A Historical Review of the Development of Electronic Textiles
Abstract
:1. Introduction
2. Temperature Control Textiles
3. Materials Developments and Wearable Computing
4. Sensors
5. E-Textile Pressure Sensors and Textile Switches
6. Textile Energy Solutions
7. Communication Devices
8. Illumination
9. Market Trends
10. Potential Future Developments
11. Conclusions
Author Contributions
Conflicts of Interest
References
- Adovasio, J.M.; Soffer, O.; Klíma, B. Upper Palaeolithic fibre technology: Interlaced woven finds from Pavlov I, Czech Republic, c. 26,000 years ago. Antiquity 1996, 70, 526–534. [Google Scholar] [CrossRef]
- Lewis, P. William Lee’s stocking frame: Technical evolution and economic viability 1589–1750. Text. Hist. 1986, 17, 129–147. [Google Scholar] [CrossRef]
- Thackeray, F.W.; Findling, J.E. (Eds.) Events that Changed Great Britain Since 1689; Greenwood Publishing Group: Westport, CT, USA, 2002. [Google Scholar]
- Guler, S.D.; Gannon, M.; Sicchio, K. A Brief History of Wearables. In Crafting Wearables; Apress: New York, NY, USA, 2016; pp. 3–10. [Google Scholar]
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene,(CH)x. J. Chem. Soc. Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- The Nobel Prize in Chemistry 2000. Available online: https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/ (accessed on 21 August 2017).
- Paton, G.A.; Sterling, M.N.; Sanders, J.H. Integral, Electrically-Conductive Textile Filament. U.S. Patent 4,045,949, 6 September 1977. [Google Scholar]
- 1960: Metal Oxide Semiconductor (MOS) Transistor Demonstrated, The Silicon Engine, Computer History Museum. Available online: http://www.computerhistory.org/siliconengine/metal-oxide-semiconductor-mos-transistor-demonstrated/ (accessed on 21 August 2017).
- Miller, G.E.; Dalke, M. Illuminated Article of Clothing. U.S. Patent 4,164,008, 7 August 1979. [Google Scholar]
- Dias, T.; Fernando, A. Operative Devices Installed in Yarns. GB0509963B1, 9 May 2005. [Google Scholar]
- Dias, T. Electronic strip yarn. WO2017/1150873 A1, 6 July 2017. [Google Scholar]
- Dias, T.K.; Rathnayake, A. Electronically Functional Yarns. GB2529900, 9 March 2016. [Google Scholar]
- Conroy, D.W.; García, A. A golden garment from ancient Cyprus? Identifying new ways of looking at the past through a preliminary report of textile fragments from the Pafos ‘Erotes’ Sarcophagus. In The SInet 2010 eBook; University of Wollongong: Wollongong, Australia, 2010; p. 36. [Google Scholar]
- Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X.M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.; Chen, P.; He, S.; Sun, X.; Peng, H. Smart electronic textiles. Angew. Chem. Int. Ed. 2016, 55, 6140–6169. [Google Scholar] [CrossRef] [PubMed]
- Tao, X. (Ed.) Handbook of Smart Textiles; Springer: Singapore, 2015; ISBN 9789814451468. [Google Scholar]
- Dias, T. (Ed.) Electronic Textiles: Smart Fabrics and Wearable Technology; Woodhead Publishing: Cambridge, UK, 2015; ISBN 9780081002018. [Google Scholar]
- Carron, A.L. Electric-Heated Glove. U.S. Patent 1,011,574, 9 September 1911. [Google Scholar]
- Joule, J.P. On the Production of Heat by Voltaic Electricity. Proc. R. Soc. 1840, 1, 59–60. [Google Scholar] [CrossRef]
- Pollak, A. Electrically-Heated Garment. U.S. Patent 1,073,926, 23 September 1913. [Google Scholar]
- Lemercier, A.A. Electrically-Heated Clothing. U.S. Patent 1,284,378, 12 November 1918. [Google Scholar]
- Heinemann, O. Electrically-Heated Boot. U.S. Patent 1,761,829, 3 June 1930. [Google Scholar]
- Benjamin, B. Electrically-Heated Garment. U.S. Patent 1,358,509, 9 November 1920. [Google Scholar]
- Graham, W.D.; Uhlig, C.M. Electrically-Heated Garment. U.S. Patent 1,691,472, 13 November 1928. [Google Scholar]
- Hefter, M. Knitted Electric Heating-Body. U.S. Patent 975,359, 8 November 1910. [Google Scholar]
- Grisley, F. Improvements in Blankets, Pads, Quilts, Clothing, Fabric, or the Like, Embodying Electrical Conductors. GB445195(A), 30 March 1936. [Google Scholar]
- Ellis, H.G. Heated Baby Carriage Blanket. U.S. Patent 2,993,979, 25 July 1961. [Google Scholar]
- Balz, C.F.; Murphy, D.J. Electrically Heated Sock with Battery Supporting Pouch. U.S. Patent 3,396,264, 6 August 1968. [Google Scholar]
- Pavitt, J. Fear and Fashion in the Cold War; V&A Publishing: London, UK, 2008. [Google Scholar]
- Bourke, M.J.; Clothier, B.L. Inductively Heated Clothing. WO2008101203, 21 August 2008. [Google Scholar]
- EXO². Available online: http://www.exo2.co.uk/ (accessed on 22 August 2017).
