et al., 2020 [214] | Plasma | Untargeted metabolomics | LC–HRMS | Up: N-acetyl-L-leucine (1.8-fold), 1-oleoyl-rac-glycerol (1.6-fold), arginine (1.3-fold), rac-glycerol 1-myristate (1.3-fold), cystathionine (1.6-fold) | 34 POAG, 30 CT |
Down: Nicotinamide (0.6-fold), hypoxanthine (0.6-fold), 1-methyl-6,7-dihydroxy- 1,2,3,4-tetrahydroisoquinoline (0.5-fold), xanthine (0.7-fold) |
4. Outlook and Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jonas, J.B.; Aung, T.; Bourne, R.R.; Bron, A.M.; Ritch, R.; Panda-Jonas, S. Glaucoma. Lancet 2017, 390, 2183–2193. [Google Scholar] [CrossRef]
- Quigley, H.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA J. Am. Med. Assoc. 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabelt, B.T.; Kaufman, P.L. Changes in aqueous humor dynamics with age and glaucoma. Prog. Retin. Eye Res. 2005, 24, 612–637. [Google Scholar] [CrossRef]
- Casson, R.J.; Chidlow, G.; Wood, J.P.M.; Crowston, J.G.; Goldberg, I. Definition of glaucoma: Clinical and experimental concepts. Clin. Exp. Ophthalmol. 2012, 40, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottanka, J.; Kuhlmann, A.; Scholz, M.; Johnson, D.H.; Lütjen-Drecoll, E. Pathophysiologic changes in the optic nerves of eyes with primary open angle and pseudoexfoliation glaucoma. Investig. Ophthalmol. Vis. Sci. 2005, 46, 4170–4181. [Google Scholar] [CrossRef] [PubMed]
- Vesti, E.; Kivela, T. Exfoliation syndrome and exfoliation glaucoma. Prog. Retin. Eye Res. 2000, 19, 345–368. [Google Scholar] [CrossRef]
- Braunger, B.M.; Fuchshofer, R.; Tamm, E.R. The aqueous humor outflow pathways in glaucoma: A unifying concept of disease mechanisms and causative treatment. Eur. J. Pharm. Biopharm. 2015, 95, 173–181. [Google Scholar] [CrossRef]
- Schlötzer-Schrehardt, U.; Naumann, G.O.H. Ocular and Systemic Pseudoexfoliation Syndrome. Am. J. Ophthalmol. 2006, 141. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, M. Mechanisms of Glaucoma in Exfoliation Syndrome. J. Glaucoma 2018, 27, S83–S86. [Google Scholar] [CrossRef] [PubMed]
- Killer, H.E.; Pircher, A. Normal tension glaucoma: Review of current understanding and mechanisms of the pathogenesis /692/699/3161/3169/3170 /692/699/3161 review-article. Eye 2018, 32, 924–930. [Google Scholar] [CrossRef]
- Harper, R.A.; Reeves, B.C. Glaucoma screening: The importance of combining test data. Optom. Vis. Sci. 1999, 76, 537–543. [Google Scholar] [CrossRef]
- Kerrigan-Baumrind, L.A.; Quigley, H.A.; Pease, M.E.; Kerrigan, D.F.; Mitchell, R.S. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investig. Ophthalmol. Vis. Sci. 2000, 41, 741–748. [Google Scholar]
- Beykin, G.; Goldberg, J.L. Molecular Biomarkers for Glaucoma. Curr. Ophthalmol. Rep. 2019, 7, 171–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, A.J.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Schooley, R.T.; Spilker, B.A.; et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Laterza, O.F.; Hendrickson, R.C.; Wagner, J.A. Molecular biomarkers. Drug Inf. J. 2007, 41, 573–585. [Google Scholar] [CrossRef]
- Bhattacharya, S.K.; Lee, R.K.; Grus, F.H.; Bhattacharya, S.; Grus, F.; Lee, R.; Beuerman, R.; Burlingame, A.; Coutinho, A.; Crabb, J.W.; et al. Molecular biomarkers in glaucoma. Investig. Ophthalmol. Vis. Sci. 2013, 54, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bua, S.; Supuran, C.T. Diagnostic markers for glaucoma: A patent and literature review (2013-2019). Expert Opin. Ther. Pat. 2019, 29, 829–839. [Google Scholar] [CrossRef]
- Golubnitschaja, O.; Flammer, J. What Are the Biomarkers for Glaucoma? Surv. Ophthalmol. 2007, 52, 155–161. [Google Scholar] [CrossRef]
- Beykin, G.; Norcia, A.M.; Srinivasan, V.J.; Dubra, A.; Goldberg, J.L. Discovery and clinical translation of novel glaucoma biomarkers. Prog. Retin. Eye Res. 2021, 80, 100875. [Google Scholar] [CrossRef]
- Agnifili, L.; Pieragostino, D.; Mastropasqua, A.; Fasanella, V.; Brescia, L.; Tosi, G.M.; Sacchetta, P.; Mastropasqua, L. Molecular Biomarkers in Primary Open-Angle Glaucoma: From Noninvasive to Invasive, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2015; Volume 221, ISBN 9780128046081. [Google Scholar]
- Knepper, P.A.; Samples, J.R.; Yue, B.Y.J.T. Biomarkers of primary open-angle glaucoma. Expert Rev. Ophthalmol. 2010, 5, 731–742. [Google Scholar] [CrossRef]
- Kokotas, H.; Kroupis, C.; Chiras, D.; Grigoriadou, M.; Lamnissou, K.; Petersen, M.B.; Kitsos, G. Biomarkers in primary open angle glaucoma. Clin. Chem. Lab. Med. 2012, 50, 2107–2119. [Google Scholar] [CrossRef] [Green Version]
- Barbosa-Breda, J.; Himmelreich, U.; Ghesquière, B.; Rocha-Sousa, A.; Stalmans, I. Clinical metabolomics and glaucoma. Ophthalmic Res. 2017, 59, 1–6. [Google Scholar] [CrossRef]
- Funke, S.; Perumal, N.; Bell, K.; Pfeiffer, N.; Grus, F.H. The potential impact of recent insights into proteomic changes associated with glaucoma. Expert Rev. Proteom. 2017, 14, 311–334. [Google Scholar] [CrossRef]
- Aghamollaei, H.; Parvin, S.; Shahriary, A. Review of proteomics approach to eye diseases affecting the anterior segment. J. Proteom. 2020, 225, 103881. [Google Scholar] [CrossRef] [PubMed]
- McNally, S.; O’Brien, C.J. Metabolomics/proteomics strategies used to identify biomarkers for exfoliation glaucoma. J. Glaucoma 2014, 23, S51–S54. [Google Scholar] [CrossRef] [PubMed]
- Tezel, G. A decade of proteomics studies of glaucomatous neurodegeneration. Proteom. Clin. Appl. 2014, 8, 154–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tezel, G. A proteomics view of the molecular mechanisms and biomarkers of glaucomatous neurodegeneration. Prog. Retin. Eye Res. 2013, 35, 18–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gramlich, O.W.; Bell, K.; Von Thun Und Hohenstein-Blaul, N.; Wilding, C.; Beck, S.; Pfeiffer, N.; Grus, F.H. Autoimmune biomarkers in glaucoma patients. Curr. Opin. Pharmacol. 2013, 13, 90–97. [Google Scholar] [CrossRef]
- Bell, K.; Gramlich, O.W.; Von Thun Und Hohenstein-Blaul, N.; Beck, S.; Funke, S.; Wilding, C.; Pfeiffer, N.; Grus, F.H. Does autoimmunity play a part in the pathogenesis of glaucoma? Prog. Retin. Eye Res. 2013, 36, 199–216. [Google Scholar] [CrossRef]
- Golubnitschaja, O.; Yeghiazaryan, K.; Flammer, J. Key molecular pathways affected by glaucoma pathology: Is predictive diagnosis possible? EPMA J. 2010, 1, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Ahsan, H. Biomarkers of inflammation and oxidative stress in ophthalmic disorders. J. Immunoass. Immunochem. 2020, 41, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Pinazo-Durán, M.D.; Zanón-Moreno, V.; Gallego-Pinazo, R.; García-Medina, J.J. Oxidative stress and mitochondrial failure in the pathogenesis of glaucoma neurodegeneration. Prog. Brain Res. 2015, 220, 127–153. [Google Scholar] [CrossRef]
