Hydrological, Environmental and Taxonomical Heterogeneity during the Transition from Drying to Flowing Conditions in a Mediterranean Intermittent River
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Invertebrate Sampling
2.3. Statistical Analysis
3. Results
3.1. Hydrological Variability
3.2. Environmental Heterogeneity
3.3. Taxonomical Heterogeneity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larned, S.T.; Datry, T.; Arscott, D.B.; Tockner, K. Emerging concepts in temporary-river ecology. Freshw. Bio. 2010, 55, 717–738. [Google Scholar] [CrossRef]
- Acuña, V.; Datry, T.; Marshall, J.; Barceló, D.; Dahm, C.N.; Ginebreda, A.; McGregor, M.; Sabater, S.; Tockner, K.; Palmer, M.A. Why should we care about temporary waterways? Science 2014, 343, 1080–1081. [Google Scholar] [CrossRef] [PubMed]
- Datry, T.; Larned, S.T.; Tockner, K. Intermittent rivers: A challenge for freshwater ecology. BioScience 2014, 64, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Montoya, M.; Gómez, R.; Suárez, M.; Vidal-Abarca, M. Ecological Assessment of Mediterranean Streams and the Special Case of Temporary Streams. In River Ecosystems: Dynamics, Management and Conservation; Elliot, H.S., Martin, L.E., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2011; pp. 109–148. [Google Scholar]
- Arthington, A.; Bernardo, J.; Ilhéu, M. Temporary rivers: Linking ecohydrology, ecological quality and reconciliation ecology. River Res. Appl. 2014, 30, 1209–1215. [Google Scholar] [CrossRef]
- Leigh, C.; Boulton, A.J.; Courtwright, J.L.; Fritz, K.; May, C.L.; Walker, R.H.; Datry, T. Ecological research and management of intermittent rivers: A historical review and future directions. Freshw. Bio. 2016, 61, 1181–1199. [Google Scholar] [CrossRef]
- Gallart, F.; Cid, N.; Latron, J.; Llorens, P.; Bonada, N.; Jeuffroy, J.; Jiménez-Argudo, S.M.; Vega, R.M.; Solà, C.; Soria, M.; et al. TREHS: An open-access software tool for investigating and evaluating temporary river regimes as a first step for their ecological status assessment. Sci. Total Environ. 2017, 607–608, 519–540. [Google Scholar] [CrossRef] [PubMed]
- Prat, N.; Gallart, F.; Von Schiller, D.; Polesello, S.; García-Roger, E.M.; Latron, J.; Rieradevall, M.; Llorens, P.; Barberá, G.G.; Brito, D.; et al. The MIRAGE Toolbox: An integrated assessment tool for temporary streams. River Res. Appl. 2014, 30, 1318–1334. [Google Scholar] [CrossRef]
- Datry, T.; Fritz, K.; Leigh, C. Challenges, developments and perspectives in intermittent river ecology. Freshw. Bio. 2016, 61, 1171–1180. [Google Scholar] [CrossRef] [Green Version]
- Skoulikidis, N.T.; Sabater, S.; Datry, T.; Morais, M.M.; Buffagni, A.; Dörflinger, G.; Zogaris, S.; Sánchez-Montoya, M.M.; Bonada, N.; Kalogianni, E.; et al. Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. Sci. Total Environ. 2017, 577, 1–18. [Google Scholar] [CrossRef]
- Buttle, J.M.; Boon, S.; Peters, D.L.; Spence, C.; Van Meerveld, H.J.; Whitfield, P.H. An overview of temporary stream hydrology in Canada. Can. Water Resour. J. 2012, 37, 279–310. [Google Scholar] [CrossRef] [Green Version]
- Steward, A.L.; Negus, P.; Marshall, J.C.; Clifford, S.E.; Dent, C. Assessing the ecological health of rivers when they are dry. Ecol. Indic 2018, 85, 537–547. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Gallart, F.; Pappagallo, G.; Santese, G.; Lo Porto, A. An eco-hydrological assessment method for temporary rivers. The Celone and Salsola rivers case study (SE, Italy). Ann. Limnol. 2015, 51, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Soria, M.; Leigh, C.; Datry, T.; Bini, L.M.; Bonada, N. Biodiversity in perennial and intermittent rivers: A meta-analysis. Oikos 2019, 126, 1078–1089. [Google Scholar] [CrossRef] [Green Version]
