Review on Fabrication of Structurally Colored Fibers by Electrospinning
Abstract
:1. Introduction
2. Mechanism of Nanoparticle Assemblies into Structurally Colored Nanofibers
3. Photonic Crystals for Fabricating Structurally Colored Fibers
3.1. Inorganic Nanoparticles for Photonic Crystals
3.2. Polymeric Nanoparticles for Photonic Crystals
4. Electrospun Nanofibers Derived from Photonic Colloidal Nanoparticles
5. Outlook and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef] [PubMed]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef] [PubMed]
- Yablonovitch, E.; Gmitter, T.J. Photonic band structure: The face-centered-cubic case. Phys. Rev. Lett. 1989, 63, 1950. [Google Scholar] [CrossRef] [PubMed]
- Joannopoulos, J.D.; Villeneuve, P.R.; Fan, S. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Z.; Yang, B. Self-assembly of photonic crystals from polymer colloids. Curr. Opin. Colloid Interface Sci. 2009, 14, 103–114. [Google Scholar] [CrossRef]
- Paquet, C.; Kumacheva, E. Nanostructured polymers for photonics. Mater. Today 2008, 11, 48–56. [Google Scholar] [CrossRef]
- Wang, W.; Tang, B.; Ma, W.; Zhang, J.; Ju, B.; Zhang, S. Easy approach to assembling a biomimetic color film with tunable structural colors. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2015, 32, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Uetsuka, H.; Takahashi, K.; Nakajima, R.; Onishi, H.; Fujishima, A.; Stao, O. Structural color and the lotus effect. Angew. Chem. Int. Ed. 2003, 42, 894–897. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yin, Y.; Li, Z.; Xia, Y. Synthesis and self-assembly of au@ sio2 core-shell colloids. Nano Lett. 2002, 2, 785–788. [Google Scholar] [CrossRef]
- Gu, Z.Z.; Chen, H.; Zhang, S.; Sun, L.; Xie, Z.; Ge, Y. Rapid synthesis of monodisperse polymer spheres for self-assembled photonic crystals. Colloids Surfaces A Physicochem. Eng. Asp. 2007, 302, 312–319. [Google Scholar] [CrossRef]
- Egen, M.; Zentel, R. Surfactant-free emulsion polymerization of various methacrylates: Towards monodisperse colloids for polymer opals. Macromol. Chem. Phys. 2004, 205, 1479–1488. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, K.Q. Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer nanoparticles. Langmuir 2012, 28, 15418–15424. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.T.; Park, O.O.; Im, S.H. Size control of highly monodisperse polystyrene particles by modified dispersion polymerization. Macromol. Res. 2010, 18, 935–943. [Google Scholar] [CrossRef]
- Wang, J.; Wen, Y.; Ge, H.; Sun, Z.; Zheng, Y.; Song, Y.; Jiang, L. Simple fabrication of full color colloidal crystal films with tough mechanical strength. Macromol. Chem. Phys. 2006, 207, 596–604. [Google Scholar] [CrossRef]
- Ramakrishna, S. An Introduction to Electrospinning and Nanofibers; World Scientific: Singapore, 2005; p. 15. ISBN 981-256-415-2. [Google Scholar]
- Mu, Q.; Zhang, Q.; Gao, L.; Chu, Z.; Cai, Z.; Zhang, X.; Wang, K.; Wei, Y. Structural evolution and formation mechanism of the soft colloidal arrays in the core of paam nanofibers by electrospun packing. Langmuir 2017, 33, 10291–10301. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; He, S.; Liu, L.; Guan, G.; Lu, X.; Sun, X.; Peng, H. The continuous fabrication of mechanochromic fibers. J. Mater. Chem. C 2016, 4, 2127–2133. [Google Scholar] [CrossRef]
- Ruhl, T.; Spahn, P.; Hellmann, G.P. Artificial opals prepared by melt compression. Polymer 2003, 44, 7625–7634. [Google Scholar] [CrossRef]
