Prevalence of Hyperhomocysteinemia in China: An Updated Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection and Inclusion and Exclusion Criteria
2.3. Date Extraction and Risk of Bias Assessment
2.4. Statistical Analysis
3. Results
3.1. Pooled Prevalence of HHcy and Subgroup Analysis
3.2. Meta-Regression Analyses to Explore the Source of Heterogeneity
3.3. Publication Bias and Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Finkelstein, J.D.; Martin, J.J. Homocysteine. Int. J. Biochem. Cell Biol. 2000, 32, 385–389. [Google Scholar] [CrossRef]
- Ying, Y.; Lin, S.; Kong, F.; Li, Y.; Xu, S.; Liang, X.; Wang, C.; Han, L. Ideal Cardiovascular Health Metrics and Incidence of Ischemic Stroke Among Hypertensive Patients: A Prospective Cohort Study. Front. Cardiovasc. Med. 2020, 7, 590809. [Google Scholar] [CrossRef]
- Conri, C.; Constans, J.; Parrot, F.; Skopinski, S.; Cipriano, C. Homocysteinemia: Role in vascular disease. Presse Med. 2000, 29, 737–741. [Google Scholar]
- Anniwaer, J.; Liu, M.Z.; Xue, K.D.; Maimaiti, A.; Xiamixiding, A. Homocysteine might increase the risk of recurrence in patients presenting with primary cerebral infarction. Int. J. Neurosci. 2019, 129, 654–659. [Google Scholar] [CrossRef] [Green Version]
- House, J.D.; Brosnan, M.E.; Brosnan, J.T. Characterization of homocysteine metabolism in the rat kidney. Biochem. J. 1997, 328 Pt 1, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Temple, M.E.; Luzier, A.B.; Kazierad, D.J. Homocysteine as a risk factor for atherosclerosis. Ann. Pharmacother. 2000, 34, 57–65. [Google Scholar] [CrossRef]
- Challa, F.; Getahun, T.; Sileshi, M.; Nigassie, B.; Geto, Z.; Ashibire, G.; Gelibo, T.; Teferra, S.; Seifu, D.; Sitotaw, Y.; et al. Prevalence of Hyperhomocysteinaemia and Associated Factors among Ethiopian Adult Population in a 2015 National Survey. Biomed. Res. Int. 2020, 2020, 9210261. [Google Scholar] [CrossRef]
- Guo, S.; Pang, H.; Guo, H.; Zhang, M.; He, J.; Yan, Y.; Niu, Q.M.; Rui, D.; Li, S.; Ma, R.; et al. Ethnic differences in the prevalence of high homocysteine levels among low-income rural Kazakh and Uyghur adults in far western China and its implications for preventive public health. Int. J. Environ. Res. Public Health 2015, 12, 5373–5385. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Li, L.; Tang, Z. Epidemiological characteristics of hyperhomocysteinemia and H-type hypertension in the elderly in Beijing, China. Clin. Exp. Hypertens. 2017, 39, 640–644. [Google Scholar] [CrossRef]
- Selhub, J.; Rosenberg, I.H. Excessive folic acid intake and relation to adverse health outcome. Biochimie 2016, 126, 71–78. [Google Scholar] [CrossRef]
- Herrmann, W.; Lorenzl, S.; Obeid, R. Review of the role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric disorders--current evidence and preliminary recommendations. Neurol. Psychiatr. 2007, 75, 515–527. [Google Scholar] [CrossRef]
- Li, Z.; Guo, X.; Chen, S.; Zheng, L.; Yang, H.; Sun, G.; Yu, S.; Li, W.; Zhou, L.; Wang, J.; et al. Hyperhomocysteinemia independently associated with the risk of hypertension: A cross-sectional study from rural China. J. Hum. Hypertens. 2016, 30, 508–512. [Google Scholar] [CrossRef]
- Yang, B.; Fan, S.; Zhi, X.; Wang, Y.; Wang, Y.; Zheng, Q.; Sun, G. Prevalence of hyperhomocysteinemia in China: A systematic review and meta-analysis. Nutrients 2014, 7, 74–90. [Google Scholar] [CrossRef] [Green Version]