- Datry, T.; Moya, N.; Zubieta, J.; Oberdorff, T. Determinants of local and regional communities in intermittent and perennial headwaters of the Bolivian Amazon. Freshw. Bio. 2016, 61, 1335–1349. [Google Scholar] [CrossRef]
- Brendonck, L.; Pinceel, T.; Ortells, R. Dormancy and dispersal as mediators of zooplankton population and community dynamics along a hydrological disturbance gradient in inland temporary pools. Hydrobiologia 2017, 796, 201–222. [Google Scholar] [CrossRef]
- Tzoraki, O.; Nikolaidis, N.P.; Amaxidis, Y.; Skoulikidis, N.T. In-stream biogeochemical processes of a temporary river. Environ. Sci. Technol. 2007, 41, 1225–1231. [Google Scholar] [CrossRef]
- Skoulikidis, N.T.; Vardakas, L.; Amaxidis, Y.; Michalopoulos, P. Biogeochemical processes controlling aquatic quality during drying and rewetting events in a Mediterranean non-perennial river reach. Sci. Total Environ. 2017, 575, 378–389. [Google Scholar] [CrossRef]
- Datry, T.; Foulquier, A.; Corti, R.; von Schiller, D.; Tockner, K.; Mendoza-Lera, C.; Clément, J.C.; Gessner, M.O.; Moleón, M.; Stubbington, R.; et al. A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nat. Geosci. 2018, 11, 497–503. [Google Scholar] [CrossRef]
- Shumilova, O.; Zak, D.; Datry, T.; von Schiller, D.; Corti, R.; Foulquier, A.; Obrador, B.; Tockner, K.; Allan, D.C.; Alternatt, F.; et al. Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter. Glob. Chang. Biol. 2019, 25, 1591–1611. [Google Scholar] [CrossRef] [Green Version]
- von Schiller, D.; Datry, T.; Corti, R.; Foulquier, A.; Tockner, K.; Marcé, R.; García-Baquero, G.; Odriozola, I.; Obrador, B.; Elosegi, A.; et al. Sediment respiration pulses in intermittent rivers and ephemeral streams. Glob. Biogeochem. Cycles 2019, 33, 1251–1263. [Google Scholar] [CrossRef] [Green Version]
- Brendonck, L.; De Meester, L. Egg banks in freshwater zooplankton: Evolutionary and ecological. Hydrobiologia 2003, 491, 65–84. [Google Scholar] [CrossRef]
- Stubbington, R. The hyporheic zone as an invertebrate refuge: A review of variability in space, time, taxa and behaviour. Mar. Freshw. Res. 2012, 63, 293–311. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, R.; Bonada, N.; Guevara, M.; Pedreros, P.; Correa-Araneda, F.; Díaz, M.E.; Ruiz, V.H. Freshwater biodiversity and conservation in Mediterranean climate streams of Chile. Hydrobiologia 2013, 719, 269–289. [Google Scholar] [CrossRef] [Green Version]
- Bonada, N.; Resh, V.H. Mediterranean-climate streams and rivers: Geographically separated but ecologically comparable freshwater systems. Hydrobiologia 2013, 719, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Pastén, P.; Vega, A.; Guerra, P.; Pizarro, J.; Lizama, K. Water quality in Chile: Progress, challenges and perspectives. In Water Quality in the Americas: Risk and Opportunities; UNESCO: Paris, France, 2019. [Google Scholar]
- CONAMA. Estudio de la Variabilidad Climática en Chile para el Siglo XXI; Comisión Nacional de Medio Ambiente-Departamento de Geofísica, Universidad de Chile: Santiago, Chile, 2006. [Google Scholar]
- Garreaud, R. Cambio Climático: Bases físicas e impactos en Chile. Rev. Tierra Adentro-Inia 2011, 93, 13–19. [Google Scholar]