- Marktek Inc. EMI Shielding, Conductive, Resistive and Radar Absorptive Materials. Available online: http://www.marktek-inc.com/ (accessed on 22 August 2017).
- Beheizbare Unterwäsche als Alltagslösung von. warmx.de. Available online: http://www.warmx.de/index.php (accessed on 22 August 2017).
- Delkumburewattea, G.B.; Dias, T. Wearable cooling system to manage heat in protective clothing. J. Text. Inst. 2012, 103, 483–489. [Google Scholar] [CrossRef]
- Carroll, D.W. Wearable Personal Computer System. U.S. Patent 5,555,490, 10 September 1996. [Google Scholar]
- Egan, E.; Amon, C.H. Cooling strategies for embedded electronic components of wearable computers fabricated by shape deposition manufacturing. In Proceedings of the I-THERM V., Inter-Society Conference on Thermal Phenomena in Electronic Systems, Orlando, FL, USA, 29 May–1 June 1996; pp. 13–20. [Google Scholar]
- Baudhuin, E.S. Telemaintenance applications for the Wearable/sup TM/PC. In Proceedings of the 15th AIAA/IEEE, Digital Avionics Systems Conference, Atlanta, GA, USA, 31 October 1996; pp. 407–413. [Google Scholar]
- Janik, C.M. Flexible Wearable Computer. U.S. Patent 6,108,197, 22 August 2000. [Google Scholar]
- Tento, H.; Nasu, R. Base for Wearable Computer. JP2000357025, 26 December 2000. [Google Scholar]
- Dale, C.A. Wearable Computer Apparatus. U.S. Patent 6,167,413, 26 December 2000. [Google Scholar]
- Jenkins, M.D. Convertible Wearable Computer. HK1024069, 22 September 2006. [Google Scholar]
- The ICD+ jacket: Slip into My Office, Please. The Independent. 4 September 2000. Available online: http://www.independent.co.uk/news/business/analysis-and-features/the-icd-jacket-slip-into-my-office-please-694074.html (accessed on 17 November 2017).
- Post, E.R.; Orth, M.; Cooper, E.; Smith, J.R. Electrically Active Textiles and Articles Made Therefrom. U.S. Patent 6,210,771, 3 April 2001. [Google Scholar]
- Hill, I.G.; Trotz, S.; Riddle, G.H.N.; Brookstein, D.S.; Govindaraj, M. Plural Layer Woven Electronic Textile, Article and Method. U.S. Patent 7,144,830, 5 December 2006. [Google Scholar]
- Dias, T.K.; Mitcham, K.; Hurley, W. Knitting Techniques. U.S. Patent 7,779,656, 24 August 2010. [Google Scholar]
- Ghosh, T.K.; Dhawan, A.; Muth, J.F. Formation of electrical circuits in textile structures. In Intelligent Textiles and Clothing; North Carolina State University: Raleigh, NC, USA, 2006. [Google Scholar]
- Speich, F. Electrically Conductive, Elastic Compound Thread, Particularly for RFID Textile Labels, the Use Thereof, and the Production of a Woven Fabric, Knitted Fabric, or Meshwork Therewith. TW200840891, 16 October 2008. [Google Scholar]
- Kang, T.J.; Kim, B.D. Electrically Conductive Sewing Thread for Power and Data Transmission Line of Smart Interactive Textile Systems. KR20090012769, 4 February 2009. [Google Scholar]
- Klaus, P.; Jochen, D.; Horst, T. Article of Clothing for Attaching e.g., ID Systems and Blue Tooth Modules Comprises Electrical Internal and External Components Arranged on the Surface of the Article so that Electrical Lines Extend between the External Components. DE102004039765, 9 March 2006. [Google Scholar]
- Wearable Computing (Technical Insights). Available online: http://www.frost.com/sublib/display-report.do?id=D626-01-00-00-00 (accessed on 21 August 2017).