- Aslan, M.; Cort, A.; Yucel, I. Oxidative and nitrative stress markers in glaucoma. Free Radic. Biol. Med. 2008, 45, 367–376. [Google Scholar] [CrossRef]
- Pinazo-Durán, M.D.; Zanón-Moreno, V.; García-Medina, J.J.; Gallego-Pinazo, R. Evaluation of presumptive biomarkers of oxidative stress, immune response and apoptosis in primary open-angle glaucoma. Curr. Opin. Pharmacol. 2013, 13, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Rieck, J. The pathogenesis of glaucoma in the interplay with the immune system. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2393–2409. [Google Scholar] [CrossRef] [Green Version]
- Shahidullah, M.; Al-Malki, W.H.; Delamere, N.A. Mechanism of aqueous humor secretion, its regulation and relevance to glaucoma. Glaucoma Basic Clin. Concepts 2011. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, R.C.; Li, J.; Chan, W.F.; Tripathi, B.J. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp. Eye Res. 1994, 59, 723–727. [Google Scholar] [CrossRef]
- Min, S.H.; Lee, T.I.; Chung, Y.S.; Kim, H.K. Transforming growth factor-beta levels in human aqueous humor of glaucomatous, diabetic and uveitic eyes. Korean J. Ophthalmol. 2006, 20, 162–165. [Google Scholar] [CrossRef]
- Yu, X.-B.; Sun, X.-H.; Dahan, E.; Guo, W.-Y.; Qian, S.-H.; Meng, F.-R.; Song, Y.-L.; Simon, G.J. Ben Increased levels of transforming growth factor-betal and -beta2 in the aqueous humor of patients with neovascular glaucoma. Ophthalmic Surg. Lasers Imaging Off. J. Int. Soc. Imaging Eye 2007, 38, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Nolan, M.J.; Giovingo, M.C.; Miller, A.M.; Wertz, R.D.; Ritch, R.; Liebmann, J.M.; Rand Allingham, R.; Herndon, L.W.; Wax, M.B.; Smolyak, R.; et al. Aqueous humor sCD44 concentration and visual field loss in primary open-angle glaucoma. J. Glaucoma 2007, 16, 419–429. [Google Scholar] [CrossRef]
- Mokbel, T.H.; Ghanem, A.A.; Kishk, H.; Arafa, L.F.; El-Baiomy, A.A. Erythropoietin and soluble CD44 levels in patients with primary open-angle glaucoma. Clin. Exp. Ophthalmol. 2010, 38, 560–565. [Google Scholar] [CrossRef]
- Balaiya, S.; Edwards, J.; Tillis, T.; Khetpal, V.; Chalam, K.V. Tumor necrosis factor-alpha (TNF-α) levels in aqueous humor of primary open angle glaucoma. Clin. Ophthalmol. 2011, 5, 553–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takai, Y.; Tanito, M.; Ohira, A. Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Investig. Ophthalmol. Vis. Sci. 2012, 53, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garweg, J.G.; Zandi, S.; Pfister, I.B.; Skowronska, M.; Gerhardt, C. Comparison of cytokine profiles in the aqueous humor of eyes with pseudoexfoliation syndrome and glaucoma. PLoS ONE 2017, 12, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Zhang, H.; Jiang, J.; Li, Y.; Nie, C.; Gu, J.; Luo, L.; Wang, Z. Angiogenic and inflammatory biomarker levels in aqueous humor and vitreous of neovascular glaucoma and proliferative diabetic retinopathy. Int. Ophthalmol. 2020, 40, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Guo, L.; Fan, Y.; Fang, L.; Wei, J.; Tan, Y.; Chen, Y.; Fan, X. Aqueous humor levels of TGF-β2 and SFRP1 in different types of glaucoma. BMC Ophthalmol. 2019, 19, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, N.; Honjo, M.; Asaoka, R.; Kurano, M.; Yatomi, Y.; Igarashi, K.; Miyata, K.; Kaburaki, T.; Aihara, M. Aqueous autotaxin and TGF-βs are promising diagnostic biomarkers for distinguishing open-angle glaucoma subtypes. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- ten Berge, J.C.; Fazil, Z.; van den Born, I.; Wolfs, R.C.W.; Schreurs, M.W.J.; Dik, W.A.; Rothova, A. Intraocular cytokine profile and autoimmune reactions in retinitis pigmentosa, age-related macular degeneration, glaucoma and cataract. Acta Ophthalmol. 2019, 97, 185–192. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, H.; Tang, Y.; Chen, Y.; Li, Y.; Nie, C.; Gu, J.; Luo, L.; Wang, Z. Aqueous inflammation and ischemia-related biomarkers in neovascular glaucoma with stable iris neovascularization. Curr. Eye Res. 2020, 45, 1504–1513. [Google Scholar] [CrossRef] [PubMed]
- Ban, N.; Siegfried, C.J.; Lin, J.B.; Shui, Y.B.; Sein, J.; Pita-Thomas, W.; Sene, A.; Santeford, A.; Gordon, M.; Lamb, R.; et al. GDF15 is elevated in mice following retinal ganglion cell death and in glaucoma patients. JCI Insight 2017, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.B.; Sheybani, A.; Santeford, A.; De Maria, A.; Apte, R.S. Increased aqueous humor gdf15 is associated with worse visual field loss in pseudoexfoliative glaucoma patients. Transl. Vis. Sci. Technol. 2020, 9, 1–6. [Google Scholar] [CrossRef]
- Tezel, G.; Kass, M.A.; Kolker, A.E.; Becker, B.; Wax, M.B. Plasma and aqueous humor endothelin levels in primary open-angle glaucoma. J. Glaucoma 1997, 6, 83–89. [Google Scholar] [CrossRef]
- Ahoor, M.H.; Ghorbanihaghjo, A.; Sorkhabi, R.; Kiavar, A. Klotho and endothelin-1 in pseudoexfoliation syndrome and glaucoma. J. Glaucoma 2016, 25, 919–922. [Google Scholar] [CrossRef]
- Salzmann, J.; Flitcroft, D.; Bunce, C.; Gordon, D.; Wormald, R.; Migdal, C. Brain natriuretic peptide: Identification of a second natriuretic peptide in human aqueous humour. Br. J. Ophthalmol. 1998, 82, 830–834. [Google Scholar] [CrossRef] [Green Version]
- Baumane, K.; Ranka, R.; Laganovska, G. Association of NT-proANP level in plasma and humor aqueous with primary open-angle glaucoma. Curr. Eye Res. 2017, 42, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Q.; Guo, F.; Chen, X.; Xie, L. Link between neurodegeneration and trabecular meshwork injury in glaucomatous patients. BMC Ophthalmol. 2017, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Burgos-Blasco, B.; Vidal-Villegas, B.; Saenz-Frances, F.; Morales-Fernandez, L.; Perucho-Gonzalez, L.; Garcia-Feijoo, J.; Martinez-de-la-Casa, J.M. Tear and aqueous humour cytokine profile in primary open-angle glaucoma. Acta Ophthalmol. 2020, 98, e768–e772. [Google Scholar] [CrossRef]
- Kotikoski, H.; Moilanen, E.; Vapaatalo, H.; Aine, E. Biochemical markers of the L-arginine-nitric oxide pathway in the aqueous humour in glaucoma patients. Acta Ophthalmol. Scand. 2002, 80, 191–195. [Google Scholar] [CrossRef]
- Galassi, F.; Renieri, G.; Sodi, A.; Ucci, F.; Vannozzi, L.; Masini, E. Nitric oxide proxies and ocular perfusion pressure in primary open angle glaucoma. Br. J. Ophthalmol. 2004, 88, 757–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, S.M.; Lerner, S.F.; Brunzini, R.; Evelson, P.A.; Llesuy, S.F. Oxidative stress markers in aqueous humor of glaucoma patients. Am. J. Ophthalmol. 2004, 137, 62–69. [Google Scholar] [CrossRef]
- Yaǧci, R.; Ersöz, I.; Erdurmuş, M.; Gürel, A.; Duman, S. Protein carbonyl levels in the aqueous humour and serum of patients with pseudoexfoliation syndrome. Eye 2008, 22, 128–131. [Google Scholar] [CrossRef]