- Valdés-Pineda, R.; Pizarro, R.; García-Chevesich, P.; Valdés, J.B.; Olivares, C.; Vera, M.; Balocchi, F.; Pérez, F.; Vallejos, C.; Fuentes, R.; et al. Water governance in Chile: Availability, management and climate change. J. Hydrol. 2014, 519, 2538–2567. [Google Scholar] [CrossRef]
- Cabré, M.F.; Solman, S.; Núñez, M. Regional climate change scenarios over southern South America for future climate (2080–2099) using the MM5 Model. Mean, interannual variability and uncertainties. Atmósfera 2016, 29, 35–60. [Google Scholar] [CrossRef] [Green Version]
- Gallart, F.; Prat, N.; García-Roger, E.M.; Latron, J.; Rieradevall, M.; Llorens, P.; Barbera, G.G.; Brito, D.; de Girolamo, A.M.; Lo Porto, A.; et al. A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota. Hydrol. Earth Syst. Sci. 2012, 16, 3165–3182. [Google Scholar] [CrossRef] [Green Version]
- Datry, T.; Larned, S.T.; Fritz, K.M.; Bogan, M.T.; Wood, P.J.; Meyer, E.I.; Santos, A.N. Broad-scale patterns of invertebrate richness and community composition in temporary rivers: Effects of flow intermittence. Ecography 2014, 37, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Cid, N.; Verkaik, I.; García-Roger, E.M.; Rieradevall, M.; Bonada, N.; Sánchez-Montoya, M.M.; Gómez, R.; Suárez, M.L.; Vidal-Abarca, M.R.; Demartini, D.; et al. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin. Sci. Total Environ. 2016, 540, 178–190. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Bio. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- Gallart, F.; Llorens, P.; Latron, J.; Cid, N.; Rieradevall, M.; Prat, N. Validating alternative methodologies to estimate the regime of temporary rivers when flow data are unavailable. Sci. Total Environ. 2016, 565, 1001–1010. [Google Scholar] [CrossRef]
- Tzoraki, O.; De Girolamo, A.M.; Gamvroudis, C.; Skoulikidis, N. Assessing the Flow alteration of temporary streams under current conditions and changing climate by SWAT model. Int. J. River Basin Manag. 2016, 14, 1571–5124. [Google Scholar] [CrossRef]
- División de Estudios y Planificación. Regionalización de Parámetros en Cálculo de Escorrentía en Cuencas Pluviales; Informe Técnico SDT No. 321; Dirección General de Aguas/Ministerio de Obras Públicas: Santiago, Chile, 2011.
- Uribe, H.; Pérez, C.; Okuda, Y. Recursos Hídricos y Manejo del Agua para un Desarrollo Sustentable del Secano; Ministerio de Agricultura-Instituto de Investigaciones Agropecuarias: Chillán, Chile, 2004. [Google Scholar]
- Stewart, R.D.; Abou Najm, M.R.; Rupp, D.E.; Lane, J.W.; Uribe, H.C.; Arumí, J.L.; Selker, J.S. Hillslope run-off thresholds with shrink-swell clay soils. Hydrol. Process. 2015, 29, 557–571. [Google Scholar] [CrossRef]
- Duque, L.F.; Vázquez, R.F. Modelización Hidrológica de una Cuenca Intermitente ubicada en la VIII Región de Chile. Rev. Politcnica 2015, 35, 94–102. [Google Scholar]
- McCabe, D.J. Sampling biological communities. Nat. Educ. Knowl. 2011, 3, 63. [Google Scholar]
- Reznickova, P.; Paril, P.; Zahradkova, S. The ecological effect of drought on the macroinvertebrate fauna of a small intermittent stream an example from the Czech Republic. Int. Rev. Hydrobiol. 2007, 92, 514–526. [Google Scholar] [CrossRef]
- Argyroudi, A.; Chatzinikolaou, Y.; Poirazidis, K.; Lazaridou, M. Do intermittent and ephemeral Mediterranean rivers belong to the same river type? Aquat. Ecol. 2009, 43, 465–476. [Google Scholar] [CrossRef]
- Stubbington, R.; Wood, P.J.; Boulton, A.J. Low flow controls on benthic and hyporheic macroinvertebrate assemblages during supra-seasonal drought. Hydrol. Process. 2009, 23, 2252–2263. [Google Scholar] [CrossRef] [Green Version]