- WearIT@Work Project-Customer Cases-Xsens 3D Motion Tracking. Available online: https://www.xsens.com/customer-cases/wearitwork-project/ (accessed on 21 August 2017).
- Final Presentation of the I-GARMENT Project. Available online: http://www.esa.int/Our_Activities/Preparing_for_the_Future/Space_for_Earth/Space_for_health/Final_presentation_of_the_I-GARMENT_project (accessed on 21 August 2017).
- Google’s Project Glass Made Available to Developers. Available online: https://www.theguardian.com/technology/2012/jun/28/google-project-glass-available-to-developers (accessed on 21 August 2017).
- Dubey, M.; Nambaru, R.; Ulrich, M.; Ervin, M.; Nichols, B.; Zakar, E.; Nayfeh, O.M.; Chin, M.; Birdwell, G.; O’Regan, T. Graphene-Based Nanoelectronics; U.S. Army Research Laboratory: Adelphi, MD, USA, 2012. [Google Scholar]
- Tan, D.; Saponas, T.S.; Morris, D.; Turner, J. Wearable Electromyography-Based Human-Computer Interface. US2012188158, 26 July 2012. [Google Scholar]
- Hamedi, M.; Forchheimer, R.; Inganäs, O. Towards woven logic from organic electronic fibres. Nat. Mater. 2007, 6, 57–362. [Google Scholar] [CrossRef] [PubMed]
- Post, E.R.; Orth, M. Smart Fabric, or Washable Computing. In Proceedings of the First IEEE International Symposium on Wearable Computers, Cambridge, MA, USA, 13–14 October 1997. [Google Scholar]
- Gopalsamy, C.; Park, S.; Rajamanickam, R.; Jayaraman, S. The Wearable Motherboard™: The first generation of adaptive and responsive textile structures (ARTS) for medical applications. Virtual Real. 1999, 4, 152–168. [Google Scholar] [CrossRef]
- Farringdon, J.; Moore, A.J.; Tilbury, N.; Church, J.; Biemon, P.D. Wearable sensor badge and sensor jacket for context awareness. In Proceedings of the Third International Symposium on Wearable Computers, Digest of Papers, San Francisco, CA, USA, 18–19 October 1999; pp. 107–113. [Google Scholar]
- Stephen, T.K.S. Source Localization Using Wireless Sensor Networks. Thesis for Master of Science in Electrical Engineering, Naval Postgraduate School Monterey, Monterey, CA, USA, 2006. Available online: https://calhoun.nps.edu/bitstream/handle/10945/2689/06_Jun_Tan.pdf?sequence=1 (accessed on 15 May 2018).
- Coosemans, J.; Hermans, B.; Puers, R. Integrating wireless ECG monitoring in textiles. Sens. Actuators A Phys. 2006, 130, 48–53. [Google Scholar] [CrossRef]
- Shim, B.S.; Chen, W.; Doty, C.; Xu, C.; Kotov, N.A. Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes. Nano Lett. 2008, 8, 4151–4157. [Google Scholar] [CrossRef] [PubMed]
- European Commission: CORDIS: Projects and Results: MyHeart. Available online: https://www.cordis.europa.eu/project/rcn/71193_en.html (accessed on 25 April 2018).
- European Commission: CORDIS: Projects and Results: Contactless Sensors for Body Monitoring Incorporated in Textiles. Available online: https://cordis.europa.eu/project/rcn/80730_en.html (accessed on 25 April 2018).
- Kinkeldei, T.; Zysset, C.; Cherenack, K.; Troester, G. Development and evaluation of temperature sensors for textile integration. In Proceedings of the IEEE Sensors, Christchurch, New Zealand, 25–28 October 2009. [Google Scholar]
- Husain, M.D.; Dias, T. Development of Knitted Temperature Sensor (KTS). Available online: http://www.systex.eu/sites/default/files/Systex_award_2009_Dawood_03Sept09.pdf (accessed on 15 May 2018).
