Development of a Thulium Fiber Laser for an Atomic Spectroscopy Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Design
2.2. Atomic Helium Beam
3. Results
3.1. Laser Characterization
3.2. Atomic Spectroscopy
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Richardson, D.J.; Nilsson, J.; Clarkson, W.A. High power fiber lasers: Current status and future perspectives. J. Opt. Soc. Am. B 2010, 27, B63–B92. [Google Scholar] [CrossRef]
- Zervas, M.N.; Codemard, C.A. High power fiber lasers: A review. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 219–241. [Google Scholar] [CrossRef]
- Moulton, P.F.; Rines, G.A.; Slobodtchikov, E.V.; Wall, K.F.; Frith, G.; Samson, B.; Carter, A.L.G. Tm-doped fiber lasers: Fundamentals and power scaling. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 85–92. [Google Scholar] [CrossRef]
- Jackson, S.D.; King, T.A. Theoretical modeling of tm-doped silica fiber lasers. J. Light. Technol. 1999, 17, 948–956. [Google Scholar] [CrossRef]
- Hanna, D.; Percival, R.M.; Smart, R.G.; Tropper, A.C. Efficient and tunable operation of a tm-doped fibre laser. Opt. Commun. 1990, 75, 283–286. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Jivraj, J.; Zhou, J.; Ramjist, J.; Wong, R.; Gu, X.; Yang, V.X.D. Pulsed and cw adjustable 1942 nm single-mode all-fiber tm-doped fiber laser system for surgical laser soft tissue ablation applications. Opt. Express 2016, 24, 16674–16686. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.D.; King, T.A. High-power diode-cladding-pumped tm-doped silica fiber laser. Opics Lett. 1998, 23, 1462–1464. [Google Scholar] [CrossRef] [PubMed]
- Walbaum, T.; Heinzig, M.; Schreiber, T.; Eberhardt, R.; Tunnermann, A. Monolithic thulium fiber laser with 567 w output power at 1970 nm. Opt. Lett. 2016, 41, 2632–2635. [Google Scholar] [CrossRef] [PubMed]
- Frith, G.; Carter, A.; Farroni, J.; Farley, K.; Tankala, K. Efficient and reliable 790nm-pumped Tm lasers from 1.91 to 2.13 µm. In Proceedings of the SSDLTR, Albuquerque, NM, USA, 4 June 2008. [Google Scholar]
- Jackson, S. Cross relaxation and energy transfer up-conversion processes relevant to the functioning of 2 µm tm3+-doped silica fibre lasers. Opt. Commun. 2004, 14, 197–203. [Google Scholar] [CrossRef]
- Christensen, G.F.S.; Samson, B. Developments in thulium-doped fiber lasers offer higher powers. In Proceedings of the 21st Annual Meeting LEOS, IEEE Lasers Electro-Optics Society, Newport Beach, CA, USA, 9–13 November 2008. [Google Scholar]
- Siegman, A. Lasers; Chapter 12; University Science Books: Mill Valley, CA, USA, 1986. [Google Scholar]
- Walsh, B.; Barnes, N. Comparison of tm: Zblan and tm: Silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 µm. Appl. Phys. B 2004, 78, 325–333. [Google Scholar] [CrossRef]
- Agger, S.D.; Povlsen, J.H. Emission and absorption cross section of thulium doped silica fibers. Opt. Express 2006, 14, 50–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, C.; Tench, R.; Jaouen, Y.; Williams, G. Simulation and design of a multistage 10w thulium-doped double clad silica fiber amplifier at 2050 nm. In Fiber Lasers XIV: Technology and Systems; International Society for Optics and Photonics: San Francisco, CA, USA, 2017; p. 10083. [Google Scholar]
- Peterka, P.; Kasik, I.; Dhar, A.; Dussardier, B.; Blanc, W. Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3h4 level lifetime. Opt. Express 2011, 19, 2773–2781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cajzl, J.; Paterka, P.; Kowalczyk, M.; Tarka, J.; Sobon, G.; Sotor, J.; Aubrecht, J.; Honzatko, P.; Kasik, I. Thuliumdoped silica fibers with enhanced fluorescence lifetime and their application in ultrafast fiber lasers. Fibers 2018, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Smiciklas, M.; Shiner, D. Determination of the fine structure constant using helium fine structure. Phys. Rev. Lett. 2010, 105, 123001. [Google Scholar] [CrossRef] [PubMed]
- Rezaeian, N.H. A Precise Few-Nucleon Size Difference by Isotope Shift Measurements of Helium; University of North Texas: Denton, TX, USA, 2015. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Currey, R.; Khademian, A.; Shiner, D. Development of a Thulium Fiber Laser for an Atomic Spectroscopy Experiment. Fibers 2020, 8, 12. https://doi.org/10.3390/fib8020012
Currey R, Khademian A, Shiner D. Development of a Thulium Fiber Laser for an Atomic Spectroscopy Experiment. Fibers. 2020; 8(2):12. https://doi.org/10.3390/fib8020012
Chicago/Turabian StyleCurrey, Ronnie, Ali Khademian, and David Shiner. 2020. "Development of a Thulium Fiber Laser for an Atomic Spectroscopy Experiment" Fibers 8, no. 2: 12. https://doi.org/10.3390/fib8020012
APA StyleCurrey, R., Khademian, A., & Shiner, D. (2020). Development of a Thulium Fiber Laser for an Atomic Spectroscopy Experiment. Fibers, 8(2), 12. https://doi.org/10.3390/fib8020012