- White, J.C.; Hannah, D.M.; House, A.; Beatson, S.J.V.; Martin, A.; Wood, P.J. Macroinvertebrate responses to flow and stream temperature variability across regulated and non-regulated rivers. Ecohydrology 2017, 10, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Merrit, R.W.; Cummins, K.W. An Introduction to the Aquatic Insects of North America, 3rd ed.; Kendall/Hunt Publishing Company: Dubuque, IA, USA, 1996. [Google Scholar]
- Domínguez, E.; Molineri, C.; Pescador, M.L.; Hubbard, M.D.; Nieto, C. Ephemeroptera of South America. In Aquatic Biodiversity of Latin America (ABLA); Adis, J., Arias, J.R., Rueda-Delgado, G., Wantzen, K.M., Eds.; Pensoft: Sofia, Bulgaria, 2006. [Google Scholar]
- Domínguez, E.; Fernández, H.R. Macroinvertebrados Bentónicos Sudamericanos; Fundación Miguel Lillo: Tucumán, Argentina, 2009. [Google Scholar]
- Parkes, B.; Demeritt, D. Defining the hundred year flood: A Bayesian approach for using historic data to reduce uncertainty in flood frequency estimates. J. Hydrol. 2016, 540, 1189–1208. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Graczyk, D.; Maurer, T.; Pińskwar, I.; Radziejewski, M.; Svensson, C.; Szwed, M. Trend detection in river flow series: 1. Annual maximum flow. Hydrol. Sci. J. 2005, 50, 797–810. [Google Scholar] [CrossRef]
- Bouza-Deaño, R.; Ternero-Rodríguez, M.; Fernández-Espinoza, A.J. Trend study and assessment of surface water quality in the Ebro River (Spain). J. Hydrol. 2008, 361, 227–239. [Google Scholar] [CrossRef]
- Shahid, S. Rainfall variability and the trends of wet and dry periods in Bangladesh. Int. J. Clim. 2010, 30, 2299–2313. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing, Version 2.6.2.; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- McLeod, A.I. Kendall Rank Correlation and Mann-Kendall Trend Test. R Kendall Package Version 2.2. 2011. Available online: https://cran.r-project:web/packages/Kendall/Kendall.pdf (accessed on 21 September 2018).
- Álvarez-Cabria, M.; Barquín, J.; Juanes, J.A. Spatial and seasonal variability of macroinvertebrate metrics: Do macroinvertebrate communities track river health? Ecol. Indic 2010, 10, 370–379. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning the turn-over and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Hill, M.J.; Milner, V.S. Ponding in intermittent streams: A refuge for lotic taxa and a habitat for newly colonising taxa? Sci. Total Environ. 2018, 629, 1308–1316. [Google Scholar] [CrossRef]
- Anderson, M.J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 2006, 62, 245–253. [Google Scholar] [CrossRef]
- Stubbington, R.; Greenwood, A.M.; Wood, P.J.; Armitage, P.D.; Gunn, J.; Robertson, A.L. The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes. Hydrobiologia 2009, 630, 299–312. [Google Scholar] [CrossRef]
- Heino, J.; Grönroos, M.; Ilmonen, J.; Karhu, T.; Niva, M.; Paasivirta, L. Environmental heterogeneity and β diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshw. Sci. 2013, 32, 142–154. [Google Scholar] [CrossRef]
- Jirkänkallio-Mikkola, J.; Heino, J.; Soininen, J. Beta diversity of stream diatoms at two hierarchical spatial scales: Implications and biomonitoring. Freshw. Bio. 2016, 61, 239–250. [Google Scholar] [CrossRef]
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef]
- Blanchet, G.; Legendre, P.; Borcard, D. Forward selection of spatial explanatory variables. Ecology 2008, 89, 2623–2632. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.4-0. Available online: http://CRAN.R-project:package=vegan (accessed on 11 November 2018).
