Retting of Bast Fiber Crops Like Hemp and Flax—A Review for Classification of Procedures
Abstract
:1. Introduction
2. Definition and Clarification of Terms
3. Morphology of Stem and Retting Mechanism
4. Retting Methods and Attempts at Improvement
4.1. Traditional Retting Methods
4.1.1. Dew Retting
4.1.2. Water Retting
4.2. Stand Retting
4.3. Alternative Methods to Retting of Straw
4.3.1. Inoculation
4.3.2. Enzymatic Treatment
4.3.3. Retting Enhancement by Additional Chemical Treatment
4.3.4. Physical Treatment
4.3.5. Ensiling
5. Further Processing and Refining
5.1. Degumming
5.2. Cottonization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarke, R.C. Botany of the Genus Cannabis. In Advances in Hemp Research; Ranalli, P., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 1–19. [Google Scholar]
- Tourangeau, W. Re-Defining Environmental Harms: Green Criminology and the State of Canada’s Hemp Industry. Can. J. Criminol. Crim. Justice 2015, 57, 528–554. [Google Scholar] [CrossRef]
- Fu, Y.-B. Genetic Evidence for Early Flax Domestication with Capsular Dehiscence. Genet. Resour. Crop Evol. 2011, 58, 1119–1128. [Google Scholar] [CrossRef]
- Kvavadze, E.; Bar-Yosef, O.; Belfer-Cohen, A.; Boaretto, E.; Jakeli, N.; Matskevich, Z.; Meshveliani, T. 30,000-Year-Old Wild Flax Fibers. Science 2009, 325, 1359. [Google Scholar] [CrossRef] [PubMed]
- Melelli, A.; Shah, D.U.; Hapsari, G.; Cortopassi, R.; Durand, S.; Arnould, O.; Placet, V.; Benazeth, D.; Beaugrand, J.; Jamme, F.; et al. Lessons on Textile History and Fibre Durability from a 4000-Year-Old Egyptian Flax Yarn. Nat. Plants 2021, 7, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Akin, D.E. Linen Most Useful: Perspectives on Structure, Chemistry, and Enzymes for Retting Flax. ISRN Biotechnol. 2013, 186534. [Google Scholar] [CrossRef] [PubMed]
- Allegret, S. The History of Hemp. In Hemp: Industrial Production and Uses; CAB International: Bar sur Aube, France, 2013; pp. 4–25. ISBN 978-1-84593-792-8. [Google Scholar]
- Clarke, R.C. Traditional Fiber Hemp (Cannabis) Production, Processing, Yarn Making, and Weaving Strategies—Functional Constraints and Regional Responses. Part 2. J. Nat. Fibers 2010, 7, 229–250. [Google Scholar] [CrossRef]
- Carus, M.; Gahle, C.; Pendarovski, C.; Vogt, D.; Ortmann, S.; Grotenhermen, F.; Breuer, T.; Schmidt, C. Studie Zur Markt- Und Konkurrenz—Situation Bei Naturfasern Und Naturfaser- Werkstoffen (Deutschland Und EU). Available online: http://nova-institut.de/pdf/08-01-Flachs-Hanf_Buch_Carus_et_al.pdf (accessed on 15 July 2019).