- Challis, S.; Fernando, A.; Dias, T.; Cooke, W.; Chaudhury, N.H.; Geraghty, J.; Smith, S. Precision Delivery System. US2003110812, 19 June 2003. [Google Scholar]
- Reho, A. Clothing+. In Proceedings of the Smart Fabrics Conference, Miami, FL, USA, 17–19 April 2012. [Google Scholar]
- Best Heart Rate Monitor Sports Bra that’s actually Smart and Comfortable. Available online: http://notsealed.com/heart-rate-monitor-sports-bra-smart-comfortable.html (accessed on 17 November 2017).
- Preece, S.J.; Kenney, L.P.J.; Major, M.J.; Dias, T.; Lay, E.; Fernandes, B.T. Automatic identification of gait events using an instrumented sock. J. NeuroEng. Rehabil. 2011, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Hughes-Riley, T.; Lugoda, P.; Dias, T.; Trabi, C.L.; Morris, R. A study of thermistor performance within a textile structure. Sensors 2017, 17, 1804. [Google Scholar] [CrossRef] [PubMed]
- Cherenack, K.; Zysset, C.; Kinkeldei, T.; Münzenrieder, N.; Tröster, G. Woven electronic fibers with sensing and display functions for smart textiles. Adv. Mater. 2010, 22, 5178–5182. [Google Scholar] [CrossRef] [PubMed]
- Lugoda, P.; Dias, T.; Morris, R. Electronic temperature sensing yarn. J. Multidiscip. Eng. Sci. Stud. 2015, 1, 100–103. [Google Scholar]
- Dias, T.; Hughes-Riley, T. Electronically Functional Yarns Transform Wearable Device Industry. Read. Res. Dev. Commun. 2017, 59, 19–21. [Google Scholar]
- Consumer Health. Available online: https://www.jabil.com/solutions/by-industry/healthcare/consumer-health.html (accessed on 22 August 2017).
- Ohmatex. Available online: http://www.ohmatex.dk/ (accessed on 22 August 2017).
- Heart Rate Monitors, Activity Trackers and Bike Computers. Available online: https://www.polar.com/en (accessed on 22 August 2017).
- Smartlife. Available online: https://www.smartlifeinc.com/ (accessed on 22 August 2017).
- Zephyr™ Performance Systems. Performance Monitoring Technology. Available online: https://www.zephyranywhere.com/ (accessed on 22 August 2017).
- Under Armour-Sportswear, Sport Shoes, & Accessories. Available online: http://www.underarmour.co.uk/ (accessed on 22 August 2017).
- Schwabe, D. Electrical Switch for Automotive or Clothing Use is Integrated into a Flexible Textile Material and is Actuated by Applied Force. DE102005038988 (A1), 22 February 2007. [Google Scholar]
- Post, E.R.; Orth, M.; Russo, P.R.; Gershenfeld, N. E-broidery: Design and fabrication of textile-based computing. IBM Syst. J. 2000, 39, 840–860. [Google Scholar] [CrossRef]
- Wijesiriwardana, R.; Mitcham, K.; Dias, T. Fibre-meshed transducers based real time wearable physiological information monitoring system. In Proceedings of the ISWC 2004. Eighth International Symposium on Wearable Computers, Arlington, VA, USA, 31 October–3 November 2004; Volume 1, pp. 40–47. [Google Scholar]
- Tilak, D.; Beatty, P.C.W.; Cooke, W.; Wijesiriwardana, R.; Mitcham, K.; Mukhopadhyay, S.; Hurley, W. Knitted Transducer Devices. U.S. Patent Application 10/557,074, 19 May 2004. [Google Scholar]
- Wijesiriwardana, R.; Mitcham, K.; Hurley, W.; Dias, T. Capacitive fiber-meshed transducers for touch and proximity-sensing applications. IEEE Sens. J. 2005, 5, 989–994. [Google Scholar] [CrossRef]
- Sergio, M.; Manaresi, N.; Tartagni, M.; Guerrieri, R.; Canegallo, R. A textile based capacitive pressure sensor. In Proceedings of the IEEE Sensors, Orlando, FL, USA, 12–14 June 2002; Volume 2, pp. 1625–1630. [Google Scholar]