- Finlayson, C.E.; Spahn, P.; Snoswell, D.R.; Yates, G.; Kontogeorgos, A.; Haines, A.I.; Hellmann, G.P.; Baumberg, J.J. 3d bulk ordering in macroscopic solid opaline films by edge-induced rotational shearing. Adv. Mater. 2011, 23, 1540–1544. [Google Scholar] [CrossRef] [PubMed]
- Pursiainen, O.L.J.; Baumberg, J.J.; Winkler, H.; Viel, B.; Spahn, P.; Ruhl, T. Shear-induced organization in flexible polymer opals. Adv. Mater. 2008, 20, 1484–1487. [Google Scholar] [CrossRef]
- Kohri, M.; Yanagimoto, K.; Kawamura, A.; Hamada, K.; Imai, Y.; Watanabe, T.; Ono, T.; Taniguchi, T.; Kishikawa, K. Polydopamine-based 3d colloidal photonic materials: Structural color balls and fibers from melanin-like particles with polydopamine shell layers. ACS Appl Mater. Interfaces 2018, 10, 7640–7648. [Google Scholar] [CrossRef] [PubMed]
- Giersig, M.; Mulvaney, P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 1993, 9, 3408–3413. [Google Scholar] [CrossRef]
- Yu, H.; Liao, D.; Johnston, M.B.; Li, B. All-optical full-color displays using polymer nanofibers. ACS Nano 2011, 5, 2020–2025. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Q.; Wang, H.; Li, Y. Structurally colored carbon fibers with controlled optical properties prepared by a fast and continuous electrophoretic deposition method. Nanoscale 2013, 5, 6917–6922. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.M.; Moon, J.H.; Yi, G.R.; Heo, C.J.; Yang, S.M. Fabrication of one-dimensional colloidal assemblies from electrospun nanofibers. Langmuir 2006, 22, 3445–3449. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Q.; Wang, H.; Li, Y. Structural colored fiber fabricated by a facile colloid self-assembly method in micro-space. Chem. Commun. (Camb.) 2011, 47, 12801–12803. [Google Scholar] [CrossRef] [PubMed]
- Josephson, D.P.; Miller, M.; Stein, A. Inverse opal SiO2 photonic crystals as structurally-colored pigments with additive primary colors. Z. Anorg. Allg. Chem. 2014, 640, 655–662. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Sild, S.; Karelson, M. Correlation and prediction of the refractive indices of polymers by qspr. J. Chem. Inf. Comput. Sci. 1998, 38, 1171–1176. [Google Scholar] [CrossRef]
- Jicerano, J. Prediction of Polymer Properties; CRC Press: New York, NY, USA, 2002; p. 272. ISBN 0-8247-0821-0. [Google Scholar]
- Sato, O.; Kubo, S.; Gu, Z.Z. Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Acc. Chem. Res. 2008, 42, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yang, D.; Kang, D.; Jiang, X. Fabrication of necklace-like structures via electrospinning. Langmuir 2010, 26, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Crespy, D.; Friedemann, K.; Popa, A.M. Colloid-electrospinning: Fabrication of multicompartment nanofibers by the electrospinning of organic or/and inorganic dispersions and emulsions. Macromol. Rapid Commun. 2012, 33, 1978–1995. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.L.; Yu, S.H. Nanoparticles meet electrospinning: Recent advances and future prospects. Chem. Soc. Rev. 2014, 43, 4423–4448. [Google Scholar] [CrossRef] [PubMed]
- Dzenis, Y. Spinning continuous fibers for nanotechnology. Science 2004, 304, 1917–1919. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, H.; Xu, L. Preparation and formation mechanism of highly aligned electrospun nanofibers using a modified parallel electrode method. Mater. Des. 2016, 90, 1–6. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.L.; Xia, Y.N. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 2003, 3, 1167–1171. [Google Scholar] [CrossRef]