- Smith-Heisters, S. Environmental Costs of Hemp Prohibition in the United States. J. Ind. Hemp 2008, 13, 157–170. [Google Scholar] [CrossRef]
- Akin, D.; Henriksson, G.; Evans, J.D.; Adamsen, A.P.S.; Foulk, J.A.; Dodd, R.B. Progress in Enzyme-Retting of Flax. J. Nat. Fibers 2004, 1, 21–47. [Google Scholar] [CrossRef]
- Antonov, V.; Marek, J.; Bjelkova, M.; Smirous, P.; Fischer, H. Easily Available Enzymes as Natural Retting Agents. Biotechnol. J. 2007, 2, 342–346. [Google Scholar] [CrossRef]
- Crônier, D.; Monties, B.; Chabbert, B. Structure and Chemical Composition of Bast Fibers Isolated from Developing Hemp Stem. J. Agric. Food Chem. 2005, 53, 8279–8289. [Google Scholar] [CrossRef]
- Di Candilo, M.; Bonatti, P.M.; Guidetti, C.; Focher, B.; Grippo, C.; Tamburini, E.; Mastromei, G. Effects of Selected Pectinolytic Bacterial Strains on Water-Retting of Hemp and Fibre Properties. J. Appl. Microbiol. 2010, 108, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Djemiel, C.; Grec, S.; Hawkins, S. Characterization of Bacterial and Fungal Community Dynamics by High-Throughput Sequencing (HTS) Metabarcoding during Flax Dew-Retting. Front. Microbiol. 2017, 8, 2052. [Google Scholar] [CrossRef]
- Fernando, D.; Thygesen, A.; Meyer, A.S.; Daniel, G. Elucidating Field Retting Mechanisms of Hemp Fibres for Biocomposites: Effects of Microbial Actions and Interactions on the Cellular Micro-Morphology and Ultrastructure of Hemp Stems and Bast Fibres. BioResources 2019, 14, 4047–4084. [Google Scholar] [CrossRef]
- Foulk, J.A.; Akin, D.E.; Dodd, R.B. Influence of Pectinolytic Enzymes on Retting Effectiveness and Resultant Fiber Properties. BioResources 2008, 3, 155–169. [Google Scholar] [CrossRef]
- George, M.; Mussone, P.G.; Bressler, D.C. Improving the Accessibility of Hemp Fibres Using Caustic to Swell the Macrostructure for Enzymatic Enhancement. Ind. Crops Prod. 2015, 67, 74–80. [Google Scholar] [CrossRef]
- Jankauskienė, Z.; Bačelis, K.; Vitkauskas, A. Evaluation of Water-Retted Flax Fibre for Quality Parameters. Mater. Sci. 2006, 12, 171–174. [Google Scholar]
- Mazian, B.; Bergeret, A.; Benezet, J.-C.; Malhautier, L. Influence of Field Retting Duration on the Biochemical, Microstructural, Thermal and Mechanical Properties of Hemp Fibres Harvested at the Beginning of Flowering. Ind. Crops Prod. 2018, 116, 170–181. [Google Scholar] [CrossRef]
- Lee, C.H.; Khalina, A.; Lee, S.H.; Liu, M. A Comprehensive Review on Bast Fibre Retting Process for Optimal Performance in Fibre-Reinforced Polymer Composites. Adv. Mater. Sci. Eng. 2020, 2020, e6074063. [Google Scholar] [CrossRef]
- Liu, M.; Silva, D.A.S.; Fernando, D.; Meyer, A.S.; Madsen, B.; Daniel, G.; Thygesen, A. Controlled Retting of Hemp Fibres: Effect of Hydrothermal Pre-Treatment and Enzymatic Retting on the Mechanical Properties of Unidirectional Hemp/Epoxy Composites. Compos. Part A Appl. Sci. Manuf. 2016, 88, 253–262. [Google Scholar] [CrossRef]
- Lyu, P.; Zhang, Y.; Wang, X.; Hurren, C. Degumming Methods for Bast Fibers—A Mini Review. Ind. Crops Prod. 2021, 174, 114158. [Google Scholar] [CrossRef]
- Pakarinen, A.; Zhang, J.; Brock, T.; Maijala, P.; Viikari, L. Enzymatic Accessibility of Fiber Hemp Is Enhanced by Enzymatic or Chemical Removal of Pectin. Bioresour. Technol. 2012, 107, 275–281. [Google Scholar] [CrossRef]