- Sergio, M.; Manaresi, N.; Campi, F.; Canegallo, R.; Tartagni, M.; Guerrieri, R. A dynamically reconfigurable monolithic CMOS pressure sensor for smart fabric. IEEE J. Solid-State Circuits 2003, 38, 966–975. [Google Scholar] [CrossRef]
- Mannsfeld, S.C.; Tee, B.C.; Stoltenberg, R.M.; Chen, C.V.H.; Barman, S.; Muir, B.V.; Sokolov, A.N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, S.; Kobayashi, T.; Shibayama, N.; Miyake, K.; Itoh, T. Fabric pressure sensor array fabricated with die-coating and weaving techniques. Sens. Actuators A Phys. 2012, 184, 57–63. [Google Scholar] [CrossRef]
- Meyer, J.; Lukowicz, P.; Troster, G. Textile pressure sensor for muscle activity and motion detection. In Proceedings of the 10th IEEE International Symposium on Wearable Computers, Montreux, Switzerland, 11–14 October 2006; pp. 69–72. [Google Scholar]
- Meyer, J.; Arnrich, B.; Schumm, J.; Troster, G. Design and modeling of a textile pressure sensor for sitting posture classification. IEEE Sens. J. 2010, 10, 1391–1398. [Google Scholar] [CrossRef]
- Hoffmann, T.; Eilebrecht, B.; Leonhardt, S. Respiratory monitoring system on the basis of capacitive textile force sensors. IEEE Sens. J. 2011, 11, 1112–1119. [Google Scholar] [CrossRef]
- Wijesiriwardana, R. Inductive fiber-meshed strain and displacement transducers for respiratory measuring systems and motion capturing systems. IEEE Sens. J. 2006, 6, 571–579. [Google Scholar] [CrossRef]
- Holleczek, T.; Rüegg, A.; Harms, H.; Tröster, G. Textile pressure sensors for sports applications. In Proceedings of the IEEE Sensors, Kona, HI, USA, 1–4 November 2010; pp. 732–737. [Google Scholar]
- Gu, J.F.; Gorgutsa, S.; Skorobogatiy, M. A Fully Woven Touchpad Sensor Based on Soft Capacitor Fibers. Unpublished. 2011. Available online: https://www.researchgate.net/profile/Maksim_Skorobogatiy/publication/51912313_A_fully_woven_touchpad_sensor_based_on_soft_capacitor_fibers/links/00b4951cad5dfa7912000000.pdf (accessed on 4 May 2016).
- Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J.H.; Pang, C.; Son, S.; Kim, J.H.; Jang, Y.H.; Kim, D.E.; et al. Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics. Adv. Mater. 2015, 27, 2433–2439. [Google Scholar] [CrossRef] [PubMed]
- Sensors. Available online: http://www.novel.de/novelcontent/sensors (accessed on 21 August 2017).
- Xsensor Technology. Available online: http://www.xsensor.com (accessed on 21 August 2017).
- Peterson, M.J.; Gravenstein, N.; Schwab, W.K.; van Oostrom, J.H.; Caruso, L.J. Patient repositioning and pressure ulcer risk-monitoring interface pressures of at-risk patients. J. Rehabil. Res. Dev. 2013, 50, 477. [Google Scholar] [CrossRef] [PubMed]
- Kahn, J.A.; Kerrigan, M.V.; Gutmann, J.M.; Harrow, J.J. Pressure ulcer risk of patient handling sling use. J. Rehabil. Res. Dev. 2015, 52, 291. [Google Scholar]
- Wong, H.; Kaufman, J.; Baylis, B.; Conly, J.M.; Hogan, D.B.; Stelfox, H.T.; Southern, D.A.; Ghali, W.A.; Ho, C.H. Efficacy of a pressure-sensing mattress cover system for reducing interface pressure: Study protocol for a randomized controlled trial. Trials 2015, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Higer, S.; James, T. Interface pressure mapping pilot study to select surfaces that effectively redistribute pediatric occipital pressure. J. Tissue Viability 2016, 25, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Capacitive Tactile Pressure Sensors. Available online: http://www.pressureprofile.com/capacitive-sensors (accessed on 21 August 2017).
