Kapok-Derived Super Hollow Porous Carbon Fibers and Their Greenhouse Gases Adsorption
Abstract
1. Introduction
2. Materials and Methods
2.1. Carbonization of Kapok Fiber
2.2. Physical Steam Activation
2.3. Surface Morphology of Porous Carbon Fibers
2.4. Functional Group Analysis of Porous Carbon Fibers
2.5. Microcrystalline Structure of Porous Carbon Fibers
2.6. Pore Characteristics of Porous Carbon Fibers
2.7. Measurement of Butane Working Capacity
3. Results and Discussion
3.1. SEM Analysis
3.2. Temperature-Programmed Desorption Infrared Spectroscopy Analysis
3.3. X-Ray Diffraction Analysis
3.4. N2/77K Isotherm Adsorption/Desorption Analysis
3.5. Butane Working Capacity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shahbazi, A.; Nasab, B.R. Carbon Capture and Storage (CCS) and its Impacts on Climate Change and Global Warming. J. Pet. Environ. Biotechnol. 2016, 7, 1000291. [Google Scholar] [CrossRef]
- Bhaskaran, A.; Sharma, D.; Roy, S.; Singh, S.A. Technological Solutions for NOₓ, SOₓ, and VOC Abatement: Recent Breakthroughs and Future Directions. Environ. Sci. Pollut. Res. 2023, 30, 91501–91533. [Google Scholar] [CrossRef]
- Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies 2019, 12, 964. [Google Scholar] [CrossRef]
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Burnett, R.T.; Haines, A.; Ramanathan, V. Effects of Fossil Fuel and Total Anthropogenic Emission Removal on Public Health and Climate. Proc. Natl. Acad. Sci. USA 2019, 116, 7192–7197. [Google Scholar] [CrossRef]
- Peter, S.C. Reduction of CO2 to Chemicals and Fuels: A Solution to Global Warming and Energy Crisis. ACS Energy Lett. 2018, 3, 1557–1561. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E.A. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, X.; Wang, C.; Zhou, H. Environmental and Human Health Impacts of Volatile Organic Compounds: A Perspective Review. Chemosphere 2023, 310, 136825. [Google Scholar] [CrossRef]
- Shahriyari, H.A.; Nikmanesh, Y.; Jalali, S.; Tahery, N. Air Pollution and Human Health Risks: Mechanisms and Clinical Manifestations of Cardiovascular and Respiratory Diseases. Toxin Rev. 2022, 41, 19–34. [Google Scholar] [CrossRef]
- Wu, X.; Chen, Q.; He, R. Experimental research and estimation model of gasoline evaporative emissions from vehicles in China. Sci. Total Environ. 2024, 918, 170783. [Google Scholar] [CrossRef]
- Hata, H.; Yamada, H.; Yanai, K.; Kugata, M. Modeling Evaporative Emissions from Parked Gasoline Cars Based on Vehicle Carbon Canister Experiments. Sci. Total Environ. 2019, 687, 755–764. [Google Scholar] [CrossRef]
- Romagnuolo, L.; Yang, R.; Frosina, E.; Rizzoni, G. Physical Modeling of Evaporative Emission Control System in Gasoline-Fueled Automobiles: A Review. Renew. Sustain. Energy Rev. 2019, 114, 109308. [Google Scholar] [CrossRef]
- Sato, K.; Kobayashi, N. Adsorption and Desorption Simulation of Carbon Canister Using n-Butane as Model Compound of Gasoline. J. Jpn. Pet. Inst. 2011, 54, 136–144. [Google Scholar] [CrossRef]
- Huang, H.; He, Z.; Yuan, H.; Chen, Y.; Kobayashi, N. Evaluation of n-Butane Gas Adsorption Performance of Composite Adsorbents Used for Carbon Canister. Procedia Eng. 2011, 24, 42–47. [Google Scholar] [CrossRef]
- Lee, B.-H.; Kim, Y.-J.; Lee, H.-M.; Kim, B.-J. Preparation and Characterization of Pitch-Derived Activated Carbon Pellet for Butane Adsorption. Carbon Lett. 2024, 34, 691–701. [Google Scholar] [CrossRef]
- Lee, B.-H.; Lee, H.-M.; Chung, D.C.; Kim, B.-J. Effect of Mesopore Development on Butane Working Capacity of Biomass-Derived Activated Carbon for Automobile Canister. Nanomaterials 2021, 11, 673. [Google Scholar] [CrossRef]
- Liu, T.; Qi, W.; Nie, L.; Wang, B. Synthesis of Sandwich-Structured Zeolite Molecular Sieves and Their Adsorption Performance for Volatile Hydrocarbons. Materials 2025, 18, 1758. [Google Scholar] [CrossRef]