- Koliakos, G.G.; Befani, C.D.; Mikropoulos, D.; Ziakas, N.G.; Konstas, A.G.P. Prooxidant-antioxidant balance, peroxide and catalase activity in the aqueous humour and serum of patients with exfoliation syndrome or exfoliative glaucoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 246, 1477–1483. [Google Scholar] [CrossRef]
- Ghanem, A.A.; Arafa, L.F.; El-Baz, A. Oxidative stress markers in patients with primary open-angle glaucoma. Curr. Eye Res. 2010, 35, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Bagnis, A.; Izzotti, A.; Centofanti, M.; Saccà, S.C. Aqueous humor oxidative stress proteomic levels in primary open angle glaucoma. Exp. Eye Res. 2012, 103, 55–62. [Google Scholar] [CrossRef]
- Goyal, A.; Srivastava, A.; Sihota, R.; Kaur, J. Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr. Eye Res. 2014, 39, 823–829. [Google Scholar] [CrossRef]
- Hondur, G.; Göktasş, E.; Yang, X.; Al-Aswad, L.; Auran, J.D.; Blumberg, D.M.; Cioffi, G.A.; Liebmann, J.M.; Suh, L.H.; Trief, D.; et al. Oxidative stress–related molecular biomarker candidates for glaucoma. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4078–4088. [Google Scholar] [CrossRef] [Green Version]
- Määttä, M.; Tervahartiala, T.; Harju, M.; Airaksinen, J.; Autio-Harmainen, H.; Sorsa, T. Matrix metalloproteinases and their tissue inhibitors in aqueous humor of patients with primary open-angle glaucoma, exfoliation syndrome, and exfoliation glaucoma. J. Glaucoma 2005, 14, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Vesaluoma, M.; Mertaniemi, P.; Mannonen, S.; Lehto, I.; Uusitalo, R.; Sarna, S.; Tarkkanen, A.; Tervo, T. Cellular and plasma fibronectin in the aqueous humour of primary open-angle glaucoma, exfoliative glaucoma and cataract patients. Eye 1998, 12, 886–890. [Google Scholar] [CrossRef] [Green Version]
- Navajas, E.V.; Martins, J.R.M.; Melo, L.A.S.; Saraiva, V.S.; Dietrich, C.P.; Nader, H.B.; Belfort, R. Concentration of hyaluronic acid in primary open-angle glaucoma aqueous humor. Exp. Eye Res. 2005, 80, 853–857. [Google Scholar] [CrossRef]
- Ghanem, A.A.; Arafa, L.F.; El-Baz, A. Connective tissue growth factor and tissue inhibitor of matrix metalloproteinase-2 in patients with exfoliative glaucoma. Curr. Eye Res. 2011, 36, 540–545. [Google Scholar] [CrossRef]
- Kee, C.; Son, S.; Ahn, B.H. The relationship between gelatinase A activity in aqueous humor and glaucoma. J. Glaucoma 1999, 8, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Browne, J.G.; Ho, S.L.; Kane, R.; Oliver, N.; Clark, A.F.; O’Brien, C.J.; Crean, J.K. Connective tissue growth factor is increased in pseudoexfoliation glaucoma. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3660–3666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Can Demirdöğen, B.; Koçan Akçin, C.; Özge, G.; Mumcuoğlu, T. Evaluation of tear and aqueous humor level, and genetic variants of connective tissue growth factor as biomarkers for early detection of pseudoexfoliation syndrome/glaucoma. Exp. Eye Res. 2019, 189, 107837. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fu, M.; Liu, K.; Wang, N.; Zhang, Z.; Zhou, M.; Xu, X. Matricellular proteins play a potential role in acute primary angle closure. Curr. Eye Res. 2018, 43, 771–777. [Google Scholar] [CrossRef]
- Nikhalashree, S.; George, R.; Shantha, B.; Lingam, V.; Vidya, W.; Panday, M.; Sulochana, K.N.; Coral, K. Detection of proteins associated with extracellular matrix regulation in the aqueous humour of patients with primary glaucoma. Curr. Eye Res. 2019, 44, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Basu, K.; Maurya, N.; Kaur, J.; Saxena, R.; Gupta, V.; Sihota, R.; Ghosh, I. Possible role of differentially expressing novel protein markers (ligatin and fibulin-7) in human aqueous humor and trabecular meshwork tissue in glaucoma progression. Cell Biol. Int. 2019, 43, 820–834. [Google Scholar] [CrossRef]
- Can Demirdöğen, B.; Demirkaya-Budak, S.; Özge, G.; Mumcuoğlu, T. Evaluation of tear fluid and aqueous humor concentration of clusterin as biomarkers for early diagnosis of pseudoexfoliation syndrome and pseudoexfoliative glaucoma. Curr. Eye Res. 2020, 45, 805–813. [Google Scholar] [CrossRef]
- Ishikawa, K.; Kohno, R.I.; Mori, K.; Murakami, Y.; Nakao, S.; Akiyama, M.; Yoshida, S.; Sonoda, K.H. Increased expression of periostin and tenascin-C in eyes with neovascular glaucoma secondary to PDR. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 621–628. [Google Scholar] [CrossRef]
- Von Thun Und Hohenstein-Blaul, N.; Kunst, S.; Pfeiffer, N.; Grus, F.H. Biomarkers for glaucoma: From the lab to the clinic. Eye 2017, 31, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Joachim, S.C.; Bruns, K.; Lackner, K.J.; Pfeiffer, N.; Grus, F.H. Antibodies to α B-crystallin, vimentin, and heat shock protein 70 in aqueous humor of patients with normal tension glaucoma and IgG antibody patterns against retinal antigen in aqueous humor. Curr. Eye Res. 2007, 32, 501–509. [Google Scholar] [CrossRef]
- Joachim, S.C.; Wuenschig, D.; Pfeiffer, N.; Grus, F.H. IgG antibody patterns in aqueous humor of patients with primary open angle glaucoma and pseudoexfoliation glaucoma. Mol. Vis. 2007, 13, 1573–1579. [Google Scholar]
- Nezu, N.; Usui, Y.; Saito, A.; Shimizu, H.; Asakage, M.; Yamakawa, N.; Tsubota, K.; Wakabayashi, Y.; Narimatsu, A.; Umazume, K.; et al. Machine learning approach for intraocular disease prediction based on aqueous humor immune mediator profiles. Ophthalmology 2021. [Google Scholar] [CrossRef] [PubMed]
- Grus, F.H.; Joachim, S.C.; Sandmann, S.; Thiel, U.; Bruns, K.; Lackner, K.J.; Pfeiffer, N. Transthyretin and complex protein pattern in aqueous humor of patients with primary open-angle glaucoma. Mol. Vis. 2008, 14, 1437–1445. [Google Scholar]
- Duan, X.; Xue, P.; Wang, N.; Dong, Z.; Lu, Q.; Yang, F. Proteomic analysis of aqueous humor from patients with primary open angle glaucoma. Mol. Vis. 2010, 16, 2839–2846. [Google Scholar] [PubMed]
- Bouhenni, R.A.; Al Shahwan, S.; Morales, J.; Wakim, B.T.; Chomyk, A.M.; Alkuraya, F.S.; Edward, D.P. Identification of differentially expressed proteins in the aqueous humor of primary congenital glaucoma. Exp. Eye Res. 2011, 92, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Kaeslin, M.A.; Killer, H.E.; Fuhrer, C.A.; Zeleny, N.; Huber, A.R.; Neutzner, A. Changes to the aqueous humor proteome during glaucoma. PLoS ONE 2016, 11, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kliuchnikova, A.A.; Samokhina, N.I.; Ilina, I.Y.; Karpov, D.S.; Pyatnitskiy, M.A.; Kuznetsova, K.G.; Toropygin, I.Y.; Kochergin, S.A.; Alekseev, I.B.; Zgoda, V.G.; et al. Human aqueous humor proteome in cataract, glaucoma, and pseudoexfoliation syndrome. Proteomics 2016, 16, 1938–1946. [Google Scholar] [CrossRef]