- Réquilé, S.; Mazian, B.; Grégoire, M.; Musio, S.; Gautreau, M.; Nuez, L.; Day, A.; Thiébeau, P.; Philippe, F.; Chabbert, B.; et al. Exploring the Dew Retting Feasibility of Hemp in Very Contrasting European Environments: Influence on the Tensile Mechanical Properties of Fibres and Composites. Ind. Crops Prod. 2021, 164, 113337. [Google Scholar] [CrossRef]
- Ribeiro, A.; Pochart, P.; Day, A.; Mennuni, S.; Bono, P.; Baret, J.-L.; Spadoni, J.-L.; Mangin, I. Microbial Diversity Observed during Hemp Retting. Appl. Microbiol. Biotechnol. 2015, 99, 4471–4484. [Google Scholar] [CrossRef] [PubMed]
- Tahir, P.M.; Ahmed, A.B.; SaifulAzry, S.; Ahmed, Z. Retting Process of Some Bast Plant Fibres and Its Effect on Fibre Quality: A Review. BioResources 2011, 6, 5260–5281. [Google Scholar] [CrossRef]
- Tamburini, E.; León, A.G.; Perito, B.; Mastromei, G. Characterization of Bacterial Pectinolytic Strains Involved in the Water Retting Process. Environ. Microbiol. 2003, 5, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, A.; Liu, M.; Meyer, A.S.; Daniel, G. Hemp Fibres: Enzymatic Effect of Microbial Processing on Fibre Bundle Structure. In Proceedings of the Risoe International Symposium on Materials, Risoe, Denmark, 2–5 September 2013; Volume 34, pp. 373–380. [Google Scholar]
- Valladares Juárez, A.G.; Dreyer, J.; Göpel, P.K.; Koschke, N.; Frank, D.; Märkl, H.; Müller, R. Characterisation of a New Thermoalkaliphilic Bacterium for the Production of High-Quality Hemp Fibres, Geobacillus Thermoglucosidasius Strain PB94A. Appl. Microbiol. Biotechnol. 2009, 83, 521–527. [Google Scholar] [CrossRef]
- Müssig, J.; Harig, H. Filze Und Vliese aus Hanffasern. In Proceedings of the Second International Symposium “Biorohstoff Hanf”, Nova-Institut, Hürth, Germany, 27 February–2 March 1997. [Google Scholar]
- Manian, A.P.; Cordin, M.; Pham, T. Extraction of Cellulose Fibers from Flax and Hemp: A Review. Cellulose 2021, 28, 8275–8294. [Google Scholar] [CrossRef]
- Thapliyal, D.; Verma, S.; Sen, P.; Kumar, R.; Thakur, A.; Tiwari, A.K.; Singh, D.; Verros, G.D.; Arya, R.K. Natural Fibers Composites: Origin, Importance, Consumption Pattern, and Challenges. J. Compos. Sci. 2023, 7, 506. [Google Scholar] [CrossRef]
- Jankauskienė, Z.; Butkutė, B.; Gruzdevienė, E.; Cesevičienė, J.; Fernando, A.L. Chemical Composition and Physical Properties of Dew- and Water-Retted Hemp Fibers. Ind. Crops Prod. 2015, 75, 206–211. [Google Scholar] [CrossRef]
- Law, A.D.; McNees, C.R.; Moe, L.A. The Microbiology of Hemp Retting in a Controlled Environment: Steering the Hemp Microbiome towards More Consistent Fiber Production. Agronomy 2020, 10, 492. [Google Scholar] [CrossRef]
- Liu, M.; Fernando, D.; Daniel, G.; Madsen, B.; Meyer, A.S.; Ale, M.T.; Thygesen, A. Effect of Harvest Time and Field Retting Duration on the Chemical Composition, Morphology and Mechanical Properties of Hemp Fibers. Ind. Crops Prod. 2015, 69, 29–39. [Google Scholar] [CrossRef]
- Bhattacharya, S.D.; Shah, S.R. Degumming of Decorticated Ramie: Effects of Alkalis on Gummy Compositions Vis-à-Vis Their Properties. J. Text. Inst. 2007, 98, 431–436. [Google Scholar] [CrossRef]
- Kundu, P.K.; Sarmah, R.; Sarkar, C.R. Chemical Degumming and Fibre Characteristics of Ramie at Different Stages of Crop Growth. Indian J. Fibre Text. Res. 1996, 21, 205–209. [Google Scholar]
