Large Normal Dispersion Mode-Locked Erbium-Doped Fiber Laser
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fiber Structure and Dispersion Properties
2.2. Laser Experimental Setup
3. Experimental and Numerical Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Ilday, F.Ö.; Buckley, J.R.; Clark, W.G.; Wise, F.W. Self-Similar Evolution of Parabolic Pulses in a Laser. Phys. Rev. Lett. 2004, 92, 213902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, A.; Renninger, W.H.; Wise, F.W. All-Normal-Dispersion femtosecond fiber laser with pulse energy above 20 nJ. Opt. Lett. 2007, 32, 2408. [Google Scholar] [CrossRef] [PubMed]
- Nie, B.; Pestov, D.; Wise, F.W.; Dantus, M. Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment. Opt. Express 2011, 19, 12074. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ziegler, Z.M.; Wright, L.G.; Wise, F.W. Megawatt peak power from a Mamyshev oscillator. Optica 2017, 4, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Lefrançois, S.; Kieu, K.; Deng, Y.; Kafka, J.D.; Wise, F.W. Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber. Opt. Lett. 2010, 35, 1569–1571. [Google Scholar] [CrossRef]
- Lecaplain, C.; Baumgartl, M.; Schreiber, T.; Hideur, A. On the mode-locking mechanism of a dissipative- soliton fiber oscillator. Opt. Express 2011, 19, 26742–26751. [Google Scholar] [CrossRef]
- Baumgartl, M.; Lecaplain, C.; Hideur, A.; Limpert, J.; Tünnermann, A. 66 W average power from a microjoule-class sub-100 fs fiber oscillator. Opt. Lett. 2012, 37, 1640–1642. [Google Scholar] [CrossRef]
- Liu, W.; Liao, R.; Zhao, J.; Cui, J.; Song, Y.; Wang, C.; Hu, M. Femtosecond Mamyshev oscillator with 10-MW-level peak power. Optica 2019, 6, 194–197. [Google Scholar] [CrossRef]
- Cabasse, A.; Ortaç, B.; Martel, G.; Hideur, A.; Limpert, J. Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion. Opt. Express 2008, 16, 19322. [Google Scholar] [CrossRef]
- Chichkov, N.B.; Hausmann, K.; Wandt, D.; Morgner, U.; Neumann, J.; Kracht, D. High-Power dissipative solitons from an all-normal dispersion erbium fiber oscillator. Opt. Lett. 2010, 35, 2807. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z.; Lamb, E.S.; Wise, F. Self-Similar erbium-doped fiber laser with large normal dispersion. Opt. Lett. 2014, 39, 1019. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Wang, H.; Becheker, A.; Gaponov, D.; Oudar, J.-L.; Godin, T.; Hideur, A. High-Energy dissipative solitons generation from a large normal dispersion Er-fiber laser. Opt. Lett. 2015, 40, 1414. [Google Scholar] [CrossRef] [PubMed]
- Kharenko, D.S.; Zhdanov, I.S.; Bednyakova, A.E.; Podivilov, E.V.; Fedoruk, M.P.; Apolonski, A.; Turitsyn, S.K.; Babin, S.A. All-Fiber highly chirped dissipative soliton generation in the telecom range. Opt. Lett. 2017, 42, 3221–3224. [Google Scholar] [CrossRef] [PubMed]
- Olivier, M.; Boulanger, V.; Guilbert-Savary, F.; Sidorenko, P.; Wise, F.W.; Piché, M. Femtosecond fiber Mamyshev oscillator at 1550 nm. Opt. Lett. 2019, 44, 851–854. [Google Scholar] [CrossRef]
- Kruglov, V.I.; Peacock, A.C.; Harvey, J.D.; Dudley, J.M. Self-Similar propagation of parabolic pulses in normal-dispersion fiber amplifiers. J. Opt. Soc. Am. B 2002, 19, 461–469. [Google Scholar] [CrossRef]
- Deng, Y.; Chien, C.-Y.; Fidric, B.G.; Kafka, J.D. Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier. Opt. Lett. 2009, 34, 3469–3471. [Google Scholar] [CrossRef]
- Nishida, S.K.S. Characteristics of a double clad optical fiber with a low-index inner cladding. IEEE J. Quantum Electron. 1974, 10, 879–887. [Google Scholar]
- Monerie, M. Propagation in doubly clad single-mode fibers. IEEE J. Quantum Electron. 1982, 18, 535–542. [Google Scholar] [CrossRef]
- Soh, D.; Yoo, S.; Nilsson, J.; Sahu, J.; Oh, K.; Baek, S.; Jeong, Y.; Codemard, C.; Dupriez, P.; Kim, J.; et al. Neodymiumdoped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range. IEEE J. Quantum Electron. 2004, 40, 1275–1282. [Google Scholar] [CrossRef]