- Kaur, I.; Kaur, J.; Sooraj, K.; Goswami, S.; Saxena, R.; Chauhan, V.S.; Sihota, R. Comparative evaluation of the aqueous humor proteome of primary angle closure and primary open angle glaucomas and age-related cataract eyes. Int. Ophthalmol. 2019, 39, 69–104. [Google Scholar] [CrossRef]
- Adav, S.S.; Wei, J.; Terence, Y.; Ang, B.C.H.; Yip, L.W.L.; Sze, S.K. Proteomic analysis of aqueous humor from primary open angle glaucoma patients on drug treatment revealed altered complement activation cascade. J. Proteome Res. 2018, 17, 2499–2510. [Google Scholar] [CrossRef]
- Adav, S.S.; Wei, J.; Qian, J.; Gan, N.Y.; Yip, L.W.L.; Sze, S.K. Aqueous humor protein dysregulation in primary angle-closure glaucoma. Int. Ophthalmol. 2019, 39, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Bollinger, K.E.; Kodeboyina, S.K.; Zhi, W.; Patton, J.; Bai, S.; Edwards, B.; Ulrich, L.; Bogorad, D.; Sharma, A. Proteomic alterations in aqueous humor from patients with primary open angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2635–2643. [Google Scholar] [CrossRef] [Green Version]
- Hubens, W.H.G.; Mohren, R.J.C.; Liesenborghs, I.; Eijssen, L.M.T.; Ramdas, W.D.; Webers, C.A.B.; Gorgels, T.G.M.F. The aqueous humor proteome of primary open angle glaucoma: An extensive review. Exp. Eye Res. 2020, 197, 108077. [Google Scholar] [CrossRef]
- Izzotti, A.; Longobardi, M.; Cartiglia, C.; Saccà, S.C. Proteome alterations in primary open angle glaucoma aqueous humor. J. Proteome Res. 2010, 9, 4831–4838. [Google Scholar] [CrossRef]
- Saccà, S.C.; Centofanti, M.; Izzotti, A. New proteins as vascular biomarkers in primary open angle glaucomatous aqueous humor. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4242–4253. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Kawaji, T.; Tanihara, H. Elevated levels of multiple biomarkers of alzheimer’s disease in the aqueous humor of eyes with open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5353–5358. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Sivori, D.; Woo, S.B.; Neet, K.E.; Fabian Lerner, S.; Uri Saragovi, H. During glaucoma, α2-macroglobulin accumulates in aqueous humor and binds to nerve growth factor, neutralizing neuroprotection. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5260–5265. [Google Scholar] [CrossRef] [Green Version]
- Doudevski, I.; Rostagno, A.; Cowman, M.; Liebmann, J.; Ritch, R.; Ghiso, J. Clusterin and complement activation in exfoliation glaucoma. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2491–2499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazifova-Tasinova, N.; Radeva, M.; Galunska, B.; Grupcheva, C. Metabolomic analysis in ophthalmology. Biomed. Pap. 2020, 164, 236–246. [Google Scholar] [CrossRef]
- Bleich, S.; Roedl, J.; Von Ahsen, N.; Schlötzer-Schrehardt, U.; Reulbach, U.; Beck, G.; Kruse, F.E.; Naumann, G.O.H.; Kornhuber, J.; Jünemann, A.G.M. Elevated homocysteine levels in aqueous humor of patients with pseudoexfoliation glaucoma. Am. J. Ophthalmol. 2004, 138, 162–164. [Google Scholar] [CrossRef]
- Castany, M.; Jordi, I.; Catala, J.; Gual, A.; Morales, M.; Gasull, X.; Pintor, J. Glaucoma patients present increased levels of diadenosine tetraphosphate, Ap4A, in the aqueous humour. Exp. Eye Res. 2011, 92, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Nucci, C.; Di Pierro, D.; Varesi, C.; Ciuffoletti, E.; Russo, R.; Gentile, R.; Cedrone, C.; Duran, M.D.P.; Coletta, M.; Mancino, R. Increased malondialdehyde concentration and reduced total antioxidant capacity in aqueous humor and blood samples from patients with glaucoma. Mol. Vis. 2013, 19, 1841–1846. [Google Scholar] [PubMed]
- Buisset, A.; Gohier, P.; Leruez, S.; Muller, J.; Amati-Bonneau, P.; Lenaers, G.; Bonneau, D.; Simard, G.; Procaccio, V.; Annweiler, C.; et al. Metabolomic profiling of aqueous humor in glaucoma points to taurine and spermine deficiency: Findings from the Eye-D study. J. Proteome Res. 2019, 18, 1307–1315. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Wang, L.; Sun, X. Metabolomics of the aqueous humor in patients with primary congenital glaucoma. Mol. Vis. 2019, 25, 489–501. [Google Scholar]
- Pan, C.W.; Ke, C.; Chen, Q.; Tao, Y.J.; Zha, X.; Zhang, Y.P.; Zhong, H. Differential metabolic markers associated with primary open-angle glaucoma and cataract in human aqueous humor. BMC Ophthalmol. 2020, 20, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Barbosa Breda, J.; Croitor Sava, A.; Himmelreich, U.; Somers, A.; Matthys, C.; Rocha Sousa, A.; Vandewalle, E.; Stalmans, I. Metabolomic profiling of aqueous humor from glaucoma patients-the metabolomics in surgical ophthalmological patients (MISO) study. Exp. Eye Res. 2020, 201, 108268. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, K.; Marra, K.V.; Yu, G.; Wagley, S.; Ma, J.; Teague, G.C.; Nandakumar, N.; Lashkari, K.; Arroyo, J.G. Angiogenic and inflammatory vitreous biomarkers associated with increasing levels of retinal ischemia. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6523–6530. [Google Scholar] [CrossRef] [Green Version]
- Inafuku, S.; Noda, K.; Amano, M.; Nishimura, S.I.; Ishida, S. Short communication: Increase of sialylated n-glycansin eyes with neovascular glaucoma secondary to proliferative diabetic retinopathy. Curr. Eye Res. 2016, 41, 721–724. [Google Scholar] [CrossRef]
- Tong, Y.; Zhou, Y.L.; Zheng, Y.; Biswal, M.; Zhao, P.Q.; Wang, Z.Y. Analyzing cytokines as biomarkers to evaluate severity of glaucoma. Int. J. Ophthalmol. 2017, 10, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, M.; Gupta, V.B.; Chick, J.M.; Greco, T.M.; Wu, Y.; Chitranshi, N.; Vander Wall, R.; Hone, E.; Deng, L.; Dheer, Y.; et al. Age-related neurodegenerative disease associated pathways identified in retinal and vitreous proteome from human glaucoma eyes. Sci. Rep. 2017, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, E.B.; Zurakowski, D.; Schumer, R.A.; Podos, S.M.; Lipton, S.A. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch. Ophthalmol. 1996, 114, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Doganay, S.; Cankaya, C.; Alkan, A. Evaluation of corpus geniculatum laterale and vitreous fluid by magnetic resonance spectroscopy in patients with glaucoma; A preliminary study. Eye 2012, 26, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Honkanen, R.A.; Baruah, S.; Zimmerman, M.B.; Khanna, C.L.; Weaver, Y.K.; Narkiewicz, J.; Waziri, R.; Gehrs, K.M.; Weingeist, T.A.; Boldt, H.C.; et al. Vitreous amino acid concentrations in patients with glaucoma undergoing vitrectomy. Arch. Ophthalmol. 2003, 121, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Tezel, G.; Wax, M.B.; Edward, D.P. Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch. Ophthalmol. 2000, 118, 666–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, L.; Neufeld, A.H. Tumor necrosis factor-alpha: A potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 2000, 32, 42–50. [Google Scholar] [CrossRef]