- Angelini, L.G.; Scalabrelli, M.; Tavarini, S.; Cinelli, P.; Anguillesi, I.; Lazzeri, A. Ramie Fibers in a Comparison between Chemical and Microbiological Retting Proposed for Application in Biocomposites. Ind. Crops Prod. 2015, 75, 178–184. [Google Scholar] [CrossRef]
- Parikh, D.V.; Calamari, T.A.; Sawhney, A.P.S.; Blanchard, E.J.; Screen, F.J.; Warnock, M.; Muller, D.H.; Stryjewski, D.D. Improved Chemical Retting of Kenaf Fibers. Text. Res. J. 2002, 72, 618–624. [Google Scholar] [CrossRef]
- Ramaswamy, G.N.; Ruff, C.G.; Boyd, C.R. Effect of Bacterial and Chemical Retting on Kenaf Fiber Quality. Text. Res. J. 1994, 64, 305–308. [Google Scholar] [CrossRef]
- Morrison, W.H.; Akin, D.E.; Ramaswamy, G.; Baldwin, B. Evaluating Chemically Retted Kenaf Using Chemical, Histochemical, and Microspectrophotometric Analyses. Text. Res. J. 1996, 66, 651–656. [Google Scholar] [CrossRef]
- Wulandari, A.P.; Kusmoro, J.; Ernawati, E.E. Standardization of Chemical Degumming and Biodegumming of Ramie Fiber Processing for Natural Fiber Supply Chain Strategy as A Source of Textile Raw Materials in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2023, 1211, 012008. [Google Scholar] [CrossRef]
- Kiyoto, S.; Yoshinaga, A.; Fernandez-Tendero, E.; Day, A.; Chabbert, B.; Takabe, K. Distribution of Lignin, Hemicellulose, and Arabinogalactan Protein in Hemp Phloem Fibers. Microsc. Microanal. 2018, 24, 442–452. [Google Scholar] [CrossRef]
- Zimniewska, M. Hemp Fibre Properties and Processing Target Textile: A Review. Materials 2022, 15, 1901. [Google Scholar] [CrossRef]
- Akin, D.E. Flax—Structure, Chemistry, Retting and Processing. In Industrial Applications of Natural Fibres; John Wiley & Sons, Ltd.: Chichester, UK, 2010; pp. 87–108. ISBN 978-0-470-66032-4. [Google Scholar]
- Blake, A.W.; Marcus, S.E.; Copeland, J.E.; Blackburn, R.S.; Knox, J.P. In Situ Analysis of Cell Wall Polymers Associated with Phloem Fibre Cells in Stems of Hemp, Cannabis sativa L. Planta 2008, 228, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.D.; Akin, D.E.; Foulk, J.A. Flax-Retting by Polygalacturonase-Containing Enzyme Mixtures and Effects on Fiber Properties. J. Biotechnol. 2002, 97, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Henriksson, G.; Johansson, G. Polygalacturonase Is the Key Component in Enzymatic Retting of Flax. J. Biotechnol. 2000, 81, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Meijer, W.J.M.; Vertregt, N.; Rutgers, B.; van de Waart, M. The Pectin Content as a Measure of the Retting and Rettability of Flax. Ind. Crops Prod. 1995, 4, 273–284. [Google Scholar] [CrossRef]
- Mokshina, N.; Chernova, T.; Galinousky, D.; Gorshkov, O.; Gorshkova, T. Key Stages of Fiber Development as Determinants of Bast Fiber Yield and Quality. Fibers 2018, 6, 20. [Google Scholar] [CrossRef]
- Wang, H.M.; Postle, R.; Kessler, R.W.; Kessler, W. Removing Pectin and Lignin During Chemical Processing of Hemp for Textile Applications. Text. Res. J. 2003, 73, 664–669. [Google Scholar] [CrossRef]
- Beltran, R.; Hurren, C.J.; Kaynak, A.; Wang, X. Correlating the Fineness and Residual Gum Content of Degummed Hemp Fibres. Fibers Polym. 2002, 3, 129–133. [Google Scholar] [CrossRef]
- Morrison III, W.H.; Archibald, D.D.; Sharma, H.S.S.; Akin, D.E. Chemical and Physical Characterization of Water- and Dew-Retted Flax Fibers. Ind. Crops Prod. 2000, 12, 39–46. [Google Scholar] [CrossRef]