- Dersch, R.; Liu, T.; Schaper, A.K.; Greiner, A.; Wendorff, J.H. Electrospun nanofibers: Internal structure and intrinsic orientation. Polym. Chem. 2003, 41, 545–553. [Google Scholar] [CrossRef]
- Teo, W.E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, R89–R106. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, Y.; Xia, Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 2004, 16, 361–366. [Google Scholar] [CrossRef]
- Eablonovitch, E. Photonic band-gap structures. J. Opt. Soc. Am. B 1993, 10, 283–295. [Google Scholar] [CrossRef]
- Lee, C.H.; Yu, J.; Wang, Y.; Tang, A.Y.L.; Kan, C.W.; Xin, J.H. Effect of graphene oxide inclusion on the optical reflection of a silica photonic crystal film. RSC Adv. 2018, 8, 16593–16602. [Google Scholar] [CrossRef]
- Gao, W.; Rigout, M.; Owens, H. Self-assembly of silica colloidal crystal thin films with tuneable structural colours over a wide visible spectrum. Appl. Surf. Sci. 2016, 380, 12–15. [Google Scholar] [CrossRef] [Green Version]
- Mallakpour, S.; Behranvand, V. Polymeric nanoparticles: Recent development in synthesis and application. Express Polym. Lett. 2016, 10, 895–913. [Google Scholar] [CrossRef]
- Iler, R.K. Multilayers of colloidal particles. J. Colloid Interface Sci. 1996, 21, 569–594. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Shi, L.; Qiu, H.; Zhang, S.; Qi, N.; Hu, J.; Yuan, W.; Zhang, X.; Zhang, K.Q. Additive mixing and conformal coating of noniridescent structural colors with robust mechanical properties fabricated by atomization deposition. ACS Nano 2018, 12, 3095–3102. [Google Scholar] [CrossRef] [PubMed]
- Sopyan, I.; Watanabe, M.; Murasawa, S.; Hashimoto, K.; Fujishima, A. Efficient TiO2 powder and film photocatalysts with rutile crystal structure. Chem. Lett. 1996, 25, 69–70. [Google Scholar] [CrossRef]
- Chrysicopoulou, P.; Davazogloub, D.; Trapalis, C.; Kordasa, G. Optical properties of very thin (100 nm) sol–gel TiO2 films. Thin Solid Films 1998, 323, 188–193. [Google Scholar] [CrossRef]
- Yuan, X.; Xu, W.; Huang, F.; Chen, D.; Wei, Q. Structural colour of polyester fabric coated with ag/tio2 multilayer films. Surf. Eng. 2016, 33, 231–236. [Google Scholar] [CrossRef]
- Guo, D.; Ito, A.; Goto, T.; Tu, R.; Wang, C.; Shen, Q.; Zhang, L. Effect of laser power on orientation and microstructure of TiO2 films prepared by laser chemical vapor deposition method. Mater. Lett. 2013, 93, 179–182. [Google Scholar] [CrossRef]
- Sun, S.Q.S.B.; Zhang, W.Q.; Wang, D. Preparation and antibacterial activity of ag-tio 2 composite film by liquid phase deposition (lpd) method. Bull. Mater. Sci. 2008, 31, 61–66. [Google Scholar] [CrossRef]
- Herbig, B.; Löbmann, P. TiO2 photocatalysts deposited on fiber substrates by liquid phase deposition. J. Photochem. Photobiol. A Chem. 2004, 163, 359–365. [Google Scholar] [CrossRef]
- Chen, F.; Yang, H.; Li, K.; Deng, B.; Li, Q.; Liu, X.; Dong, B.; Xiao, X.; Wang, D.; Qin, Y.; et al. Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability. ACS Nano 2017, 11, 10330–10336. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Huang, J.; Lu, W.; Wang, X.; Wang, B.; Zhang, S.; Hou, J. Necklace-like noble-metal hollow nanoparticle chains: Synthesis and tunable optical properties. Adv. Mater. 2007, 19, 2172–2176. [Google Scholar] [CrossRef]
- Haynes, C.L.; Van Duyne, R. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001, 105, 5599–5611. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, J.; Sun, A.; Chu, C.; Zhou, S.; Guo, J.; Chen, T.; Xu, G. Electric field induced structural color changes of sio2@tio2 core–shell colloidal suspensions. J. Mater. Chem. C 2014, 2, 1990–1994. [Google Scholar] [CrossRef]