- Tezel, G.; Li, L.Y.; Patil, R.V.; Wax, M.B. TNF-α and TNF-α receptor-1 in the retina of normal and glaucomatous eyes. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1787–1794. [Google Scholar]
- Tezel, G.; Wax, M.B. Hypoxia-inducible factor 1alpha in the glaucomatous retina and optic nerve head. Arch. Ophthalmol. 2004, 122, 1348–1356. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.K.; Crabb, J.S.; Bonilha, V.L.; Gu, X.; Takahara, H.; Crabb, J.W. Proteomics implicates peptidyl arginine deiminase 2 and optic nerve citrullination in glaucoma pathogenesis. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2508–2514. [Google Scholar] [CrossRef]
- Mizokami, J.; Kanamori, A.; Negi, A.; Nakamura, M. A preliminary study of reduced expression of aquaporin-9 in the optic nerve of primate and human eyes with glaucoma. Curr. Eye Res. 2011, 36, 1064–1067. [Google Scholar] [CrossRef]
- Yang, X.; Luo, C.; Cai, J.; Powell, D.W.; Yu, D.; Kuehn, M.H.; Tezel, G. Neurodegenerative and inflammatory pathway components linked to TNF-α/TNFR1 signaling in the glaucomatous human retina. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8442–8454. [Google Scholar] [CrossRef]
- Tezel, G.; Yang, X.; Luo, C.; Cai, J.; Kain, A.D.; Powell, D.W.; Kuehn, M.H.; Pierce, W.M. Hemoglobin expression and regulation in glaucoma: Insights into retinal ganglion cell oxygenation. Investig. Ophthalmol. Vis. Sci. 2010, 51, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Tezel, G.; Yang, X.; Luo, C.; Kain, A.D.; Powell, D.W.; Kuehn, M.H.; Kaplan, H.J. Oxidative stress and the regulation of complement activation in human glaucoma. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5071–5082. [Google Scholar] [CrossRef]
- Funke, S.; Perumal, N.; Beck, S.; Gabel-Scheurich, S.; Schmelter, C.; Teister, J.; Gerbig, C.; Gramlich, O.W.; Pfeiffer, N.; Grus, F.H. Glaucoma related proteomic alterations in human retina samples. Sci. Rep. 2016, 6, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, S.K.; Rockwood, E.J.; Smith, S.D.; Bonilha, V.L.; Crabb, J.S.; Kuchtey, R.W.; Robertson, N.G.; Peachey, N.S.; Morton, C.C.; Crabb, J.W. Proteomics reveal cochlin deposits associated with glaucomatous trabecular meshwork. J. Biol. Chem. 2005, 280, 6080–6084. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Gao, Q.; Duan, S.; He, Y.; Sun, X.; Jiang, R.; Duan, Y.; Zhong, X.; Ge, J. Upregulation of Copine1 in trabecular meshwork cells of POAG patients: A membrane proteomics approach. Mol. Vis. 2008, 14, 1028–1036. [Google Scholar]
- Govindarajan, B.; Laird, J.; Salomon, R.G.; Bhattacharya, S.K. Isolevuglandin-modified proteins, including elevated levels of inactive calpain-1, accumulate in glaucomatous trabecular meshwork. Biochemistry 2008, 47, 817–825. [Google Scholar] [CrossRef] [Green Version]
- Micera, A.; Quaranta, L.; Esposito, G.; Floriani, I.; Pocobelli, A.; Saccà, S.C.; Riva, I.; Manni, G.; Oddone, F. Differential protein expression profiles in glaucomatous trabecular meshwork: An evaluation study on a small primary open angle glaucoma population. Adv. Ther. 2016, 33, 252–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagan, S.; Martin, E.; Enríquez-de-Salamanca, A. Tear fluid biomarkers in ocular and systemic disease: Potential use for predictive, preventive and personalised medicine. EPMA J. 2016, 7, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Mastropasqua, R.; Agnifili, L.; Mastropasqua, L. Structural and molecular tear film changes in glaucoma. Curr. Med. Chem. 2019, 26, 4225–4240. [Google Scholar] [CrossRef] [PubMed]
- Pieragostino, D.; Bucci, S.; Agnifili, L.; Fasanella, V.; D’Aguanno, S.; Mastropasqua, A.; Ciancaglini, M.; Mastropasqua, L.; Di Ilio, C.; Sacchetta, P.; et al. Differential protein expression in tears of patients with primary open angle and pseudoexfoliative glaucoma. Mol. Biosyst. 2012, 8, 1017–1028. [Google Scholar] [CrossRef]
- Malvitte, L.; Montange, T.; Vejux, A.; Baudouin, C.; Bron, A.M.; Creuzot-Garcher, C.; Lizard, G. Measurement of inflammatory cytokines by multicytokine assay in tears of patients with glaucoma topically treated with chronic drugs. Br. J. Ophthalmol. 2007, 91, 29–32. [Google Scholar] [CrossRef]
- Chong, R.S.; Jiang, Y.Z.; Boey, P.Y.; Yu, S.J.; Htoon, H.M.; Aung, T.; Khaw, P.T.; Wong, T.T. Tear cytokine profile in medicated glaucoma patients: Effect of monocyte chemoattractant protein 1 on early posttrabeculectomy outcome. Ophthalmology 2010, 117, 2353–2358. [Google Scholar] [CrossRef]
- Wong, T.T.; Zhou, L.; Li, J.; Tong, L.; Zhao, S.Z.; Li, X.R.; Yu, S.J.; Koh, S.K.; Beuerman, R.W. Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7385–7391. [Google Scholar] [CrossRef] [PubMed]
- Csősz, É.; Deák, E.; Tóth, N.; Traverso, C.E.; Csutak, A.; Tőzsér, J. Comparative analysis of cytokine profiles of glaucomatous tears and aqueous humour reveals potential biomarkers for trabeculectomy complications. FEBS Open Bio. 2019, 9, 1020–1028. [Google Scholar] [CrossRef] [Green Version]
- Sedlak, L.; Wojnar, W.; Zych, M.; Wyględowska-Promieńska, D. Influence of timolol, benzalkonium-preserved timolol, and benzalkonium-preserved brimonidine on oxidative stress biomarkers in the tear film. Cutan. Ocul. Toxicol. 2020, 0, 1–9. [Google Scholar] [CrossRef]
- Martinez-de-la-Casa, J.M.; Perez-Bartolome, F.; Urcelay, E.; Santiago, J.L.; Moreno-Montañes, J.; Arriola-Villalobos, P.; Benitez-del-Castillo, J.M.; Garcia-Feijoo, J. Tear cytokine profile of glaucoma patients treated with preservative-free or preserved latanoprost. Ocul. Surf. 2017, 15, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Ghaffariyeh, A.; Honarpisheh, N.; Shakiba, Y.; Puyan, S.; Chamacham, T.; Zahedi, F.; Zarrineghbal, M. Brain-derived neurotrophic factor in patients with normal-tension glaucoma. Optometry 2009, 80, 635–638. [Google Scholar] [CrossRef]
- Sahay, P.; Rao, A.; Padhy, D.; Sarangi, S.; Das, G.; Reddy, M.M.; Modak, R. Functional activity of matrix metalloproteinases 2 and 9 in tears of patients with glaucoma. Investig. Ophthalmol. Vis. Sci. 2017, 58, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Benitez-Del-Castillo Sanchez, J.; Morion-Grande, M.; Marco-Garcia, M.C.; Parron-Carreño, T.; Ramirez, A.I.; de Hoz, R.; Salobrar-Garcia, E.; Salazar, J.J.; Rojas, B.; Ajoy, D.; et al. Omics biomarkers in ophthalmology. Investig. Ophthalmol. Vis. Sci. 2017, 58, 455–457. [Google Scholar] [CrossRef]
- Reddy, S.; Sahay, P.; Padhy, D.; Sarangi, S.; Suar, M.; Modak, R.; Rao, A. Tear biomarkers in latanoprost and bimatoprost treated eyes. PLoS ONE 2018, 13, 1–13. [Google Scholar] [CrossRef]
