Combined Effect of Laboratory-Simulated Fire and Chromium Pollution on Microbial Communities in an Agricultural Soil
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling and Characterization
2.3. Soil Thermal Treatment
2.4. Extraction of Bacterial Communities and Soil Inoculation
2.5. Soil DNA Extraction, 16S rRNA Sequencing and Bioinformatics Analysis
2.6. Statistical Analysis
3. Results
3.1. Soil Chemical Characterization
3.2. Soil Bacterial Communities and Correlation with Physico-Chemical Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vega, J.A.; Fontúrbel, T.; Merino, A.; Fernández, C.; Ferreiro, A.; Jiménez, E. Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plant Soil 2013, 369, 73–91. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H. Fire effects on soils: The human dimension. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150171. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Kumar, S.; Joshi, L. Socioeconomic and Environmental Implications of Agricultural Residue Burning; SpringerBriefs in Environmental Science; Kumar, P., Kumar, S., Laxmi, J., Eds.; Springer: New Delhi, India, 2015; ISBN 978-81-322-2146-3. [Google Scholar]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Verma, S.; Jayakumar, S. Impact of forest fire on physical, chemical and biological properties of soil: A review. Proc. Int. Acad. Ecol. Environ. Sci. 2012, 2, 168–176. [Google Scholar]
- Terzano, R.; Rascio, I.; Allegretta, I.; Porfido, C.; Spagnuolo, M.; Yaghoubi Khanghahi, M.; Crecchio, C.; Sakellariadou, F.; Gattullo, C.E. Fire effects on the distribution and bioavailability of potentially toxic elements (PTEs) in agricultural soils. Chemosphere 2021, 281, 130752. [Google Scholar] [CrossRef]
- Panichev, N.; Mabasa, W.; Ngobeni, P.; Mandiwana, K.; Panicheva, S. The oxidation of Cr(III) to Cr(VI) in the environment by atmospheric oxygen during the bush fires. J. Hazard. Mater. 2008, 153, 937–941. [Google Scholar] [CrossRef]
- Fontúrbel, M.T.; Barreiro, A.; Vega, J.A.; Martín, A.; Jiménez, E.; Carballas, T.; Fernández, C.; Díaz-Raviña, M. Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities. Geoderma 2012, 191, 51–60. [Google Scholar] [CrossRef]
- Pérez-Valera, E.; Verdú, M.; Navarro-Cano, J.A.; Goberna, M. Resilience to fire of phylogenetic diversity across biological domains. Mol. Ecol. 2018, 27, 2896–2908. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Valera, E.; Goberna, M.; Faust, K.; Raes, J.; García, C.; Verdú, M. Fire modifies the phylogenetic structure of soil bacterial co-occurrence networks. Environ. Microbiol. 2017, 19, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Morillo, N.T.; Almendros, G.; De la Rosa, J.M.; Jordán, A.; Zavala, L.M.; Granged, A.J.P.; González-Pérez, J.A. Effect of a wildfire and of post-fire restoration actions in the organic matter structure in soil fractions. Sci. Total Environ. 2020, 728, 138715. [Google Scholar] [CrossRef]
- Sáenz de Miera, L.E.; Pinto, R.; Gutierrez-Gonzalez, J.J.; Calvo, L.; Ansola, G. Wildfire effects on diversity and composition in soil bacterial communities. Sci. Total Environ. 2020, 726, 138636. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Miralles, I.; Ortega, R.; Plaza-Álvarez, P.A.; Gonzalez-Romero, J.; Sagra, J.; Soriano-Rodríguez, M.; Certini, G.; Moya, D.; Heras, J. Immediate fire-induced changes in soil microbial community composition in an outdoor experimental controlled system. Sci. Total Environ. 2019, 696, 134033. [Google Scholar] [CrossRef]
- Gattullo, C.E.; Allegretta, I.; Porfido, C.; Rascio, I.; Spagnuolo, M.; Terzano, R. Assessing chromium pollution and natural stabilization processes in agricultural soils by bulk and micro X-ray analyses. Environ. Sci. Pollut. Res. 2020, 27, 22967–22979. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group. WRB. World Reference Base for Soil Resources; World Soil Resources Reports No. 10; FAO: Rome, Italy, 2006. [Google Scholar]
- Brunetti, G.; Farrag, K.; Soler-Rovira, P.; Ferrara, M.; Nigro, F.; Senesi, N. Heavy metals accumulation and distribution in durum wheat and barley grown in contaminated soils under Mediterranean field conditions. J. Plant Interact. 2012, 7, 160–174. [Google Scholar] [CrossRef] [Green Version]
- Sparks, D.L. Methods of Soil Analysis, Part 3, Chemical Methods; Soil Science Society of America Book Series No 5; ASA/SSSA Press: Madison, WI, USA, 1996; ISBN 9780891188254. [Google Scholar]
- USEPA. Method 3060a Alkaline Digestion for Hexavalent Chromium 1996; U.S. Government Printing Office: Washington, DC, USA, 1996.