- Wu, H.; Wang, P.; Du, L.; Jin, J.; Mi, J.; Yun, J. Design of High-Humidity-Proof Hierarchical Porous P-ZIF-67(Co)–Polymer Composite Materials by Surface Modification for Highly Efficient Volatile Organic Compound Adsorption. Ind. Eng. Chem. Res. 2022, 61, 3591–3600. [Google Scholar] [CrossRef]
- Amdebrhan, B.T. Evaluating the Performance of Activated Carbon, Polymeric, and Zeolite Adsorbents for Volatile Organic Compounds Control. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2018. [Google Scholar]
- Lin, C.L.; Huang, C.Y.; Liu, Z.S. Enhanced Adsorption of Gaseous Naphthalene by Activated Carbon Fibers at Elevated Temperatures. Toxics 2024, 12, 537. [Google Scholar] [CrossRef]
- Jeong, J.S.; Lee, H.M.; Kim, B.J. Preparation of Cellulose-Based Porous Carbon Fibers and Their Methylene Chloride Adsorption/Desorption Behaviors. Energy Rep. 2024, 10, 5237. [Google Scholar] [CrossRef]
- Burchell, T.D.; Contescu, C.I.; Gallego, N.C. Activated Carbon Fibers for Gas Storage. Act. Carbon Fiber Compos. 2017, 3, 231–256. [Google Scholar]
- Balanay, J.A.G.; Bartolucci, A.A. Adsorption Characteristics of Activated Carbon Fibers (ACFs) for Toluene: Application in Respiratory Protection. J. Occup. Environ. Hyg. 2014, 11, 489–498. [Google Scholar] [CrossRef]
- Lin, C.L.; Cheng, Y.H.; Liu, Z.S.; Chen, J.Y. Adsorption and Oxidation of High Concentration Toluene with Activated Carbon Fibers. J. Porous Mater. 2013, 20, 775–783. [Google Scholar] [CrossRef]
- Choi, D.; Kil, H.S.; Lee, S. Fabrication of Low-Cost Carbon Fibers Using Economical Precursors and Advanced Processing Technologies. Carbon 2019, 145, 742–756. [Google Scholar] [CrossRef]
- Frank, E.; Hermanutz, F. Carbon Fibers: Precursors, Manufacturing, and Properties. Macromol. Mater. Eng. 2012, 297, 493–501. [Google Scholar] [CrossRef]
- Hassan, M.F.; Sabri, M.A.; Fazal, H.; Hafeez, A. Recent Trends in Activated Carbon Fibers Production from Various Precursors and Applications—A Comparative Review. J. Anal. Appl. Pyrolysis 2020, 149, 104857. [Google Scholar] [CrossRef]
- Frank, E.; Steudle, L.M.; Ingildeev, D. Carbon Fibers: Precursor Systems, Processing, Structure, and Properties. Angew. Chem. Int. Ed. 2014, 53, 5262–5291. [Google Scholar] [CrossRef]
- Park, S.J.; Park, S.J. Precursors and Manufacturing of Carbon Fibers. Carbon Fibers 2018, 2, 25–47. [Google Scholar]
- Zheng, Y.; Wang, J.; Zhu, Y.; Wang, A. Research and Application of Kapok Fiber as an Absorbing Material: A Mini Review. J. Environ. Sci. 2015, 33, 156–164. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, M.; Zhang, X.; Ma, Y.; Wang, W. Structure and Adsorptive Properties in Wastewater Treatment of Activated Carbon Fiber Based on Kapok. In Proceedings of the 2008 2nd IEEE International Conference on Bioinformatics and Biomedical Engineering (ICBBE), IEEE, Shanghai, China, 16–18 May 2008; pp. 2131–2134. [Google Scholar]
- Thazin, N.M.; Chaiammart, N.; Thu, M.M.; Panomsuwan, G. Effect of Pre-carbonization Temperature on the Porous Structure and Electrochemical Properties of Activated Carbon Fibers Derived from Kapok for Supercapacitor Applications. J. Met. Mater. Miner. 2022, 32, 55–64. [Google Scholar] [CrossRef]
- Yu, W.; Huang, H.; Zhou, Y.; Xiang, R.; Zhang, X.; Chen, H. Hollow Structured Kapok Fiber-Based Hierarchical Porous Biocarbons for Ultrahigh Adsorption of Organic Dyes. Ind. Eng. Chem. Res. 2022, 61, 4114–4124. [Google Scholar] [CrossRef]
- Biscoe, J.; Warren, B.E. An X-Ray Study of Carbon Black. J. Appl. Phys. 1942, 13, 364–371. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Lippens, B. Studies on Pore Systems in Catalysts V. The t Method. J. Catal. 1965, 4, 319–323. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- ASTM D5228; Standard Test Method for Determination of Butane Working Capacity of Activated Carbon. ASTM International: West Conshohocken, PA, USA, 1992.