- Nath, M.; Chowdhury, F.T.; Ahmed, S.; Das, A.; Islam, M.R.; Khan, H. Value Addition to Jute: Assessing the Effect of Artificial Reduction of Lignin on Jute Diversification. Heliyon 2021, 7, e06353. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Fei, B.-H.; Yu, Y.; Cheng, H.-T.; Wang, C.-G. Effect of the Amount of Lignin on Tensile Properties of Single Wood Fibers. For. Sci. Pract. 2013, 15, 56–60. [Google Scholar] [CrossRef]
- Kühnel, S. Modulation von Fasereigenschaften Durch Den Einsatz von Enzymen. In Proceedings of the Innovationsakademie Bioökonomie, Berlin/Brandenburg, Germany, 10 November 2020. [Google Scholar]
- Sharma, H.S.S.; Faughey, G.; Lyons, G. Comparison of Physical, Chemical, and Thermal Characteristics of Water-, Dew-, and Enzyme-Retted Flax Fibers. J. Appl. Polym. Sci. 1999, 74, 139–143. [Google Scholar] [CrossRef]
- Bourmaud, A.; Siniscalco, D.; Foucat, L.; Goudenhooft, C.; Falourd, X.; Pontoire, B.; Arnould, O.; Beaugrand, J.; Baley, C. Evolution of Flax Cell Wall Ultrastructure and Mechanical Properties during the Retting Step. Carbohydr. Polym. 2019, 206, 48–56. [Google Scholar] [CrossRef]
- Konczewicz, W.; Kryszak, N.; Nowaczkiewicz, E.; Kozlowski, R.; Wojtysiak, J.; Podsiedlik, W. Osmosis Phenomena Based Degumming of Bast Fibrous Plants as a Promising Method in Primary Processing. Mol. Cryst. Liq. Cryst. 2013, 571, 116–131. [Google Scholar] [CrossRef]
- Tanner, F.W. Microbiology of Flax Retting. Bot. Gaz. 1922, 74, 174–185. [Google Scholar] [CrossRef]
- Ruschmann, G. Grundlagen der Röste: Eine Wissenschaftlich-Technische Einführung für Bakteriologen, Landwirte, Röster, Spinner und Fachschüler; S. Hirzel: Zurich, Switzerland, 1923. [Google Scholar]
- Dujardin, A. The Retting of Flax; Carswell & Son Ltd.: Belfast, UK, 1948. [Google Scholar]
- Turner, A.J. Quality in Flax; Linen Industry Research Association: Lambeg, UK, 1954. [Google Scholar]
- Sharma, H.S.S. The Biology and Processing of Flax; M Publications: Belfast, UK, 1992. [Google Scholar]
- Mazian, B.; Cariou, S.; Chaignaud, M.; Fanlo, J.-L.; Fauconnier, M.-L.; Bergeret, A.; Malhautier, L. Evolution of Temporal Dynamic of Volatile Organic Compounds (VOCs) and Odors of Hemp Stem during Field Retting. Planta 2019, 250, 1983–1996. [Google Scholar] [CrossRef]
- Akin, D.E.; Dodd, R.B.; Perkins, W.; Henriksson, G.; Eriksson, K.-E.L. Spray Enzymatic Retting: A New Method for Processing Flax Fibers. Text. Res. J. 2000, 70, 486–494. [Google Scholar] [CrossRef]
- Placet, V.; Day, A.; Beaugrand, J. The Influence of Unintended Field Retting on the Physicochemical and Mechanical Properties of Industrial Hemp Bast Fibres. J. Mater. Sci. 2017, 52, 5759–5777. [Google Scholar] [CrossRef]
- Speri, M. Insights on Microbial and Biochemical Aspects of Retting for Bast Fiber Plant Processing in a Bioreactor. Ph.D. Dissertation, University of Verona, Department of Biotechnology, Verona, Italy, 2011. [Google Scholar]
- Henriksson, G.; Akin, D.E.; Hanlin, R.T.; Rodriguez, C.; Archibald, D.D.; Rigsby, L.L.; Eriksson, K.L. Identification and Retting Efficiencies of Fungi Isolated from Dew-Retted Flax in the United States and Europe. Appl. Environ. Microbiol. 1997, 63, 3950–3956. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Akhter, F. Jute Retting: An Overview. Available online: https://scialert.net/abstract/?doi=jbs.2001.685.688 (accessed on 22 December 2023).