- Marti, F.; Vollenweider, P.; Marques-Vidal, P.M.; Mooser, V.; Waeber, G.; Paccaud, F.; Bochud, M. Hyperhomocysteinemia is independently associated with albuminuria in the population-based CoLaus study. BMC Public Health 2011, 11, 733. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.W.; Whang, D.H.; Ko, Y.J.; Joo, S.Y.; Yun, Y.M.; Hur, M.; Kim, J.Q. Reference interval and determinants of the serum homocysteine level in a Korean population. J. Clin. Lab. Anal. 2011, 25, 317–323. [Google Scholar] [CrossRef]
- Niu, X.; Chen, J.; Wang, J.; Li, J.; Zeng, D.; Wang, S.; Hong, X. A Cross-sectional Study on the Relationship Between Homocysteine and Lipid Profiles Among Chinese Population from Hunan. Lipids 2021, 56, 93–100. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Wang, P.; Qin, J.Q.; Wei, A.Q.; Huang, P.; Lai, Z.F.; Lin, F.Q. Prevalence of hyperhomocysteinemia during routine physical examination in Guangxi Province, China and related risk factors. J. Clin. Lab. Anal. 2018, 32, e22178. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Wang, L.; Si, X.; Tian, J.L.; Zhang, Y.; Gui, H.L.; Li, B.; Tan, D.H. Current progress on the mechanisms of hyperhomocysteinemia-induced vascular injury and use of natural polyphenol compounds. Eur. J. Pharmacol. 2021, 905, 174168. [Google Scholar] [CrossRef]
- Liu, X.D.; Gao, B.; Sun, D.; Shi, M.; Ma, Y.Y.; Liu, Z.R.; Wang, B.; Xu, X.; Xu, X.; Ji, Q.H.; et al. Prevalence of hyperhomocysteinaemia and some of its major determinants in Shaanxi Province, China: A cross-sectional study. Br. J. Nutr. 2015, 113, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Chen, Y.; Yang, H.; Guo, X.; Zheng, L.; Sun, Y. Hyperhomocysteinemia accompany with metabolic syndrome increase the risk of left ventricular hypertrophy in rural Chinese. BMC Cardiovasc. Disord. 2020, 20, 44. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Wang, T.D.; Meng, H.X.; Min, G.W.; Fang, Y.L.; Niu, X.Y.; Ma, L.S.; Guo, J.H.; Zhang, J.; et al. Nutritional status of the elderly in rural North China: A cross-sectional study. J. Nutr. Health Aging 2014, 18, 730–736. [Google Scholar] [CrossRef]
- West, S.; King, V.; Carey, T.S.; Lohr, K.N.; McKoy, N.; Sutton, S.F.; Lux, L. Systems to rate the strength of scientific evidence. Evid. Rep. Technol. Assess. 2002, 47, 1–11. [Google Scholar]
- Guo, S.; Sun, Q.; Zhao, X.; Shen, L.; Zhen, X. Prevalence and risk factors for antibiotic utilization in Chinese children. BMC Pediatr. 2021, 21, 255. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Chen, X.; Shi, J.P.; Fu, L.Y.; Wang, H.L.; Wu, X.M. Meta-Analysis of Rates and Software Implementation. Chin. J. Evid.-Based Med. 2014, 14, 1009–1016. (In Chinese) [Google Scholar]
- Zheng, W.J.; He, F. The basic method and software operation of 95% confidence interval estimation of overall rate. Prev. Med. 2020, 32, 539–540. (In Chinese) [Google Scholar]
- Wang, B.; Zhuang, R.; Luo, X.; Yin, L.; Pang, C.; Feng, T.; You, H.; Zhai, Y.; Ren, Y.; Zhang, L.; et al. Prevalence of Metabolically Healthy Obese and Metabolically Obese but Normal Weight in Adults Worldwide: A Meta-Analysis. Horm. Metab. Res. 2015, 47, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiao, S.; Yang, Z.; Xu, L.; Liu, L.; Feng, Q.; Zhang, X.; Hou, Y.; He, S.; Saldanha, J.; et al. Prevalence of hepatitis E virus infection among blood donors in mainland China: A meta-analysis. Transfusion 2017, 57, 248–257. [Google Scholar] [CrossRef]