- Baselga, A.; Orme, D.L. Betapart: A R package for the study of beta diversity. Methods Ecol. Evol. 2012, 3, 808. [Google Scholar] [CrossRef]
- Garcia-Roger, E.M.; del Mar Sánchez-Montoya, M.; Gómez, R.; Suárez, M.L.; Vidal-Abarca, M.D.R.; Latron, J.; Rieradevall, M.; Prat, N. Do seasonal changes in habitat features influence aquatic macroinvertebrate assemblages in perennial versus temporary Mediterranean streams? Aquat. Sci. 2011, 73, 567–579. [Google Scholar] [CrossRef]
- Munné, A.; Prat, N. Effects of Mediterranean climate annual variability on stream biological quality assessment using macroinvertebrate communities. Ecol. Indic 2011, 11, 651–662. [Google Scholar] [CrossRef]
- Cid, N.; Bonada, N.; Carlson, S.M.; Grantham, T.E.; Gasith, A.; Resh, V.H. High Variability is a defining Component of Mediterranean-Climate rivers and their biota. Water 2017, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Dolédec, S.; Tilbian, J.; Bonada, N. Temporal variability in taxonomic and trait compositions of invertebrate assemblages in two climatic regions with contrasting flow regimes. Sci. Total Environ. 2017, 600, 1912–1921. [Google Scholar] [CrossRef]
- Monroy, S.; Martínez, A.; López-rojo, N.; Pérez-calpe, A.V.; Basaguren, A.; Pozo, J. Structural and functional recovery of macroinvertebrate communities and leaf litter decomposition after a marked drought: Does vegetation type matter? Sci. Total Environ. 2017, 599–600, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- De Girolamo, A.M.; Lo Porto, A.; Pappagallo, G.; Tzoraki, O.; Gallart, F. The hydrological status concept: Application at a temporary river (Candelaro, Italy). River Res. Appl. 2014, 30, 307–328. [Google Scholar] [CrossRef]
- Acuña, V.; Muñoz, I.; Giorgi, A.; Omella, M.; Sabater, F.; Sabater, S. Drought and postdrought recovery cycles in an intermittent Mediterranean stream: Structural and functional aspects. J. N. Am. Benthol. Soc. 2005, 24, 919–933. [Google Scholar] [CrossRef]
- Buffagni, A.; Erba, S.; Cazzola, M.; Barca, E.; Belfiore, C. The ratio of lentic to lotic habitat features strongly affects macroinvertebrate metrics used in southern Europe for ecological status classification. Ecol. Indic 2020, 117. [Google Scholar] [CrossRef]
- Boersma, K.S.; Bogan, M.T.; Henrichs, B.A.; Lytle, D.A. Invertebrate assemblages of pools in arid-land streams have high functional redundancy and are resistant to severe drying. Freshw. Bio. 2014, 59, 491–501. [Google Scholar] [CrossRef]
- Warfe, D.M.; Hardie, S.A.; Uytendaal, A.R.; Bobbi, C.J.; Barmuta, L.A. The ecology of rivers with contrasting flow regimes: Identifying indicators for setting environmental flows. Freshw. Bio. 2014, 59, 2064–2080. [Google Scholar] [CrossRef]
- Vander Vorste, R.; Mermillod-Blondin, F.; Hervant, F.; Mons, R.; Forcellini, M.; Datry, T. Increased depth to the water table during river drying decreases the resilience of Gammarus pulex and alters ecosystem function. Ecohydrology 2016, 9, 1177–1186. [Google Scholar] [CrossRef]
- Leigh, C.; Datry, T. Drying as a primary hydrological determinant of biodiversity in river systems: A broad-scale analysis. Ecography 2017, 40, 487–499. [Google Scholar] [CrossRef] [Green Version]
- Arenas-Sánchez, A.; Rico, A.; Vighi, M. Effects of water scarcity and chemical pollution in aquatic ecosystems. Sci. Total Environ. 2016, 572, 390–403. [Google Scholar] [CrossRef]
- Bonada, N.; Cañedo-Argüellez, M.; Gallart, F.; von Chiller, D.; Fortuño, P.; Latron, J.; Llorens, P.; Múrria, C.; Soria, M.; Vynioles, D.; et al. Conservation and management of isolated pools in temporary rivers. Water 2020, 12, 2870. [Google Scholar] [CrossRef]