- Yadav, S. Purification and Characterization of Pectin Lyase Produced by Aspergillus Terricola and Its Application in Retting of Natural Fibers. Appl. Biochem. Biotechnol. 2009, 159, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Wang, S.; Bergeron, H.; Zhang, J.; Lau, P.C.K. A Flax-Retting Endopolygalacturonase-Encoding Gene from Rhizopus Oryzae. Antonie Leeuwenhoek 2008, 94, 563–571. [Google Scholar] [CrossRef]
- Booth, I.; Goodman, A.M.; Grishanov, S.A.; Harwood, R.J. A Mechanical Investigation of the Retting Process in Dew-Retted Hemp (Cannabis sativa). Ann. Appl. Biol. 2004, 145, 51–58. [Google Scholar] [CrossRef]
- Molina, S.M.G.; Pelissari, F.A.; Vitorello, C.B.M. Screening and Genetic Improvement of Pectinolytic Fungi for Degumming of Textile Fibers. Braz. J. Microbiol. 2001, 32, 320–326. [Google Scholar] [CrossRef]
- Sisti, L.; Totaro, G.; Vannini, M.; Fabbri, P.; Kalia, S.; Zatta, A.; Celli, A. Evaluation of the Retting Process as a Pre-Treatment of Vegetable Fibers for the Preparation of High-Performance Polymer Biocomposites. Ind. Crops Prod. 2016, 81, 56–65. [Google Scholar] [CrossRef]
- Akin, D.E.; Rigsby, L.L.; Henriksson, G.; Eriksson, K.-E.L. Structural Effects on Flax Stems of Three Potential Retting Fungi. Text. Res. J. 1998, 68, 515–519. [Google Scholar] [CrossRef]
- Sharma, H. An Alternative Method of Flax Retting during Dry Weather. Ann. Appl. Biol. 1986, 109, 605–611. [Google Scholar] [CrossRef]
- Liu, M.; Ale, M.T.; Kołaczkowski, B.; Fernando, D.; Daniel, G.; Meyer, A.S.; Thygesen, A. Comparison of Traditional Field Retting and Phlebia Radiata Cel 26 Retting of Hemp Fibres for Fibre-Reinforced Composites. AMB Express 2017, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.M.; Siddiquee, S.; Kumar, V. Critical Factors for Optimum Biodegradation of Bast Fiber’s Gums in Bacterial Retting. Fibers 2021, 9, 52. [Google Scholar] [CrossRef]
- Bou Orm, E.; Sauvagère, S.; Rocher, J.; Benezet, J.-C.; Bayle, S.; Siatka, C.; Bergeret, A.; Malhautier, L. Estimating the Bias Related to DNA Recovery from Hemp Stems for Retting Microbial Community Investigation. Appl. Microbiol. Biotechnol. 2023, 107, 4665–4681. [Google Scholar] [CrossRef] [PubMed]
- Bleuze, L.; Chabbert, B.; Lashermes, G.; Recous, S. Hemp Harvest Time Impacts on the Dynamics of Microbial Colonization and Hemp Stems Degradation during Dew Retting. Ind. Crops Prod. 2020, 145, 112122. [Google Scholar] [CrossRef]
- Konczewicz, W.; Zimniewska, M.; Valera, M.A. The Selection of a Retting Method for the Extraction of Bast Fibers as Response to Challenges in Composite Reinforcement. Text. Res. J. 2018, 88, 2104–2119. [Google Scholar] [CrossRef]
- Dey, P.; Mahapatra, B.S.; Pramanick, B.; Kumar, A.; Negi, M.S.; Paul, J.; Shukla, D.K.; Singh, S.P. Quality Optimization of Flax Fibre through Durational Management of Water Retting Technology under Sub-Tropical Climate. Ind. Crops Prod. 2021, 162, 113277. [Google Scholar] [CrossRef]
- Ruan, P.; Raghavan, V.; Gariepy, Y.; Du, J. Characterization of Flax Water Retting of Different Durations in Laboratory Condition and Evaluation of Its Fiber Properties. BioResources 2015, 10, 3553–3563. [Google Scholar] [CrossRef]