- Yang, L.-G.; Jyu, S.-S.; Chow, C.-W.; Yeh, C.-H.; Lai, Y. S-Band pulse generation by polarization additive-pulse mode-locking in an erbium-doped all-fiber ring laser. Las. Phys. Lett. 2013, 11, 015105. [Google Scholar] [CrossRef]
- Grüner-Nielsen, L.; Knudsen, N.; Edvold, B.; Veng, T.; Magnussen, D.; Larsen, C.; Damsgaard, H. Dispersion Compensating Fibers. Opt. Fiber Technol. 2000, 6, 164–180. [Google Scholar] [CrossRef]
- Ramachandran, S.; Ghalmi, S.; Nicholson, J.W.; Yan, M.F.; Wisk, P.; Monberg, E.; Dimarcello, F.V. Anomalous dispersion in a solid, silica-based fiber. Opt. Lett. 2006, 31, 2532–2534. [Google Scholar] [CrossRef] [PubMed]
- Auguste, J.-L.; Jindal, R.; Blondy, J.-M.; Clapeau, M.; Marcou, J.; Dussardier, B.; Monnom, G.; Ostrowsky, D.; Pal, B.; Thyagarajan, K. −1800 ps nm km chromatic dispersion at 1 55 µm in a dual concentric core fibre. Electron. Lett. 2000, 36, 1689. [Google Scholar] [CrossRef]
- Gérôme, F.; Auguste, J.L.; Février, S.; Maury, J.; Blondy, J.M.; Gasca, L.; Provost, L. Dual concentric core dispersion compensating fibre optimized for WDM application. Electron. Lett. 2005, 41, 116. [Google Scholar] [CrossRef]
- Gérôme, F.; Auguste, J.-L.; Maury, J.; Blondy, J.-M.; Marcou, J. Theoretical and Experimental Analysis of a Chromatic Dispersion Compensating Module Using a Dual Concentric Core Fiber. J. Lightwave Technol. 2006, 24, 442. [Google Scholar] [CrossRef]
- Hamel, P.; Jaouën, Y.; Gabet, R.; Ramachandran, S. Optical low-coherence reflectometry for complete chromatic dispersion characterization of few-mode fibers. Opt. Lett. 2007, 32, 1029. [Google Scholar] [CrossRef]
- Cabasse, A.; Gaponov, D.; Ndao, K.; Khadour, A.; Oudar, J.-L.; Martel, G. 130 mW average power, 4.6 nJ pulse energy, 10.2 ps pulse duration from an Er3+ fiber oscillator passively mode locked by a resonant saturable absorber mirror. Opt. Lett. 2011, 36, 2620–2622. [Google Scholar] [CrossRef]
- Ankiewicz, N.N.A.A.; Luther-Davies, M.J.L.B. Ultrashort pulses generated by mode-locked lasers with either a slow or a fast saturable-absorber response. Opt. Lett. 1998, 23, 280. [Google Scholar]
- Schreiber, T.; Ortaç, B.; Limpert, J.; Tünnermann, A. On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations. Opt. Express 2007, 15, 8252–8262. [Google Scholar] [CrossRef]
Parameter | Units | Er-DCCF | SMF |
---|---|---|---|
Length | m | 10 | 1.5 |
GVD (β2@1530 nm) | ps2/km | 100 | −20 |
Dispersion slope (β3) | ps3/km | −2 | −0.13 |
Nonlinear coefficient (γ) | W−1 km−1 | 1.7 | 1.6 |
Small signal gain (g0) | m−1 | 2 | - |
Gain bandwidth (Δλg) | nm | 30 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Granger, G.; Lesparre, F.; Wang, H.; Qian, K.; Lecaplain, C.; Oudar, J.-L.; Jaouen, Y.; Gabet, R.; Gaponov, D.; et al. Large Normal Dispersion Mode-Locked Erbium-Doped Fiber Laser. Fibers 2019, 7, 97. https://doi.org/10.3390/fib7110097
Tang M, Granger G, Lesparre F, Wang H, Qian K, Lecaplain C, Oudar J-L, Jaouen Y, Gabet R, Gaponov D, et al. Large Normal Dispersion Mode-Locked Erbium-Doped Fiber Laser. Fibers. 2019; 7(11):97. https://doi.org/10.3390/fib7110097
Chicago/Turabian StyleTang, Mincheng, Geoffroy Granger, Fabien Lesparre, Hongjie Wang, Kai Qian, Caroline Lecaplain, Jean-Louis Oudar, Yves Jaouen, Renaud Gabet, Dmitry Gaponov, and et al. 2019. "Large Normal Dispersion Mode-Locked Erbium-Doped Fiber Laser" Fibers 7, no. 11: 97. https://doi.org/10.3390/fib7110097
APA StyleTang, M., Granger, G., Lesparre, F., Wang, H., Qian, K., Lecaplain, C., Oudar, J. -L., Jaouen, Y., Gabet, R., Gaponov, D., Likhachev, M., Godin, T., Février, S., & Hideur, A. (2019). Large Normal Dispersion Mode-Locked Erbium-Doped Fiber Laser. Fibers, 7(11), 97. https://doi.org/10.3390/fib7110097