- Bonada, N.; Rieradevall, M.; Resh, V.H. Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean-climate streams of northern California. J. N. Am. Benthol. Soc. 2006, 25, 32–43. [Google Scholar] [CrossRef]
- Kelso, J.E.; Entrekin, S.A. Intermittent and perennial macroinvertebrate communities had similar richness but differed in species trait composition depending on flow duration. Hydrobiologia 2018, 807, 189–206. [Google Scholar] [CrossRef]
- Bogan, M.; Boersma, K.; Litle, D. resistance and resilience of invertebrate communities to seasonal and supraseasonal drought in arid-land headwater streams. Freshw. Bio. 2015, 50, 2547–2558. [Google Scholar] [CrossRef]
- Leigh, C.; Bonada, N.; Boulton, A.J.; Hugueny, B.; Larned, S.T.; Vander Vorste, R.; Datry, T. Invertebrate assemblage responses and the dual roles of resistance and resilience to drying in intermittent rivers. Aquat. Sci. 2016, 78, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Oertli, B.; Joye, D.A.; Castella, E.; Cambin, D.; Lachavanne, J. Does size matter? The relationship between pond area and biodiversity. Biol. Conserv. 2002, 104, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Vander Vorste, R.; Corti, R.; Sagouis, A.; Datry, T. Invertebrate communities in gravel-bed, braided rivers are highly resilient to flow intermittence. Freshw. Sci. 2015, 35, 164–177. [Google Scholar] [CrossRef] [Green Version]
- Lobera, G.; Pardo, I.; Garcia, L.; Garcia, C. Disentangling spatio-temporal drivers influencing benthic communities in temporary streams. Aquat. Sci. 2019, 81. [Google Scholar] [CrossRef]
- Lobera, G.; Pardo, I. Response of resources and consumers to experimental flow pulses in a temporary Mediterranean stream. Sci. Total Environ. 2021, 753, 141843. [Google Scholar] [CrossRef]
- Feminella, J.W. Flow Permanence Comparison of benthic macroinvertebrate assemblages in small streams along a gradient of flow permanence. J. N. Am. Benthol. Soc. 1996, 15, 651–669. [Google Scholar] [CrossRef]
- Chadd, R.P.; England, J.A.; Constable, D.; Dunbar, M.J.; Extence, C.A.; Leeming, D.J.; Murray-Bligh, J.A.; Wood, P.-J. An index to track the ecological effects of drought development and recovery on riverine invertebrate communities. Ecol. Indic 2017, 82, 344–356. [Google Scholar] [CrossRef] [Green Version]
- Drummond, L.R.; Mcintosh, A.R.; Larned, S.T. Invertebrate community dynamics and insect emergence in response to pool drying in a temporary river. Freshw. Bio. 2015, 60, 1596–1612. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Oxford, UK, 1988. [Google Scholar]
- Wilding, N.A.; White, J.C.; Chadd, R.P.; House, A.; Wood, P.J. The influence of flow permanence and drying pattern on macroinvertebrate biomonitoring tools used in the assessment of riverine ecosystems. Ecol. Indic 2018, 85, 548–555. [Google Scholar] [CrossRef] [Green Version]
- Datry, T.; Corti, R.; Heino, J.; Hugueny, B.; Rolls, R.J.; Ruhí, A. Habitat fragmentation and metapopulation, metacommunity, and metaecosystem dynamics in intermittent rivers and ephemeral streams. In Intermittent Rivers and Ephemeral Streams; Datry, T., Bonada, N., Eds.; Academic Press: London, UK, 2017; pp. 377–403. [Google Scholar] [CrossRef]
- Klausmeyer, K.R.; Shaw, M.R. Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS ONE 2009, 4, e6392. [Google Scholar] [CrossRef] [Green Version]
- Hershkovitz, Y.; Gasith, A. Resistance, resilience, and community dynamics in mediterranean-climate streams. Hydrobiologia 2013, 719, 59–75. [Google Scholar] [CrossRef]