- Vanderhoff, J.W.; Vitkuske, J.F.; Bradford, E.B.; Alfrey, T., Jr. Some factors involved in the preparation of uniform particle size latexes. J. Polym. Sci. Part A Polym. Chem. 1956, 20, 225–234. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, S.Y.; Yang, S.M.; Yi, G.R. Self-assembled colloidal structures for photonics. NPG Asia Mater. 2011, 3, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Tang, B.; Xiu, J.; Zheng, X.; Ma, W.; Ju, B.; Zhang, S. Simple fabrication of colloidal crystal structural color films with good mechanical stability and high hydrophobicity. Dyes Pigments 2015, 123, 420–426. [Google Scholar] [CrossRef]
- Han, M.G.; Heo, C.-J.; Shim, H.; Shin, C.G.; Lim, S.-J.; Kim, J.W.; Jin, Y.W.; Lee, S. Structural color manipulation using tunable photonic crystals with enhanced switching reliability. Adv. Opt. Mater. 2014, 2, 535–541. [Google Scholar] [CrossRef]
- Tang, B.; Xu, Y.; Lin, T.; Zhang, S. Polymer opal with brilliant structural color under natural light and white environment. J. Mater. Res. 2015, 30, 3134–3141. [Google Scholar] [CrossRef]
- Tang, B.; Zheng, X.; Lin, T.; Zhang, S. Hydrophobic structural color films with bright color and tunable stop-bands. Dyes Pigments 2014, 104, 146–150. [Google Scholar] [CrossRef]
- Tanrisever, T.; Okay, O.; Soenmezoğlu, I.C. Kinetics of emulsifier-free emulsion polymerization of methyl methacrylate. J. Appl. Polym. Sci. 1996, 61, 485–493. [Google Scholar] [CrossRef]
- Zou, D.; Ma, S.; Guan, R.; Park, M.; Sun, L.; Aklonis, J.J.; Salovey, R. Model filled polymers. V. Synthesis of crosslinked monodisperse polymethacrylate beads. J. Polym. Sci. Part A Polym. Chem. 1992, 30, 137–144. [Google Scholar] [CrossRef]
- Tang, B.; Wu, C.; Lin, T.; Zhang, S. Heat-resistant pmma photonic crystal films with bright structural color. Dyes Pigments 2013, 99, 1022–1028. [Google Scholar] [CrossRef]
- Park, J.G.; Kim, S.H.; Magkiriadou, S.; Choi, T.M.; Kim, Y.S.; Manoharan, V.N. Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly. Angew. Chem. Int. Ed. Engl. 2014, 53, 2899–2903. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhou, L.; Wang, C.; Wu, Y.; Li, Y.; Fan, Q.; Shao, J. Study on the high hydrophobicity and its possible mechanism of textile fabric with structural colors of three-dimensional poly(styrene-methacrylic acid) photonic crystals. RSC Adv. 2015, 5, 62855–62863. [Google Scholar] [CrossRef]
- Yuan, W.; Zhou, N.; Shi, L.; Zhang, K.Q. Structural coloration of colloidal fiber by photonic band gap and resonant mie scattering. ACS Appl. Mater. Interfaces 2015, 7, 14064–14071. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zhang, Y.; Zhou, Q.; Fan, Q.; Shao, J. Structural colors of the SiO2 /polyethyleneimine thin films on poly(ethylene terephthalate) substrates. Thin Solid Films 2014, 569, 10–16. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, L.; Zhang, G.; Li, Y.; Chai, L.; Fan, Q.; Shao, J. Fabrication of patterned photonic crystals with brilliant structural colors on fabric substrates using ink-jet printing technology. Mater. Des. 2017, 114, 10–17. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, L.; Liu, G.; Chai, L.; Fan, Q.; Shao, J. Study on the fabrication of composite photonic crystals with high structural stability by co-sedimentation self-assembly on fabric substrates. Appl. Surf. Sci. 2018, 444, 145–153. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, X.; Cao, C.; Li, J.; Zhu, Y. Poly(vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium-ion batteries. J. Power Sources 2014, 251, 423–431. [Google Scholar] [CrossRef]