- Shpak, A.A.; Guekht, A.B.; Druzhkova, T.A.; Kozlova, K.I.; Gulyaeva, N.V. Ciliary neurotrophic factor in patients with primary open-angle glaucoma and age-related cataract. Mol. Vis. 2017, 23, 799–809. [Google Scholar]
- Pieragostino, D.; Agnifili, L.; Fasanella, V.; D’Aguanno, S.; Mastropasqua, R.; Di Ilio, C.; Sacchetta, P.; Urbani, A.; Del Boccio, P. Shotgun proteomics reveals specific modulated protein patterns in tears of patients with primary open angle glaucoma naïve to therapy. Mol. Biosyst. 2013, 9, 1108–1116. [Google Scholar] [CrossRef]
- Gupta, D.; Wen, J.C.; Huebner, J.L.; Stinnett, S.; Kraus, V.B.; Tseng, H.C.; Walsh, M. Cytokine biomarkers in tear film for primary open-angle glaucoma. Clin. Ophthalmol. 2017, 11, 411–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roda, M.; Ciavarella, C.; Giannaccare, G.; Versura, P. Biomarkers in Tears and Ocular Surface: A Window for Neurodegenerative Diseases. Eye Contact Lens 2020, 46, S129–S134. [Google Scholar] [CrossRef]
- Roedl, J.B.; Bleich, S.; Reulbach, U.; Rejdak, R.; Kornhuber, J.; Kruse, F.E.; Schlötzer-Schrehardt, U.; Jünemann, A.G. Homocysteine in tear fluid of patients with pseudoexfoliation glaucoma. J. Glaucoma 2007, 16, 234–239. [Google Scholar] [CrossRef]
- Rossi, C.; Cicalini, I.; Cufaro, M.C.; Agnifili, L.; Mastropasqua, L.; Lanuti, P.; Marchisio, M.; De Laurenzi, V.; Del Boccio, P.; Pieragostino, D. Multi-omics approach for studying tears in treatment-naïve glaucoma patients. Int. J. Mol. Sci. 2019, 20, 4029. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, Ö.; Ateş, N.A.; Ercan, B.; Muşlu, N.; Ünlü, A.; Tamer, L.; Atik, U.; Kanik, A. Role of oxidative stress enzymes in open-angle glaucoma. Eye 2005, 19, 580–583. [Google Scholar] [CrossRef] [PubMed]
- Gherghel, D.; Griffiths, H.R.; Hilton, E.J.; Cunliffe, I.A.; Hosking, S.L. Systemic reduction in glutathione levels occurs in patients with primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2005, 46, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Engin, K.N.; Yemişci, B.; Yiǧit, U.; Aǧaçhan, A.; Coşkun, C. Variability of serum oxidative stress biomarkers relative to biochemical data and clinical parameters of glaucoma patients. Mol. Vis. 2010, 16, 1260–1271. [Google Scholar] [PubMed]
- Majsterek, I.; Malinowska, K.; Stanczyk, M.; Kowalski, M.; Blaszczyk, J.; Kurowska, A.K.; Kaminska, A.; Szaflik, J.; Szaflik, J.P. Evaluation of oxidative stress markers in pathogenesis of primary open-angle glaucoma. Exp. Mol. Pathol. 2011, 90, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Zanon-Moreno, V.; Asensio-Marquez, E.M.; Ciancotti-Oliver, L.; Garcia-Medina, J.J.; Sanz, P.; Ortega-Azorin, C.; Pinazo-Duran, M.D.; Ordovás, J.M.; Corella, D. Effects of polymorphisms in vitamin E-, vitamin C-, and glutathione peroxidase-related genes on serum biomarkers and associations with glaucoma. Mol. Vis. 2013, 19, 231–242. [Google Scholar]
- Rokicki, W.; Zalejska-Fiolka, J.; Pojda-Wilczek, D.; Hampel, A.; Majewski, W.; Ogultekin, S.; Mrukwa-Kominek, E. Differences in serum oxidative status between glaucomatous and nonglaucomatous cataract patients. BMC Ophthalmol. 2017, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Yaz, Y.A.; Yıldırım, N.; Yaz, Y.; Tekin, N.; İnal, M.; Şahin, F.M. Role of oxidative stress in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Turkish J. Ophthalmol. 2019, 49, 61–67. [Google Scholar] [CrossRef]
- Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Status of systemic oxidative stresses in patients with primary open-angle glaucoma and pseudoexfoliation syndrome. PLoS ONE 2012, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gulpamuk, B.; Elgin, U.; Sen, E.; Yilmazbas, P.; Neselioglu, S.; Erel, O. Evaluation of dynamic thiol–disulfide homeostasis in glaucoma patients and the correlation with retinal nerve fiber layer analysis. Eur. J. Ophthalmol. 2020, 30, 690–699. [Google Scholar] [CrossRef]
- Karakurt, Y.; Mertoglu, C.; Gok, G.; Ucak, T.; Tasli, N.; Icel, E.; Erel, O. Thiol–Disulfide homeostasis and serum ischemia modified albumin levels in patients with primary open–angle glaucoma. Curr. Eye Res. 2019, 44, 896–900. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Sha, Q.; Zhang, X.; Liu, P.; Rong, S.; Han, T.; Liu, P.; Pan, H. The evaluation of the oxidative stress parameters in patients with primary angle-closure glaucoma. PLoS ONE 2011, 6, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shao, M.; Li, Y.; Li, X.; Wan, Y.; Sun, X.; Cao, W. Relationship between oxidative stress biomarkers and visual field progression in patients with primary angle closure glaucoma. Oxid. Med. Cell. Longev. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K.; Kondkar, A.A.; Mousa, A.; Osman, E.A.; Al-Obeidan, S.A. Decreased total antioxidants in patients with primary open angle glaucoma. Curr. Eye Res. 2013, 38, 959–964. [Google Scholar] [CrossRef]
- Sorkhabi, R.; Ghorbanihaghjo, A.; Javadzadeh, A.; Rashtchizadeh, N.; Moharrery, M. Oxidative DNA damage and total antioxidant status in glaucoma patients. Mol. Vis. 2011, 17, 41–46. [Google Scholar] [PubMed]
- Kondkar, A.A.; Azad, T.A.; Sultan, T.; Osman, E.A.; Almobarak, F.A.; Al-Obeidan, S.A. Elevated plasma level of 8-Hydroxy-2′-deoxyguanosine is associated with primary open-angle glaucoma. J. Ophthalmol. 2020, 2020. [Google Scholar] [CrossRef]
- Benoist d’Azy, C.; Pereira, B.; Chiambaretta, F.; Dutheil, F. Oxidative and anti-oxidative stress markers in chronic glaucoma: A systematic review and meta-analysis. PLoS ONE 2016, 11, 1–20. [Google Scholar] [CrossRef]
- Wax, M.B.; Tezel, G.; Saito, I.; Gupta, R.S.; Harley, J.B.; Li, Z.; Romano, C. Anti-Ro/SS-A positivity and heat shock protein antibodies in patients with normal-pressure glaucoma. Am. J. Ophthalmol. 1998, 125, 145–157. [Google Scholar] [CrossRef]
- Yang, J.; Patil, R.V.; Yu, H.; Gordon, M.; Wax, M.B. T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma. Am. J. Ophthalmol. 2001, 131, 421–426. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, Q.; Göktaş, E.; Gopal, K.; Al-Aswad, L.; Blumberg, D.M.; Cioffi, G.A.; Liebmann, J.M.; Tezel, G. T-lymphocyte subset distribution and activity in patients with glaucoma. Investig. Ophthalmol. Vis. Sci. 2019, 60, 877–888. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, I.; Ohguro, H.; Ikeda, Y. Retinal ganglion cells recognized by serum autoantibody against gamma-enolase found in glaucoma patients. Invest. Ophthalmol. Vis. Sci. 2000, 41, 1657–1665. [Google Scholar]
- Yang, J.; Tezel, G.; Patil, R.V.; Romano, C.; Wax, M.B. Serum autoantibody against glutathione S-transferase in patients with glaucoma. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1273–1276. [Google Scholar]