- Nikolaidis, N.P.; Demetropoulou, L.; Froebrich, J.; Jacobs, C.; Gallart, F.; Prat, N.; Lo Porto, A.; Campana, C.; Papadoulakis, V.; Skoulikidis, N.; et al. Towards sustainable management of Mediterranean river basins: Policy recommendations on management aspects of temporary streams. Water Policy 2013, 15, 830–849. [Google Scholar] [CrossRef]
- Garcia, C.; Gibbins, C.N.; Pardo, I.; Batalla, R.J. Long term flow change threatens invertebrate diversity in temporary streams: Evidence from an island. Sci. Total Environ. 2017, 580, 1453–1459. [Google Scholar] [CrossRef]
- White, J.C.; House, A.; Punchard, N.; Hannah, D.M.; Wilding, N.A.; Wood, P.J. Macroinvertebrate community responses to hydrological controls and groundwater abstraction effects across intermittent and perennial headwater streams. Sci. Total Environ. 2018, 611, 1514–1526. [Google Scholar] [CrossRef] [Green Version]
- Bonada, N.; Dolédec, S.; Statzner, B. Taxonomic and biological trait differences of stream macroinvertebrate communities between Mediterranean and temperate regions: Implications for future climatic scenarios. Glob. Chang. Biol. 2007, 13, 1658–1671. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Boulton, A.J. Conservation of ephemeral streams and their ecosystem services: What are we missing? Aquat. Conserv. Mar. Freshw. Ecosyst. 2014, 24, 733–738. [Google Scholar] [CrossRef]
- Smeti, E.; von Schiller, D.; Karaouzas, I.; Laschou, S.; Vardakas, L.; Sabater, S.; Tornés, E.; Monllor-Alcaraz, L.S.; Guillem-Argiles, N.; Martinez, E.; et al. Multiple stressor effects on biodiversity and ecosystems functioning in a Mediterranean temporary river. Sci. Total Environ. 2019, 647, 1179–1187. [Google Scholar] [CrossRef]
- Fuentealba, C.; Figueroa, R.; Morrone, J.J. Análisis de endemismo de moluscos dulceacuícolas de Chile. Rev. Chil. Hist. Nat. 2010, 83, 289–298. [Google Scholar] [CrossRef] [Green Version]
Sampling Sites/Meteorological and Gauge Stations | Geographic Coordinates | Altitude (masl) | Max Wet River Wide (m) | Distance to: | ||
---|---|---|---|---|---|---|
Latitude | Longitude | Source (km) | Downstream Confluence (km) | |||
Puente Esmeralda | −36.442051 | −72.351664 | 80 | 40 | 45.0 | 44.8 |
Rincomavida | −36.480823 | −72.383816 | 65 | 40 | 52.9 | 36.9 |
Buenos Aires | −36.471718 | −72.441632 | 60 | 70 | 59.6 | 30.2 |
Trehuaco | −36.427605 | −72.663469 | 30 | 100 | 86.3 | 3.5 |
Coelemu | −36.491944 | −72.698888 | 80 | |||
Río Lonquén en Trehuaco | −36.427665 | −72.664110 | 30 |
ORD | ARH | ORR | EUR | |
---|---|---|---|---|
Current velocity (m/s) | 0.013 ± 0.03 | 0.0 ± 0.0 | 0.093 ± 0.08 | 0.516 ± 0.10 |
pH | 7.64 ± 0.40 | 7.52 ± 0.68 | 6.65 ± 0.24 | 7.80 ± 0.27 |
Temperature (°C) | 27.9 ± 3.2 | 15.7 ± 1.6 | 10.4 ± 1.5 | 14.2 ± 0.1 |
Conductivity (µS/cm) | 232 ± 48 | 289 ± 28 | 226 ± 38 | 120 ± 4.5 |
Dissolved oxygen (mg/L) | 5.48 ± 1.53 | 5.96 ± 2.74 | 8.72 ± 2.05 | 10.81 ± 0.23 |
Suspended solids (mg/L) | 9.76 ± 5.19 | 3.89 ± 1.62 | 21.4 ± 9.31 | 15.14 ± 2.83 |
Dissolved solids (mg/L) | 164 ± 63 | 184 ± 21 | 172 ± 17 | 127 ± 7 |
Nitrate-NO3-N (mg/L) | 0.06 ± 0.10 | 0.12 ± 0.07 | 0.02 ± 0.01 | 0.17 ± 0.02 |
Total Nitrogen (mg/L) | 0.40 ± 0.14 | 0.27 ± 0.20 | 0.26 ± 0.10 | 0.53 ± 0.16 |
Total Phosphate (mg/L) | 0.05 ± 0.01 | 0.10 ± 0.07 | 0.06 ± 0.04 | 0.15 ± 0.06 |
Metric | Definition | Relevance to Intermittent Flows | Reference |
---|---|---|---|
Richness | The number of species of a given taxon in the chosen assemblage. The number of species or taxa in the unit of study [94]. | Lower values are expected in intermittent flow rivers than in permanent ones. | [72,93] |