- Bartlett, R.J.; James, B.R. Chromium. In Methods of Soil Analysis, Part 3: Chemical Methods; ASA/SSSA Press: Madison, WI, USA, 1996; pp. 683–701. ISBN 9780891188667. [Google Scholar]
- USEPA. Method 7196a Chromium, Hexavalent (Colorimetric); U.S. Government Printing Office: Washington, DC, USA, 1992.
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Pereira, P.; Úbeda, X.; Francos, M. Laboratory fire simulations: Plant litter and soils. In Fire Effects on Soil Properties; CRC Press, Taylor & Francis Group: Leiden, The Netherlands, 2019; pp. 15–38. ISBN 978-1-4863-0815-6. [Google Scholar]
- Li, L.; Ishikawa, Y.; Mihara, M. Effects of Burning Crop Residues on Soil Quality in Wenshui, Shanxi of China. Int. J. Environ. Rural Dev. 2012, 30–35. [Google Scholar]
- Finegold, S.M.; Baron, E.J. Bailey and Scott’s Diagnostic Microbiology, 7th ed.; Mosby Publisher: St. Louis, MO, USA, 1986. [Google Scholar]
- Meyer, F.; Paarmann, D.; D’Souza, M.; Olson, R.; Glass, E.M.; Kubal, M.; Paczian, T.; Rodriguez, A.; Stevens, R.; Wilke, A.; et al. The metagenomics RAST server—A public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform. 2008, 9, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, J.; Dowling, K.; Florentine, S. Controlled burn and immediate mobilization of potentially toxic elements in soil, from a legacy mine site in Central Victoria, Australia. Sci. Total Environ. 2018, 616–617, 1022–1034. [Google Scholar] [CrossRef]
- Guerrero, C.; Mataix-Solera, J.; Gómez, I.; García-Orenes, F.; Jordán, M.M. Microbial recolonization and chemical changes in a soil heated at different temperatures. Int. J. Wildl. Fire 2005, 14, 385–400. [Google Scholar] [CrossRef]
- Terefe, T.; Mariscal-Sancho, I.; Peregrina, F.; Espejo, R. Influence of heating on various properties of six Mediterranean soils. A laboratory study. Geoderma 2008, 143, 273–280. [Google Scholar] [CrossRef]
- Acosta, J.A.; Jansen, B.; Kalbitz, K.; Faz, A.; Martínez-Martínez, S. Salinity increases mobility of heavy metals in soils. Chemosphere 2011, 85, 1318–1324. [Google Scholar] [CrossRef]
- Giovannini, C.; Lucchesi, S.; Giacchetti, M. Effects of Heating on some Chemical Parameters Related to Soil Fertility and Plant Growth. Soil Sci. 1988, 149, 344–350. [Google Scholar] [CrossRef]
- Burton, E.D.; Choppala, G.; Karimian, N.; Johnston, S.G. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides. Environ. Pollut. 2019, 247, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Norme in Materia Ambientale, Italian Legislative Decree n 152; Decreto legislativo 3 aprile 2006, n. 152. 2006; (Gazzetta Ufficiale della Repubblica Italiana n. 88 Supplemento Ordinario n. 96:, 14 aprile 2006).