- LG Innotek Unveils Flexible Textile Pressure Sensors. Available online: http://m.phys.org/news/2016-07-lg-innotek-unveils-flexible-textile.html?utm_source=nwletter&utm_medium=email&utm_campaign=daily-nwletter (accessed on 21 August 2017).
- Schedukat, N.; Gries, T. Intelligent Push-Button System for Use in Smart Textile, Has Upper and Lower Push-Button Halves with Two Electric Contacts Connected with One Another Electro-Conductively for Data, Signal and Power Transmission, While Closing Connection. DE102004026554, 16 March 2006. [Google Scholar]
- Dias, T.; Hurley, W.; Wijesiriwardana, R. Switches in Textile Structures. WO2006045988, 4 May 2006. [Google Scholar]
- Dias, T.; Hurley, W.; Monaragala, R.; Wijeyesiriwardana, R. Development of Electrically Active Textiles. In Advances in Science and Technology; Trans Tech Publications: Zürich, Switzerland, 2008; Volume 60. [Google Scholar]
- Deflin, E.; Weill, A.; Bonfiglio, J.; Athimon-Pillard, B. Flexible Textile Structure for Producing Electric Switches. WO03050832, 19 June 2003. [Google Scholar]
- Kuebler, S.; Seidel, F.-P. Textile with Built-in Electrical Switches is Used as Internal Lining or Seat Covering in Vehicles. DE102004009189, 15 September 2005. [Google Scholar]
- Leftly, S.A. Switches and Devices for Textile Articles. WO2006030230, 23 March 2006. [Google Scholar]
- Greenfield, A. Readings from Everyware: The dawning age of Ubiquitous Computing; New Rider: San Francisco, CA, USA, 2006. [Google Scholar]
- Nike + iPod Sensor. Available online: https://manuals.info.apple.com/MANUALS/1000/MA1139/en_US/nike_plus_ipod_sensor.pdf (accessed on 8 August 2017).
- Jacquard by Google. Available online: https://atap.google.com/jacquard/ (accessed on 17 November 2017).
- Muglia, H.A.; Refeld, J.; Eiselt, H. Generator Device for Converting Motion Energy of Person’s Respiration into Electrical Energy is Integrated into Clothing Item Normally Arranged at One or More Positions on Person that Undergoes Change in Dimensions during Respiration. DE10340873, 28 April 2005. [Google Scholar]
- Qin, Y.; Wang, X.; Wang, Z.L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Velten, J.; Kuanyshbekova, Z.; Göktepe, Ö.; Göktepe, F.; Zakhidov, A. Weavable dye sensitized solar cells exploiting carbon nanotube yarns. Appl. Phys. Lett. 2013, 102, 203902. [Google Scholar] [CrossRef]
- Uddin, M.J.; Davies, B.; Dickens, T.J.; Okoli, O.I. Self-aligned carbon nanotubes yarns (CNY) with efficient optoelectronic interface for microyarn shaped 3D photovoltaic cells. Solar Energy Mater. Solar Cells 2013, 115, 166–171. [Google Scholar] [CrossRef]
- Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 2013, 25, 2326–2331. [Google Scholar] [CrossRef] [PubMed]
- Jost, K.; Dion, G.; Gogotsi, Y. Textile energy storage in perspective. J. Mater. Chem. A 2014, 2, 10776–10787. [Google Scholar] [CrossRef]
- Zhang, D.; Miao, M.; Niu, H.; Wie, Z. Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. Acs Nano 2014, 8, 4571–4579. [Google Scholar] [CrossRef] [PubMed]
- Greenemeier, L. Study says carbon nanotubes as dangerous as asbestos. Sci. Am. 2008, 20. Available online: https://www.scientificamerican.com/article/carbon-nanotube-danger/ (accessed on 8 August 2017).