- Kremmer, S.; Kreuzfelder, E.; Klein, R.; Bontke, N.; Henneberg-Quester, K.B.; Steuhl, K.P.; Grosse-Wilde, H. Antiphosphatidylserine antibodies are elevated in normal tension glaucoma. Clin. Exp. Immunol. 2001, 125, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Tezel, G.; Edward, D.P.; Wax, M.B. Serum autoantibodies to optic nerve head glycosaminoglycans in patients with glaucoma. Arch. Ophthalmol. 1999, 117, 917–924. [Google Scholar] [CrossRef] [Green Version]
- Grus, F.H.; Joachim, S.C.; Bruns, K.; Lackner, K.J.; Pfeiffer, N.; Wax, M.B. Serum autoantibodies to α-fodrin are present in glaucoma patients from Germany and the United States. Investig. Ophthalmol. Vis. Sci. 2006, 47, 968–976. [Google Scholar] [CrossRef] [Green Version]
- Tezel, G.; Thornton, I.L.; Tong, M.G.; Luo, C.; Yang, X.; Cai, J.; Powell, D.W.; Soltau, J.B.; Liebmann, J.M.; Ritch, R. Immunoproteomic analysis of potential serum biomarker candidates in human glaucoma. Investig. Ophthalmol. Vis. Sci. 2012, 53, 8222–8231. [Google Scholar] [CrossRef] [Green Version]
- Boehm, N.; Wolters, D.; Thiel, U.; Lossbrand, U.; Wiegel, N.; Pfeiffer, N.; Grus, F.H. New insights into autoantibody profiles from immune privileged sites in the eye: A glaucoma study. Brain. Behav. Immun. 2012, 26, 96–102. [Google Scholar] [CrossRef]
- Beutgen, V.M.; Perumal, N.; Pfeiffer, N.; Grus, F.H. Autoantibody biomarker discovery in primary open angle glaucoma using serological proteome analysis (SERPA). Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Beutgen, V.M.; Schmelter, C.; Pfeiffer, N.; Grus, F.H. Autoantigens in the trabecular meshwork and glaucoma-specific alterations in the natural autoantibody repertoire. Clin. Transl. Immunol. 2020, 9, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, Y.J.; Kim, E.; Han, B.K.; Yi, K. Serum biomarkers for the diagnosis of glaucoma. Diagnostics 2020, 11, 20. [Google Scholar] [CrossRef]
- Noureddin, B.N.; Al-Haddad, C.E.; Bashshur, Z.; Safieh-Garabedian, B. Plasma thymulin and nerve growth factor levels in patients with primary open angle glaucoma and elevated intraocular pressure. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 244, 750–752. [Google Scholar] [CrossRef]
- Lip, P.L.; Felmeden, D.C.; Blann, A.D.; Matheou, N.; Thakur, S.; Cunliffe, I.A.; Lip, G.Y. Plasma vascular endothelial growth factor, soluble VEGF receptor FLT-1, and von Willebrand factor in glaucoma. Br. J. Ophthalmol. 2002, 86, 1299–1302. [Google Scholar] [CrossRef] [PubMed]
- Zabala, L.; Saldanha, C.; Martins e Silva, J.; Souza-Ramalho, P. Red blood cell membrane integrity in primary open angle glaucoma: Vivo and in vitro studies. Eye 1999, 13, 101–103. [Google Scholar] [CrossRef]
- Acar, N.; Berdeaux, O.; Juaneda, P.; Grégoire, S.; Cabaret, S.; Joffre, C.; Creuzot-Garcher, C.P.; Bretillon, L.; Bron, A.M. Red blood cell plasmalogens and docosahexaenoic acid are independently reduced in primary open-angle glaucoma. Exp. Eye Res. 2009, 89, 840–853. [Google Scholar] [CrossRef]
- López-Riquelme, N.; Villalba, C.; Tormo, C.; Belmonte, A.; Fernandez, C.; Torralba, G.; Hernández, F. Endothelin-1 levels and biomarkers of oxidative stress in glaucoma patients. Int. Ophthalmol. 2014, 35, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Emre, M.; Orgül, S.; Haufschild, T.; Shaw, S.G.; Flammer, J. Increased plasma endothelin-1 levels in patients with progressive open angle glaucoma. Br. J. Ophthalmol. 2005, 89, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Qi, Y.; Xu, Y.S.; Liu, J.; Liao, D.; Zhang, S.S.M.; Zhang, C. Serum cytokine alteration is associated with optic neuropathy in human primary open angle glaucoma. J. Glaucoma 2010, 19, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Kondkar, A.A.; Sultan, T.; Almobarak, F.A.; Kalantan, H.; Al-Obeidan, S.A.; Abu-Amero, K.K. Association of increased levels of plasma tumor necrosis factor alpha with primary open-angle glaucoma. Clin. Ophthalmol. 2018, 12, 701–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondkar, A.A.; Azad, T.A.; Almobarak, F.A.; Kalantan, H.; Al-Obeidan, S.A.; Abu-Amero, K.K. Elevated levels of plasma tumor necrosis factor alpha in patients with pseudoexfoliation glaucoma. Clin. Ophthalmol. 2018, 12, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Ozgonul, C.; Sertoglu, E.; Mumcuoglu, T.; Kucukevcilioglu, M. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio as novel biomarkers of primary open-angle glaucoma. J. Glaucoma 2016, 25, e815–e820. [Google Scholar] [CrossRef]
- Li, S.; Cao, W.; Han, J.; Tang, B.; Sun, X. The diagnostic value of white blood cell, neutrophil, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio in patients with primary angle closure glaucoma. Oncotarget 2017, 8, 68984–68995. [Google Scholar] [CrossRef] [Green Version]
- Mirza, E.; Oltulu, R.; Katipoğlu, Z.; Mirza, G.D.; Özkağnıcı, A. Monocyte/HDL Ratio and lymphocyte/monocyte ratio in patients with pseudoexfoliation syndrome. Ocul. Immunol. Inflamm. 2020, 28, 142–146. [Google Scholar] [CrossRef]
- Zhang, A.; Ning, L.; Han, J.; Ma, Y.; Ma, Y.; Cao, W.; Sun, X.; Li, S. Neutrophil-To-Lymphocyte ratio as a potential biomarker of neovascular glaucoma. Ocul. Immunol. Inflamm. 2021, 29, 417–424. [Google Scholar] [CrossRef]
- Ghaffariyeh, A.; Honarpisheh, N.; Heidari, M.H.; Puyan, S.; Abasov, F. Brain-derived neurotrophic factor as a biomarker in primary open-angle glaucoma. Optom. Vis. Sci. 2011, 88, 80–85. [Google Scholar] [CrossRef]
- Oddone, F.; Roberti, G.; Micera, A.; Busanello, A.; Bonini, S.; Quaranta, L.; Agnifili, L.; Manni, G. Exploring serum levels of Brain Derived Neurotrophic Factor and Nerve Growth Factor across glaucoma stages. PLoS ONE 2017, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, T.; Nakamoto, K.; Kobayashi, M.; Suzuki, H.; Tobita, Y.; Igarashi, T.; Okuda, T.; Okada, T.; Takahashi, H. Serum brain-derived neurotrophic factor in glaucoma patients in Japan: An observational study. J. Nippon Med. Sch. 2020, 87, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Abessolo, F.O.; Nnang, J.F.; Aki, T.M.; Amoussa, M.D.E.M.; Ngou-Milama, E. Plasmatic neuroglobin during the primitive open-angle glaucoma. Ann. Biol. Clin. 2019, 77, 99–105. [Google Scholar] [CrossRef] [PubMed]
- González-Iglesias, H.; Álvarez, L.; García, M.; Escribano, J.; Rodríguez-Calvo, P.P.; Fernández-Vega, L.; Coca-Prados, M. Comparative proteomic study in serum of patients with primary open-angle glaucoma and pseudoexfoliation glaucoma. J. Proteom. 2014, 98. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.; Shao, M.; Tang, L.; Sun, X.; Cao, W. Association of plasma complement C3 levels with primary angle-closure glaucoma in older women. Investig. Ophthalmol. Vis. Sci. 2017, 58, 682–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golubnitschaja, O.; Yeghiazaryan, K.; Liu, R.; Mönkemann, H.; Leppert, D.; Schild, H.; Haefliger, I.O.; Flammer, J. Increased Expression of Matrix Metalloproteinases in Mononuclear Blood Cells of Normal-Tension Glaucoma Patients. J. Glaucoma 2004, 13, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Maric, V.D.; Bozic, M.M.; Cirkovic, A.M.; Stankovic, S.D.J.; Marjanovic, I.S.; Grgurevic, A.D. Serum heparan sulfate and chondroitin sulfate concentrations in patients with newly diagnosed exfoliative glaucoma. PeerJ 2019, 2019, 1–20. [Google Scholar] [CrossRef]