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of prescribed fires on soil properties: A review. Sci. Total Environ. 2018, 613–614, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Thomaz, E.L.; Fachin, P.A. Effects of heating on soil physical properties by using realistic peak temperature gradients. Geoderma 2014, 230–231, 243–249. [Google Scholar] [CrossRef]
- Hamman, S.T.; Burke, I.C.; Stromberger, M.E. Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biol. Biochem. 2007, 39, 1703–1711. [Google Scholar] [CrossRef]
- Lombao, A.; Barreiro, A.; Fontúrbel, M.T.; Martín, A.; Carballas, T.; Díaz-Raviña, M. Key factors controlling microbial community responses after a fire: Importance of severity and recurrence. Sci. Total Environ. 2020, 741, 140363. [Google Scholar] [CrossRef]
- Whitman, T.; Whitman, E.; Woolet, J.; Flannigan, M.D.; Thompson, D.K.; Parisien, M.A. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 2019, 138, 107571. [Google Scholar] [CrossRef]
- Sheik, C.S.; Mitchell, T.W.; Rizvi, F.Z.; Rehman, Y.; Faisal, M.; Hasnain, S.; McInerney, M.J.; Krumholz, L.R. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Staddon, W.J.; Duchesne, L.C.; Trevors, J.T. Microbial Diversity and Community Structure of Postdisturbance Forest Soils as Determined by Sole-Carbon-Source Utilization Patterns; Springer: New York, NY, USA, 1997; Volume 34. [Google Scholar]
- Miranda, A.R.L.; Mendes, L.W.; Rocha, S.M.B.; Van den Brink, P.J.; Bezerra, W.M.; Melo, V.M.M.; Antunes, J.E.L.; Araujo, A.S.F. Responses of soil bacterial community after seventh yearly applications of composted tannery sludge. Geoderma 2018, 318, 1–8. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi Khanghahi, M.; Murgese, P.; Strafella, S.; Crecchio, C. Soil biological fertility and bacterial community response to land use intensity: A case study in the Mediterranean Area. Diversity 2019, 11, 211. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, G.; Zhang, C.; Wang, G.; Fang, L.; Cui, Y. Higher temporal turnover of soil fungi than bacteria during long-term secondary succession in a semiarid abandoned farmland. Soil Tillage Res. 2019, 194, 104305. [Google Scholar] [CrossRef]
- Yaghoubi Khanghahi, M.; Cucci, G.; Lacolla, G.; Lanzellotti, L.; Crecchio, C. Soil fertility and bacterial community composition in a semiarid Mediterranean agricultural soil under long-term tillage management. Soil Use Manag. 2020, 36, 604–615. [Google Scholar] [CrossRef]
- Perrino, E.V.; Brunetti, G.; Farrag, K. Plant Communities in Multi-Metal Contaminated Soils: A Case Study in the National Park of Alta Murgia (Apulia Region-Southern Italy). Int. J. Phytoremediation 2014, 16, 871–888. [Google Scholar] [CrossRef]
- Brunetti, G.; Farrag, K.; Soler-Rovira, P.; Ferrara, M.; Nigro, F.; Senesi, N. The effect of compost and Bacillus licheniformis on the phytoextraction of Cr, Cu, Pb and Zn by three brassicaceae species from contaminated soils in the Apulia region, Southern Italy. Geoderma 2012, 170, 322–323. [Google Scholar] [CrossRef]
Chemical Characteristics | Unheated Soil | Heated Soil | |
---|---|---|---|
pH (H2O) | 7.5 | 8.1 ± 0.1 | |
EC (mS cm−1) | 0.2 | 1.8 ± 0.1 | |
Total N (g kg−1) | 15 | 2.6 ± 0.2 | |
Available P (mg kg−1) | 181 | 397 ± 4.4 | |