- Liu, Y.; Gorgutsa, S.; Santato, C.; Skorobogatiy, M. Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles. J. Electrochem. Soc. 2012, 159, A349–A356. [Google Scholar] [CrossRef]
- Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Cui, N.; Liu, J.; Gu, L.; Bai, S.; Chen, X.; Qin, Y. Wearable triboelectric generator for powering the portable electronic devices. ACS Appl. Mater. Interfaces 2015, 7, 18225–18230. [Google Scholar] [CrossRef] [PubMed]
- Pillai, P.; Paster, E.; Montemayor, L.; Benson, C.; Hunter, I.W. Development of Soldier Conformable Antennae Using Conducting Polymers; Massachusetts Inst of Tech Cambridge Institute for Soldier Nanotechnologies (ISN): Cambridge, MA, USA, 2010. [Google Scholar]
- Campbell, T.G.; Hearn, C.W.; Reddy, C.J.; Boyd, R.C.; Yang, T.; Davis, W.A.; Persans, A.; Scarborough, S. Development of Conformal Space Suit Antennas for Enhanced EVA Communications and Wearable Computer Applications. In Proceedings of the 2010 Antenna Applications Symposium Volume II of II, Tangshan, China, 15–18 October 2010. [Google Scholar]
- Yang, T.; Davis, W.A.; Campbell, T.G.; Reddy, C.J. A Low-Profile Antenna Design Approach for Conformal Space Suit and Other Wearable Applications. In Proceedings of the 2010 Antenna Applications Symposium Volume II of II, Monticello, IL, USA, 21–23 September 2010. [Google Scholar]
- Acti, T.; Zhang, S.; Chauraya, A.; Whittow, W.; Seager, R.; Dias, T.; Vardaxoglou, Y. High performance flexible fabric electronics for megahertz frequency communications. In Proceedings of the Antennas and Propagation Conference (LAPC), 2011 Loughborough, Loughborough, UK, 14–15 November 2011; pp. 1–4. [Google Scholar]
- Chauraya, A.; Zhang, S.; Whittow, W.; Acti, T.; Seager, R.; Dias, T.; Vardaxoglou, Y.C. Addressing the challenges of fabricating microwave antennas using conductive threads. In Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 1365–1367. [Google Scholar]
- Morris, R.H.; McHale, G.; Dias, T.; Newton, M.I. Embroidered coils for magnetic resonance sensors. Electronics 2013, 2, 168–177. [Google Scholar] [CrossRef]
- Speich, F. RFID Transponder Chip Module with Connecting Means for an Antenna, Textile Tag with an RFID Transponder Chip Module, and Use of an RFID Transponder Chip Module. TW200905574, 1 February 2009. [Google Scholar]
- Muehlbauer, A.G. Method for Attaching and Contacting RFID Chip Modules to Produce Transponders Comprising a Textile Substrate, and Transponder for Fabrics. WO2007104634, 20 September 2007. [Google Scholar]
- Corbett, B.G. Textile Identification System with RFID Tracking. US2005183990, 25 August 2005. [Google Scholar]
- Gravina, D. Method Using RFID Technology for Surveillance of Textile Goods in Laundries. EP1528504, 4 May 2005. [Google Scholar]
- Shpajkh, F. Textile RFID Label. RU2009114415, 27 October 2010. [Google Scholar]
- Speich, F. Method for the Production of a Textile Label Having an RFID Transponder Chip and Interlaced Information Carrier, and System for Carrying out the Method. US2010085166, 8 April 2010. [Google Scholar]
- Boll, W. Illumination System for Automobile Passenger Compartment e.g., for Cabriolet Automobile, Using Flexible Light Conductors or Electrical Lighting Devices Incorporated in Textile Material Forming Automobile Roof. DE10345002, 21 April 2005. [Google Scholar]
- Christensen, A.O. Woven Polymer Fiber Video Displays with Improved Efficiency and Economy of Manufacture. U.S. Patent US 6,229,259, 8 May 2001. [Google Scholar]
- Murasko, M.; Kinlen, P.J. Illuminated Display System and Process. U.S. Patent US 6,811,895, 2 November 2004. [Google Scholar]
- De-Flin, E.; Mourot, E.; Remy, M. Textile Display. WO 2004/100111 A2, 18 November 2004. [Google Scholar]
- DO UK HO. Self-Lighting Textile Using Optical Fiber. KR20080040815, 9 May 2008. [Google Scholar]
- Peng, C.-T.; Wang, C.-T. Textile with Pattern-Lighting Effect. US2011309768, 22 December 2011. [Google Scholar]
- Yu, Z. Lighting Textile Fabric. CN201873891, 22 June 2011. [Google Scholar]
- Ridao, M. Self Illuminating Spaces. In Proceedings of the Smart Fabrics Conference, Miami, FL, USA, 17–19 April 2012. [Google Scholar]
- Van De Pas, L. Bring Spaces Alive. In Proceedings of the Smart Fabrics Conference, Miami, FL, USA, 17–19 April 2012. [Google Scholar]
- Eves, D.A.; Chapman, J.A.; Bechtel, H.-H.; Wagner, P.C.; Martynov, Y. Electro-Optic Filament or Fibre. WO/2004/055576, 1 July 2004. [Google Scholar]
- Cutecircuit. Available online: http://cutecircuit.com/ (accessed on 22 August 2017).