- Thompson, S.G.; Sharp, S.J. Explaining heterogeneity in meta-analysis: A comparison of methods. Stat. Med. 1999, 18, 2693–2708. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Hu, L.; Zhou, W.; Wang, T.; Zhu, L.; Zhai, Z.; Bao, H.; Cheng, X. Nonlinear association between blood lead and hyperhomocysteinemia among adults in the United States. Sci. Rep. 2020, 10, 17166. [Google Scholar] [CrossRef]
- Ahmed, S.; Bogiatzi, C.; Hackam, D.G.; Rutledge, A.C.; Sposato, L.A.; Khaw, A.; Mandzia, J.; Azarpazhoo, M.R.; Hachinski, V.; Spence, J.D. Vitamin B (12) deficiency and hyperhomocysteinaemia in outpatients with stroke or transient ischaemic attack: A cohort study at an academic medical centre. BMJ Open 2019, 9, e026564. [Google Scholar] [CrossRef] [PubMed]
- Fakhrzadeh, H.; Ghotbi, S.; Pourebrahim, R.; Nouri, M.; Heshmat, R.; Bandarian, F.; Shafaee, A.; Larijani, B. Total plasma homocysteine, folate, and vitamin B12 status in healthy Iranian adults: The Tehran homocysteine survey (2003–2004)/a cross-sectional population based study. BMC Public Health 2006, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amouzou, E.K.; Chabi, N.W.; Adjalla, C.E.; Rodriguez-Guéant, R.M.; Feillet, F.; Villaume, C.; Sanni, A.; Guéant, J.L. High prevalence of hyperhomocysteinemia related to folate deficiency and the 677C -->T mutation of the gene encoding methylenetetrahydrofolate reductase in coastal West Africa. Am. J. Clin. Nutr. 2004, 79, 619–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.; Huang, F.; Wang, Y.; Liu, Q.; Lv, Y.; Zhang, Q. Gender- and age-related differences in homocysteine concentration: A cross-sectional study of the general population of China. Sci. Rep. 2020, 10, 17401. [Google Scholar] [CrossRef]
- Jung, S.; Je, Y.; Giovannucci, E.L.; Rosner, B.; Ogino, S.; Cho, E. Derivation and validation of homocysteine score in u.s. Men and women. J. Nutr. 2015, 145, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Nurk, E.; Tell, G.S.; Vollset, S.E.; Nygård, O.; Refsum, H.; Nilsen, R.M.; Ueland, P.M. Changes in lifestyle and plasma total homocysteine: The Hordaland Homocysteine Study. Am. J. Clin. Nutr. 2004, 79, 812–819. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Qin, X.; Cai, Y.; He, M.; Sun, L.; Li, J.; Zhang, Y.; Tang, G.; Wang, B.; et al. Prevalence of hyperhomocysteinaemia and its major determinants in rural Chinese hypertensive patients aged 45–75 years. Br. J. Nutr. 2013, 109, 1284–1293. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhao, Q.; Li, D.; Ren, B.; Yue, L.; Shi, F.; Wang, X.; Zheng, C.; Chen, X.; Zhang, C.; et al. Association between gene promoter methylation of the one-carbon metabolism pathway and serum folate among patients with hyperhomocysteinemia. Eur. J. Clin. Nutr. 2020, 74, 1677–1684. [Google Scholar] [CrossRef]
- van Guldener, C.; Janssen, M.J.; de Meer, K.; Donker, A.J.; Stehouwer, C.D. Effect of folic acid and betaine on fasting and postmethionine-loading plasma homocysteine and methionine levels in chronic haemodialysis patients. J. Intern. Med. 1999, 245, 175–183. [Google Scholar] [CrossRef]