- Yang, C.; Lou, Y.; Zhang, J.; Xie, X.; Xia, B. Preparation and XRD Analysis of Carbon Materials Used for Li-Ion Batteries. Mater. Work. Mech. Second. Batter. 2023, 159, 159–206. [Google Scholar]
- Kang, D.-J.; Lee, H.-M.; An, K.-H.; Kim, B.-J. Preparation of Polyimide-Based Activated Carbon Fibers and Their Application as the Electrode Materials of Electric Double-Layer Capacitors. Carbon Lett. 2024, 34, 1653–1666. [Google Scholar] [CrossRef]
- Popova, A.N. Crystallographic Analysis of Graphite by X-Ray Diffraction. Coke Chem. 2017, 60, 361–365. [Google Scholar] [CrossRef]
- Kim, J.-H.; Jung, S.-C.; Lee, H.-M.; Kim, B.-J. Comparison of Pore Structures of Cellulose-Based Activated Carbon Fibers and Their Applications for Electrode Materials. Int. J. Mol. Sci. 2022, 23, 3680. [Google Scholar] [CrossRef]
- Molina-Sabio, M.; Muñecas, M.A.; Rodríguez-Reinoso, F.; McEnaney, B. Adsorption of CO2 and SO2 on Activated Carbons with a Wide Range of Micropore Size Distribution. Carbon 1995, 33, 1777–1782. [Google Scholar] [CrossRef]
- Pires, J.; Fernandes, R.; Pinto, M.; Batista, M. Microporous Volumes from Nitrogen Adsorption at 77 K: When to Use a Different Standard Isotherm? Catalysts 2021, 11, 1544. [Google Scholar] [CrossRef]
- Sing, K.S.W. Physisorption of Nitrogen by Porous Materials. J. Porous Mater. 1995, 2, 5–8. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution. Adsorption 2015, 21, 629–650. [Google Scholar]
- Chung, J.-T.; Hwang, K.-J.; Shim, W.-G.; Kim, C.; Park, J.-Y.; Choi, D.-Y.; Lee, J.-W. Synthesis and Characterization of Activated Hollow Carbon Fibers from Ceiba pentandra (L.) Gaertn. (Kapok). Mater. Lett. 2013, 93, 401–403. [Google Scholar] [CrossRef]
- Lee, H.-M.; Lee, B.-H.; An, K.-H.; Park, S.-J.; Kim, B.-J. Facile Preparation of Activated Carbon with Optimal Pore Range for High Butane Working Capacity. Carbon Lett. 2019, 30, 297–305. [Google Scholar] [CrossRef]
Sample | SBET a (m2/g) | Vtotal b (cm3/g) | Vmicro c (cm3/g) | Vmeso d (cm3/g) | Fmicro e (%) | Activation Yield (%) | Reference |
---|---|---|---|---|---|---|---|
KF-C | 500 | 0.24 | 0.20 | 0.04 | 83.3 | - | This study |
KP-PCF-5 | 810 | 0.40 | 0.33 | 0.07 | 82.5 | 60.0 | |
KP-PCF-10 | 1080 | 0.58 | 0.44 | 0.14 | 75.9 | 53.0 | |
KP-PCF-15 | 1100 | 0.60 | 0.45 | 0.15 | 75.0 | 41.0 | |
KP-PCF-20 | 920 | 0.53 | 0.38 | 0.15 | 71.7 | 29.0 | |
ACF-300 | 487 | 0.26 | 0.21 | 0.05 | 80.8 | - | [31] |
KAHCF | 753 | 0.62 | - | - | - | - | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.-S.; Cho, C.-K.; Chung, D.-C.; An, K.-H.; Kim, B.-J. Kapok-Derived Super Hollow Porous Carbon Fibers and Their Greenhouse Gases Adsorption. Fibers 2025, 13, 92. https://doi.org/10.3390/fib13070092
Jeong H-S, Cho C-K, Chung D-C, An K-H, Kim B-J. Kapok-Derived Super Hollow Porous Carbon Fibers and Their Greenhouse Gases Adsorption. Fibers. 2025; 13(7):92. https://doi.org/10.3390/fib13070092
Chicago/Turabian StyleJeong, Hun-Seung, Cheol-Ki Cho, Dong-Chul Chung, Kay-Hyeok An, and Byung-Joo Kim. 2025. "Kapok-Derived Super Hollow Porous Carbon Fibers and Their Greenhouse Gases Adsorption" Fibers 13, no. 7: 92. https://doi.org/10.3390/fib13070092
APA StyleJeong, H.-S., Cho, C.-K., Chung, D.-C., An, K.-H., & Kim, B.-J. (2025). Kapok-Derived Super Hollow Porous Carbon Fibers and Their Greenhouse Gases Adsorption. Fibers, 13(7), 92. https://doi.org/10.3390/fib13070092