- Im, J.S.; Kim, M.I.; Lee, Y.S. Preparation of pan-based electrospun nanofiber webs containing TiO2 for photocatalytic degradation. Mater. Lett. 2008, 62, 3652–3655. [Google Scholar] [CrossRef]
- Pant, H.R.; Pandeya, D.R.; Nam, K.T.; Baek, W.I.; Hong, S.T.; Kim, H.Y. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J. Hazard. Mater. 2011, 189, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Kanehata, M.; Ding, B.; Shiratori, S. Nanoporous ultra-high specific surface inorganic fibres. Nanotechnology 2007, 18, 315602. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.M.; Yi, G.R.; Moon, J.H.; Heo, C.J.; Yang, S.M. Superhydrophobic films of electrospun fibers with multiple-scale surface morphology. Langmuir 2007, 23, 7981–7989. [Google Scholar] [CrossRef] [PubMed]
- Stoiljkovic, A.; Ishaque, M.; Justus, U.; Hamel, L.; Klimov, E.; Heckmann, W.; Eckhardt, B.; Wendorff, J.H.; Greiner, A. Preparation of water-stable submicron fibers from aqueous latex dispersion of water-insoluble polymers by electrospinning. Polymer 2007, 48, 3974–3981. [Google Scholar] [CrossRef]
Colloidal Nanoparticles | Sizes (nm) | C1 (wt%) | Polymer Matrix | Mw | C2 (wt%) | R | Rf (mL/h) | V (kv) | D (cm) | T; H | Morphology | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
silica | 15, 50, 100 | 20 | polyvinyl alcohol | Mn: 66,000 | 10 | 2:3 | 1 | 10 | 10 | 25 °C 50 ± 5% | grain-like singly aligned | [77] |
silica | 100, 300, 450, 700 | 20 | Polyacrylamide poly(ethyleneoxide) | 600,000–1,000,000 600,000 | 10 | 2:3 | 0.5–3 | 5–13 | 10 | 500 °C calcination | necklace-like | [26] |
silica | 143, 265, 910 | 12.2 21.6 13.1 | polyvinyl alcohol | 88,000 | 12 10 12 | 500:500 600:400 200:800 300:700 | — | 10–30 | 10 | — | necklace-like blackberry-like | [32] |
Silica polystyrene | 700, 50 237 | 34 10 | Polyacrylamide poly(ethyleneoxide) | 600,000–1,000,000 600,000 | 10 | — | 0.5 | 5–13 | 10 | calcination | stand-alone structures, superhydrophobic | [78] |
polystyrene | 100, 200, 335 | 40 | polyvinyl alcohol | 145,000 195,000 | 6 | 80:20 | 0.7 | 0–30 | 20 | 15-18 °C 30–50% | random to relative compact packing | [79] |
polystyrene | 225, 473 | 10, 15, 20, 30, 40 | polyvinyl alcohol | 14,500 | 13 | 1:1 2:1 4:1 | 0.2–0.8 | 10 | 15 | 25 °C 50 ± 5% | blackberry-like to uniform | [12] |
poly (styrene-methyl methacrylate-acrylic acid) | 220, 246, 280 | 40 | polyvinyl alcohol | 14,500 | 13 | 4:1 | 0.5 | 10 | 15 | — | green, red, purplish-red color cylindrically hexagonal ordered | [69] |
poly (N-isopropylacrylamide-co-tert-butyl acrylate) | 226 | 40 | polyacrylamide | 146,000 | 16 | 1:4 2:3 1:1 3:2 4:1 | 0.5 | 10 | 15 | 20 °C 30 ± 5% | necklace-like blackberry-like | [16] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Kan, C.-W. Review on Fabrication of Structurally Colored Fibers by Electrospinning. Fibers 2018, 6, 70. https://doi.org/10.3390/fib6040070
Yu J, Kan C-W. Review on Fabrication of Structurally Colored Fibers by Electrospinning. Fibers. 2018; 6(4):70. https://doi.org/10.3390/fib6040070
Chicago/Turabian StyleYu, Jiali, and Chi-Wai Kan. 2018. "Review on Fabrication of Structurally Colored Fibers by Electrospinning" Fibers 6, no. 4: 70. https://doi.org/10.3390/fib6040070
APA StyleYu, J., & Kan, C. -W. (2018). Review on Fabrication of Structurally Colored Fibers by Electrospinning. Fibers, 6(4), 70. https://doi.org/10.3390/fib6040070