- Hao, L.; Ma, J.; Zhu, J.; Stampfer, M.J.; Tian, Y.; Willett, W.C.; Li, Z. High prevalence of hyperhomocysteinemia in Chinese adults is associated with low folate, vitamin B-12, and vitamin B-6 status. J. Nutr. 2007, 137, 407–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilhan, N.; Kucuksu, M.; Kaman, D.; Ilhan, N.; Ozbay, Y. The 677 C/T MTHFR polymorphism is associated with essential hypertension, coronary artery disease, and higher homocysteine levels. Arch. Med. Res. 2008, 39, 125–130. [Google Scholar] [CrossRef]
- Chen, S.; Wu, P.; Zhou, L.; Shen, Y.; Li, Y.; Song, H. Relationship between increase of serum homocysteine caused by smoking and oxidative damage in elderly patients with cardiovascular disease. Int. J. Clin. Exp. Med. 2015, 8, 4446–4454. [Google Scholar]
- Zhu, J.; Wang, W.; Xiong, Y.; Cooper, R.S.; Du Raza-Arvizu, R.; Cao, G.; Wang, Y.; Ji, P.; Bian, R.; Xu, J. The Association Between Tea Consumption and Hyperhomocysteine in Chinese Hypertensive Patients. Am. J. Hypertens. 2019, 32, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, T.; Gao, J.; Wang, Y.; Chen, Y.; Kaliannan, K.; Li, X.; Xiao, J.; Ma, T.; Zhang, L.; et al. Associations of homocysteine status and homocysteine metabolism enzyme polymorphisms With hypertension and dyslipidemia in a Chinese hypertensive population. Clin. Exp. Hypertens. 2020, 42, 52–60. [Google Scholar] [CrossRef]
- Yafei, W.; Lijun, P.; Jinfeng, W.; Xiaoying, Z. Is the prevalence of MTHFR C677T polymorphism associated with ultraviolet radiation in Eurasia? J. Hum. Genet. 2012, 57, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Ma, J.; Stampfer, M.J.; Ren, A.; Tian, Y.; Tang, Y.; Willett, W.C.; Li, Z. Geographical, seasonal and gender differences in folate status among Chinese adults. J. Nutr. 2003, 133, 3630–3635. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Guo, X.; Dong, S.; Li, Z.; Sun, Y. Relationship between lifestyle factors and hyperhomocysteinemia in general Chinese population: A cross-sectional study. Postgrad. Med. 2017, 129, 216–223. [Google Scholar] [CrossRef]
Subgroups | Sample Size | No. of Studies | Pooled Prevalence (%) (95% CI) | Heterogeneity | p for Comparison | |
---|---|---|---|---|---|---|
I2 | p | |||||
Demographic characteristics | ||||||
Mean age (year) | 24 | <0.001 | ||||
<55 | 247,175 | 13 | 34.5 (29.1–40.0) | 99.7% | <0.001 | |
≥55 | 63,447 | 11 | 41.2 (30.6–51.8) | 99.9% | <0.001 | |
Gender | <0.001 | |||||
male | 165,303 | 20 | 53.0 (45.6–60.4) | 99.8% | <0.001 | |
female | 135,585 | 20 | 28.0 (22.6–33.4) | 99.8% | <0.001 | |
Geographical distributions | ||||||
Region | 29 | <0.001 | ||||
north | 34,017 | 11 | 45.7 (35.7–55.7) | 99.8% | <0.001 | |
central | 275,702 | 12 | 32.3 (27.3–37.4) | 99.8% | <0.001 | |
south | 28,941 | 6 | 31.1 (16.3–45.9) | 99.8% | <0.001 | |
Area | 29 | <0.001 | ||||
inland | 50,584 | 14 | 41.6 (31.3–51.8) | 99.8% | <0.001 | |
coast | 288,076 | 15 | 33.1 (27.5–38.6) | 99.8% | <0.001 | |
Setting | 29 | <0.001 | ||||
rural | 23,667 | 7 | 42.3 (33.1–51.5) | 99.5% | <0.001 | |
urban | 47,453 | 8 | 33.1 (25.6–40.5) | 99.7% | <0.001 | |
urban and rural | 267,540 | 14 | 36.9 (30.1–43.7) | 99.9% | <0.001 | |
Study characteristics | ||||||
Sample size | 29 | <0.001 | ||||
<2000 | 12,370 | 12 | 33.9 (24.8–42.9) | 99.3% | <0.001 | |
≥2000 | 326,290 | 17 | 39.5 (33.6–45.4) | 99.9% | <0.001 | |
Year of data collection | 25 | <0.001 | ||||
2002–2012 | 16,055 | 6 | 49.2 (36.9–61.6) | 99.6% | <0.001 | |
2013–2014 | 50,412 | 9 | 30.9 (24.5–37.3) | 99.6% | <0.001 | |