- Weinstein, B.I.; Iyer, R.B.; Binstock, J.M.; Hamby, C.V.; Schwartz, I.S.; Moy, F.H.; Wandel, T.; Southren, A.L. Decreased 3α-hydroxysteroid dehydrogenase activity in peripheral blood lymphocytes from patients with primary open angle glaucoma. Exp. Eye Res. 1996, 62, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Wunderlich, K.; Golubnitschaja, O.; Pache, M.; Eberle, A.N.; Flammer, J. Increased plasma levels of 20S proteasome α-subunit in glaucoma patients: An observational pilot study. Mol. Vis. 2002, 8, 431–435. [Google Scholar]
- Kurtul, B.E.; Kurtul, A.; Altiaylik Ozer, P.; Kabatas, E.U.; Ertugrul, G.T. Serum Lipid Levels in Pseudoexfoliation Syndrome. Semin. Ophthalmol. 2017, 32, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Tranchina, L.; Centofanti, M.; Oddone, F.; Tanga, L.; Roberti, G.; Liberatoscioli, L.; Cortese, C.; Manni, G. Levels of plasma homocysteine in pseudoexfoliation glaucoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2011, 249, 443–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Huang, S.; Yu, H.; Sun, J.; Huang, P.; Zhong, Y. Analysis of plasma hydrogen sulfide, homocysteine, and l-cysteine in open-angle glaucoma patients. J. Ocul. Pharmacol. Ther. 2020, 36, 649–657. [Google Scholar] [CrossRef]
- Fraenkl, S.A.; Muser, J.; Groell, R.; Reinhard, G.; Orgul, S.; Flammer, J.; Goldblum, D. Plasma citrate levels as a potential biomarker for glaucoma. J. Ocul. Pharmacol. Ther. Off. J. Assoc. Ocul. Pharmacol. Ther. 2011, 27, 577–580. [Google Scholar] [CrossRef]
- Michalczuk, M.; Tadeusz, P.; Urban, B.; Anna, W.; Bakunowicz-Łazarczyk, A. Plasma citrate concentration: A possible biomarker for glaucoma in children. BMJ Paediatr. Open 2017, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Shao, M.; Li, D.; Tang, B.; Cao, W.; Sun, X. Association of serum uric acid levels with primary open-angle glaucoma: A 5-year case–control study. Acta Ophthalmol. 2019, 97, e356–e363. [Google Scholar] [CrossRef] [PubMed]
- Javadiyan, S.; Burdon, K.P.; Whiting, M.J.; Abhary, S.; Straga, T.; Hewitt, A.W.; Mills, R.A.; Craig, J.E. Elevation of serum asymmetrical and symmetrical dimethylarginine in patients with advanced glaucoma. Invest. Ophthalmol. Vis. Sci. 2012, 53, 1923–1927. [Google Scholar] [CrossRef]
- Ren, H.; Magulike, N.; Ghebremeskel, K.; Crawford, M. Primary open-angle glaucoma patients have reduced levels of blood docosahexaenoic and eicosapentaenoic acids. Prostaglandins Leukot. Essent. Fat. Acids 2006, 74, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.; Li, Y.; Guan, Y.; Zhu, L.; Zhou, Q.; Gao, M.; Pan, H.; Zou, L.; Chang, D. Long-chain unsaturated fatty acids as possible important metabolites for primary angle-closure glaucoma based on targeted metabolomic analysis. Biomed. Chromatogr. 2017, 31. [Google Scholar] [CrossRef]
- Umeno, A.; Tanito, M.; Kaidzu, S.; Takai, Y.; Horie, M.; Yoshida, Y. Comprehensive measurements of hydroxylinoleate and hydroxyarachidonate isomers in blood samples from primary open-angle glaucoma patients and controls. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Burgess, L.G.; Uppal, K.; Walker, D.I.; Roberson, R.M.; Tran, V.L.; Parks, M.B.; Wade, E.A.; May, A.T.; Umfress, A.C.; Jarrell, K.L.; et al. Metabolome-wide association study of primary open angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5020–5028. [Google Scholar] [CrossRef] [PubMed]
- Leruez, S.; Marill, A.; Bresson, T.; de Saint Martin, G.; Buisset, A.; Muller, J.; Tessier, L.; Gadras, C.; Verny, C.; Gohier, P.; et al. A Metabolomics Profiling of Glaucoma Points to Mitochondrial Dysfunction, Senescence, and Polyamines Deficiency. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4355–4361. [Google Scholar] [CrossRef]
- Vohra, R.; Dalgaard, L.M.; Vibæk, J.; Langbøl, M.A.; Bergersen, L.H.; Olsen, N.V.; Hassel, B.; Chaudhry, F.A.; Kolko, M. Potential metabolic markers in glaucoma and their regulation in response to hypoxia. Acta Ophthalmol. 2019, 97, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Nzoughet, J.K.; Guehlouz, K.; Leruez, S.; Gohier, P.; Bocca, C.; Muller, J.; Blanchet, O.; Bonneau, D.; Simard, G.; Milea, D.; et al. A data mining metabolomics exploration of glaucoma. Metabolites 2020, 10. [Google Scholar] [CrossRef] [Green Version]
- Parker, C.E.; Borchers, C.H. Mass spectrometry based biomarker discovery, verification, and validation-quality assurance and control of protein biomarker assays. Mol. Oncol. 2014, 8, 840–858. [Google Scholar] [CrossRef]
- Pan, S.; Aebersold, R.; Chen, R.; Rush, J.; Goodlett, D.R.; McIntosh, M.W.; Zhang, J.; Brentnall, T.A. Mass spectrometry based targeted protein quantification: Methods and applications. J. Proteome Res. 2009, 8, 787–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebler, D.C.; Zimmerman, L.J. Targeted quantitation of proteins by mass spectrometry. Biochemistry 2013, 52, 3797–3806. [Google Scholar] [CrossRef] [PubMed]
- Lauwen, S.; de Jong, E.K.; Lefeber, D.J.; den Hollander, A.I. Omics biomarkers in ophthalmology. Investig. Ophthalmol. Vis. Sci. 2017, 58, BIO88–BIO98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Vega Cueto, A.; Álvarez, L.; García, M.; Álvarez-Barrios, A.; Artime, E.; Fernández-Vega Cueto, L.; Coca-Prados, M.; González-Iglesias, H. Candidate Glaucoma Biomarkers: From Proteins to Metabolites, and the Pitfalls to Clinical Applications. Biology 2021, 10, 763. https://doi.org/10.3390/biology10080763
Fernández-Vega Cueto A, Álvarez L, García M, Álvarez-Barrios A, Artime E, Fernández-Vega Cueto L, Coca-Prados M, González-Iglesias H. Candidate Glaucoma Biomarkers: From Proteins to Metabolites, and the Pitfalls to Clinical Applications. Biology. 2021; 10(8):763. https://doi.org/10.3390/biology10080763
Chicago/Turabian StyleFernández-Vega Cueto, Andrés, Lydia Álvarez, Montserrat García, Ana Álvarez-Barrios, Enol Artime, Luis Fernández-Vega Cueto, Miguel Coca-Prados, and Héctor González-Iglesias. 2021. "Candidate Glaucoma Biomarkers: From Proteins to Metabolites, and the Pitfalls to Clinical Applications" Biology 10, no. 8: 763. https://doi.org/10.3390/biology10080763
APA StyleFernández-Vega Cueto, A., Álvarez, L., García, M., Álvarez-Barrios, A., Artime, E., Fernández-Vega Cueto, L., Coca-Prados, M., & González-Iglesias, H. (2021). Candidate Glaucoma Biomarkers: From Proteins to Metabolites, and the Pitfalls to Clinical Applications. Biology, 10(8), 763. https://doi.org/10.3390/biology10080763