Organic C (g kg−1) | 136 | 14 ± 1 | |
Total CaCO3 (g kg−1) | 202 | 240 ± 30 | |
Ca+2 (cmol(+) kg−1) | 47 | 39 ± 2 | |
Mg+2 (cmol(+) kg−1) | 1.9 | 1.8 ± 0.5 | |
Na+ (cmol(+) kg−1) | 0.1 | 0.3 ± 0.1 | |
K+ (cmol(+) kg−1) | 2.2 | 0.8 ± 0.1 | |
Cu | Total (mg kg−1) | 134 ± 5 | 201 ± 11 |
Available (mg kg−1) | 14.0 ± 0.7 | 8.8 ± 0.3 | |
Pb | Total (mg kg−1) | 114 ± 3 | 177 ± 5 |
Available (mg kg−1) | 5.0 ± 0.3 | 8.3 ± 0.5 | |
Zn | Total (mg kg−1) | 1270 ± 10 | 1834 ± 23 |
Available (mg kg−1) | 208 ± 25 | 59 ± 6 | |
Cr | Total (mg kg−1) | 5160 ± 35 | 5715 ± 13 |
Available (mg kg−1) | 0.30 ± 0.03 | 105 ± 9 | |
Cr(VI) (µg g−1) | b.d.l. | 152 ± 44 | |
Exchangeable Cr(VI) (µg g−1) | b.d.l. | 34 ± 4 |
Samples | Reads | Good Quality Sequences | Observed Species * | Shannon * | Simpson 1-D * | Evenness * |
---|---|---|---|---|---|---|
C | 147,107 ± 100 | 112,810 ± 54,505 | 1669 ± 7.78 a | 2.72 ± 0.05 a | 0.82 ± 0.01 a | 0.37 ± 0.02 a |
T3 | 87,810 ± 26,178 | 68,503 ± 15,883 | 1286 ± 192.22 b | 1.87 ± 0.21 b | 0.68 ± 0.07 a | 0.16 ± 0.03 b |
T7 | 91,530 ± 10,324 | 81,755 ± 11,929 | 1317 ± 73.43 b | 2.28 ± 0.10 b | 0.80 ± 0.03 a | 0.23 ± 0.02 b |
T14 | 104,142 ± 393 | 92,503 ± 6150 | 1384 ± 129.06 b | 2.20 ± 0.30 b | 0.79 ± 0.06 a | 0.22 ± 0.07 b |
Phylum | Genus | Abundance (%) | Contribution % | Cumulative % | ||
---|---|---|---|---|---|---|
T3 | T7 | T14 | ||||
Firmicutes | Paenibacillus | 46.50 | 35.65 | 29.93 | 39.06 | 39.06 |
Firmicutes | Cohnella | 3.71 | 6.01 | 5.07 | 8.55 | 47.61 |
Actinobacteria | Arthrobacter | 5.22 | 3.39 | 1.49 | 7.88 | 55.49 |
Actinobacteria | Nocardioides | 1.49 | 3.96 | 3.75 | 7.52 | 63.01 |
Proteobacteria | Rhizobium | 0.40 | 2.64 | 1.73 | 5.26 | 68.28 |
Actinobacteria | Geodermatophilus | 0.67 | 1.87 | 2.53 | 5.15 | 73.42 |
Actinobacteria | Pimelobacter | 0.37 | 2.65 | 1.87 | 4.47 | 77.89 |
Actinobacteria | Kocuria | 0.29 | 2.82 | 0.07 | 4.43 | 82.31 |
Firmicutes | Bacillus | 2.38 | 3.04 | 1.60 | 3.98 | 86.30 |
Proteobacteria | Ensifer | 0.04 | 1.52 | 0.97 | 3.28 | 89.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rascio, I.; Curci, M.; Gattullo, C.E.; Lavecchia, A.; Yaghoubi Khanghahi, M.; Terzano, R.; Crecchio, C. Combined Effect of Laboratory-Simulated Fire and Chromium Pollution on Microbial Communities in an Agricultural Soil. Biology 2021, 10, 587. https://doi.org/10.3390/biology10070587
Rascio I, Curci M, Gattullo CE, Lavecchia A, Yaghoubi Khanghahi M, Terzano R, Crecchio C. Combined Effect of Laboratory-Simulated Fire and Chromium Pollution on Microbial Communities in an Agricultural Soil. Biology. 2021; 10(7):587. https://doi.org/10.3390/biology10070587
Chicago/Turabian StyleRascio, Ida, Maddalena Curci, Concetta Eliana Gattullo, Anna Lavecchia, Mohammad Yaghoubi Khanghahi, Roberto Terzano, and Carmine Crecchio. 2021. "Combined Effect of Laboratory-Simulated Fire and Chromium Pollution on Microbial Communities in an Agricultural Soil" Biology 10, no. 7: 587. https://doi.org/10.3390/biology10070587
APA StyleRascio, I., Curci, M., Gattullo, C. E., Lavecchia, A., Yaghoubi Khanghahi, M., Terzano, R., & Crecchio, C. (2021). Combined Effect of Laboratory-Simulated Fire and Chromium Pollution on Microbial Communities in an Agricultural Soil. Biology, 10(7), 587. https://doi.org/10.3390/biology10070587