2015–2016 | 245,640 | 6 | 35.8 (27.5–44.2) | 99.9% | <0.001 | |
2017–2018 | 20,033 | 4 | 34.1 (14.2–55.5) | 99.8% | <0.001 | |
Year of publication | 29 | <0.001 | ||||
2014–2017 | 33,569 | 13 | 41.4 (31.4–51.1) | 99.7% | <0.001 | |
2018–2021 | 305,091 | 16 | 33.9 (27.9–39.8) | 99.9% | <0.001 | |
Population source | 29 | <0.001 | ||||
Community based | 82,874 | 16 | 39.4 (32.4–46.5) | 99.8% | <0.001 | |
physical examination based | 255,786 | 13 | 34.4 (27.4–41.3) | 99.8% | <0.001 | |
Research topic | 29 | <0.001 | ||||
Main outcome (HHcy) | 85,109 | 23 | 37.1 (30.7–43.5) | 99.8% | <0.001 | |
Secondary outcome (HHcy) | 253,551 | 6 | 37.4 (28.1–46.6) | 99.9% | <0.001 |
Variables | Sample Size | No. of Studies | Coefficient | Lower 95% CI | Upper 95% CI | p |
---|---|---|---|---|---|---|
Demographic characteristics | ||||||
Mean age | 300,424 | 18 | 0.01 | 0.004 | 0.02 | 0.039 |
Male/female | 300,424 | 18 | −0.04 | −0.25 | 0.17 | 0.683 |
Geographical distributions | ||||||
Region | 300,424 | 18 | ||||
south | 18,712 | 3 | Reference | |||
north | 27,026 | 7 | 0.24 | 0.05 | 0.42 | 0.016 |
central | 254,686 | 8 | 0.05 | −0.13 | 0.23 | 0.539 |
Area | 300,424 | 18 | ||||
inland | 32,399 | 8 | Reference | |||
coast | 268,025 | 10 | −0.15 | −0.29 | −0.01 | 0.034 |
Setting | 300,424 | 18 | ||||
rural | 17,560 | 4 | Reference | |||
urban | 34,426 | 4 | −0.07 | −0.31 | 0.17 | 0.545 |
rural and urban | 248,438 | 10 | −0.10 | −0.30 | 0.10 | 0.303 |
Study characteristics | ||||||
Sample size | 300,424 | 18 | −8.26 × 10−8 | −1.08 × 10−6 | 1.64 × 10−6 | 0.920 |
Year of data collection | 300,424 | 18 | −0.01 | −0.03 | 0.01 | 0.313 |
Year of publication | 300,424 | 18 | −0.03 | −0.06 | 0.01 | 0.101 |
Population source | 300,424 | 18 | ||||
physical examination based | 236,089 | 8 | Reference | |||
Community based | 64,335 | 10 | 0.02 | −0.18 | 0.14 | 0.754 |
Research topic | 300,424 | 18 | ||||
Secondary outcome (HHcy) | 231,205 | 3 | Reference | |||
Main outcome (HHcy) | 69,219 | 15 | 0.06 | −0.27 | 0.15 | 0.537 |
Variables | Sample Size | No. of Studies | Coefficient | Lower 95% CI | Upper 95% CI | p | R-Squared |
---|---|---|---|---|---|---|---|
Mean age | 300,424 | 18 | 0.008 | 0.002 | 0.01 | 0.018 | 42.3% |
Area | 300,424 | 18 | |||||
inland | 32,399 | 8 | Reference | ||||
coast | 268,025 | 10 | −0.15 | −0.27 | −0.03 | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Li, F.-F.; Yuan, S.-Q.; Tang, H.-K.; Zhou, J.-H.; He, Q.-Y.; Baker, J.S.; Dong, Y.-H.; Yang, Y.-D. Prevalence of Hyperhomocysteinemia in China: An Updated Meta-Analysis. Biology 2021, 10, 959. https://doi.org/10.3390/biology10100959
Zeng Y, Li F-F, Yuan S-Q, Tang H-K, Zhou J-H, He Q-Y, Baker JS, Dong Y-H, Yang Y-D. Prevalence of Hyperhomocysteinemia in China: An Updated Meta-Analysis. Biology. 2021; 10(10):959. https://doi.org/10.3390/biology10100959
Chicago/Turabian StyleZeng, Yuan, Fei-Fei Li, Shu-Qian Yuan, Hao-Kai Tang, Jun-Hua Zhou, Quan-Yuan He, Julien S. Baker, Yan-Hui Dong, and Yi-De Yang. 2021. "Prevalence of Hyperhomocysteinemia in China: An Updated Meta-Analysis" Biology 10, no. 10: 959. https://doi.org/10.3390/biology10100959
APA StyleZeng, Y., Li, F.-F., Yuan, S.-Q., Tang, H.-K., Zhou, J.-H., He, Q.-Y., Baker, J. S., Dong, Y.-H., & Yang, Y.-D. (2021). Prevalence of Hyperhomocysteinemia in China: An Updated Meta-Analysis. Biology, 10(10), 959. https://doi.org/10.3390/biology10100959