- Lucentury. Available online: http://www.lucentury.com/ (accessed on 22 August 2017).
- Dias, T.; Monaragala, R.M. Electro-luminant Fabric Structures. US2010003496, 7 January 2010. [Google Scholar]
- Dias, T.; Monaragala, R. Development and analysis of novel electroluminescent yarns and fabrics for localized automotive interior illumination. Text. Res. J. 2012, 82, 1164–1176. [Google Scholar] [CrossRef]
- Bono’s Laser Stage Suit by Moritz Waldemeyer. Available online: https://www.dezeen.com/2010/02/28/bonos-laser-stage-suit-by-moritz-waldemeyer/ (accessed on 14 November 2017).
- World Market for Wearable Technology—A Quantitative Market Assessment—2012; IMS Research of Wellingborough: Wellingborough, UK, 2012.
- The Wearables Report 2016: Reviewing a Fast-Changing Market. Available online: https://www.fbicgroup.com/sites/default/files/The%20Wearables%20Report%202016%20by%20FBIC%20Global%20Retail%20and%20Technology%20June%2021%202016.pdf (accessed on 22 August 2017).
- Wearable Tech Market to be Worth $34 Billion By 2020. Available online: https://www.forbes.com/sites/paullamkin/2016/02/17/wearable-tech-market-to-be-worth-34-billion-by-2020/#5f690ca83cb5 (accessed on 22 August 2017).
- Hayward, J. E-Textiles 2017–2027: Technologies, Markets, Players. Available online: https://www.idtechex.com/research/reports/e-textiles-2017-2027-technologies-markets-players-000522.asp (accessed on 17 November 2017).
- International Fashion Machines. Available online: http://www.ifmachines.com/ (accessed on 21 August 2017).
- ScotteVest. Available online: https://www.scottevest.com/ (accessed on 21 August 2017).
- Fibretronic. Wearable Tech. CrunchWear. Available online: http://crunchwear.com/category/companies/fibretronic/ (accessed on 21 August 2017).
- Russell, B. Smart Fabrics for Consumer Health. In Proceedings of the Smart Fabrics Conference, Miami, FL, USA, 17–19 April 2012. [Google Scholar]
- Köhler, A.R.; Hilty, L.M.; Bakker, C. Prospective impacts of electronic textiles on recycling and disposal. J. Ind. Ecol. 2011, 15, 496–511. [Google Scholar] [CrossRef]
- Sun, C.H.; Shang, G.Q.; Tao, Y.Y.; Li, Z.R. A review on application of piezoelectric energy harvesting technology. Adv. Mater. Res. 2012, 516, 1481–1484. [Google Scholar] [CrossRef]
- Can Electricity from the Human Body Replace Batteries? BBC News. Available online: http://www.bbc.co.uk/news/science-environment-19470850 (accessed on 22 August 2017).
- Burns, M.L. Medical Trauma Assessment through the Use of Smart Textiles; Final Technical Report 7/14/94–2/28/95; Science, Math & Engineering, Inc.: Billerica, MA, USA, 1995. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hughes-Riley, T.; Dias, T.; Cork, C. A Historical Review of the Development of Electronic Textiles. Fibers 2018, 6, 34. https://doi.org/10.3390/fib6020034
Hughes-Riley T, Dias T, Cork C. A Historical Review of the Development of Electronic Textiles. Fibers. 2018; 6(2):34. https://doi.org/10.3390/fib6020034
Chicago/Turabian StyleHughes-Riley, Theodore, Tilak Dias, and Colin Cork. 2018. "A Historical Review of the Development of Electronic Textiles" Fibers 6, no. 2: 34. https://doi.org/10.3390/fib6020034
APA StyleHughes-Riley, T., Dias, T., & Cork, C. (2018). A Historical Review of the Development of Electronic Textiles. Fibers, 6(2), 34. https://doi.org/10.3390/fib6020034