It is decreasing after the disconnection of the river in isolated pools with lentic-like and resistance taxa colonising in the dry period. | [10,14,60,95] | ||
Abundance | Number of individuals (density or biomass) of each specie or community [94]. | Lower values are expected in intermittent flow rivers than in permanent ones. | [62,71,72] |
[75] | |||
Increased abundance (and richness) is possible to find soon after flow ceased with a rapid decrease when the isolated pools are constituted. | Present study | ||
Shannon diversity | Mathematical index to measure the diversity in a natural systems and it assumes that individuals are randomly sampled from an infinitely large community and that all species are represented in the sample [94]. | Higher values are expected in perennial sites than intermittent. | [93] |
It is expected to find high values in the drying condition or pools when the river is recently disconnected. | Present study | ||
Beta diversity | Difference in species composition (and sometimes species abundance) among sites, or turn-over between two or more habitats or localities [94]. Turn-over: Replacement of some species by others between sites Nestedness: smaller numbers of species are subsets of the biota at richer sites [59]. | Change in community composition along hydrological intermittence gradients is driven by loss (nestedness) and turnover (replacement) of taxa due to increasing fragmentation or environmental harshness. | [15,60,96] |
Community structure may vary sharply during the different hydrological phases. During the phases dominated by dispersal (flowing), the nestedness may be observed, particularly for weak to moderate dispersers. In contrast, when species sorting or environmental filtering dominates in IRES, the taxa turn-over may be observed more commonly during the non-flowing or dry phase. | [96] | ||
High beta diversity (turn-over) is expected to find in the perennial sites after the high flood perturbation. However, the nestedness is possible to be moderate in intermittent sites and disconnected pools than perennials. | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banegas-Medina, A.; Montes, I.-Y.; Tzoraki, O.; Brendonck, L.; Pinceel, T.; Diaz, G.; Arriagada, P.; Arumi, J.-L.; Pedreros, P.; Figueroa, R. Hydrological, Environmental and Taxonomical Heterogeneity during the Transition from Drying to Flowing Conditions in a Mediterranean Intermittent River. Biology 2021, 10, 316. https://doi.org/10.3390/biology10040316
Banegas-Medina A, Montes I-Y, Tzoraki O, Brendonck L, Pinceel T, Diaz G, Arriagada P, Arumi J-L, Pedreros P, Figueroa R. Hydrological, Environmental and Taxonomical Heterogeneity during the Transition from Drying to Flowing Conditions in a Mediterranean Intermittent River. Biology. 2021; 10(4):316. https://doi.org/10.3390/biology10040316
Chicago/Turabian StyleBanegas-Medina, Andy, Isis-Yelena Montes, Ourania Tzoraki, Luc Brendonck, Tom Pinceel, Gustavo Diaz, Pedro Arriagada, Jose-Luis Arumi, Pablo Pedreros, and Ricardo Figueroa. 2021. "Hydrological, Environmental and Taxonomical Heterogeneity during the Transition from Drying to Flowing Conditions in a Mediterranean Intermittent River" Biology 10, no. 4: 316. https://doi.org/10.3390/biology10040316
APA StyleBanegas-Medina, A., Montes, I. -Y., Tzoraki, O., Brendonck, L., Pinceel, T., Diaz, G., Arriagada, P., Arumi, J. -L., Pedreros, P., & Figueroa, R. (2021). Hydrological, Environmental and Taxonomical Heterogeneity during the Transition from Drying to Flowing Conditions in a Mediterranean Intermittent River. Biology, 10(4), 316. https://doi.org/10.3390/biology10040316