- Grossart, H.-P.; Van den Wyngaert, S.; Kagami, M.; Wurzbacher, C.; Cunliffe, M.; Rojas-Jimenez, K. Fungi in Aquatic Ecosystems. Nat. Rev. Microbiol. 2019, 17, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, E.; León, A.G.; Perito, B.; Di Candilo, M.; Mastromei, G. Exploitation of Bacterial Pectinolytic Strains for Improvement of Hemp Water Retting. Euphytica 2004, 140, 47–54. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhu, R.Y.; Chen, J.Y.; Chen, J.M.; Feng, X.X. Seawater-Retting Treatment of Hemp and Characterization of Bacterial Strains Involved in the Retting Process. Process Biochem. 2008, 43, 1195–1201. [Google Scholar] [CrossRef]
- Abou-Elela, S.I.; Ali, M.E.M.; Ibrahim, H.S. Combined Treatment of Retting Flax Wastewater Using Fenton Oxidation and Granular Activated Carbon. Arab. J. Chem. 2016, 9, 511–517. [Google Scholar] [CrossRef]
- Ge, J.P.; Liu, P.F.; Ling, H.Z.; Cai, B.Y.; Song, G.; Ping, W.X. Using Bacteria Addition and Reusing Retting Water Technologies to Accelerate Flax Degumming. Appl. Mech. Mater. 2014, 522–524, 374–379. [Google Scholar] [CrossRef]
- Fawzy, M.; Badr, N.; Abou-Elela, S. Remediation and Reuse of Retting Flax Wastewater. J. Environ. Sci. Technol. 2018, 11, 1961–1968. [Google Scholar]
- Castaldini, M.; Miclaus, N.; Miclaus, N. Effects of Hemp Retting Water on the Composition of Soil Bacterial Community and on Wheat Yield. Ital. J. Agron. 2001, 5, 21–27. [Google Scholar]
- Jayashree, C.; Sweta, S.; Arulazhagan, P.; Yeom, I.T.; Iqbal, M.I.I.; Rajesh Banu, J. Electricity Generation from Retting Wastewater Consisting of Recalcitrant Compounds Using Continuous Upflow Microbial Fuel Cell. Biotechnol. Bioprocess Eng. 2015, 20, 753–759. [Google Scholar] [CrossRef]
- Sharma, H.S.S. The Role of Bacteria in Retting of Desiccated Flax during Damp Weather. Appl. Microbiol. Biotechnol. 1986, 24, 463–467. [Google Scholar] [CrossRef]
- Sharma, H.S.S. Effects of the Application of Chemical Additives to Desiccated Flax on Retting. Biotechnol. Lett. 1986, 8, 219–223. [Google Scholar] [CrossRef]
- Sampaio, S.; Bishop, D.; Shen, J. Physical and Chemical Properties of Flax Fibres from Stand-Retted Crops Desiccated at Different Stages of Maturity. Ind. Crops Prod. 2005, 21, 275–284. [Google Scholar] [CrossRef]
- Heinemann, O. Standröste von Flachs—Innovation in der Flachserntetechnik. In Proceedings of the VDI/MEG Kolloquium Agrartechnik: Erzeugung, Aufbereitung und Verarbeitung von Naturfasern für Nichttextile Zwecke, Bonn, Germany, 6–7 August 1997; Volume 22, pp. 101–107. [Google Scholar]
- Pasila, A. The Effect of Frost on Fibre Plants and Their Processing. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 2000, 353, 11–22. [Google Scholar] [CrossRef]
- Pasila, A. The Dry-Line Method in Bast Fibre Production. Ph.D. Dissertation, Department of Agricultural Engineering and Household Technology, University of Helsinki, Helsinki, Finland, 2004. [Google Scholar]
- Hoffmann, T.; Pecenka, R.; Schemel, H.; Gusovius, H.-J. Process-Technological Evaluation of Harvesting Hemp in Winter. J. Nat. Fibers 2013, 10, 159–175. [Google Scholar] [CrossRef]
- Ivanovs, S.; Adamovics, A.; Rucins, A. Investigation of the Technological Spring Harvesting Variants of the Industrial Hemp Stalk Mass. Agron. Res. 2015, 13, 73–82. [Google Scholar]
- Marrot, L.; Alao, P.F.; Mikli, V.; Kers, J. Properties of Frost-Retted Hemp Fibers for the Reinforcement of Composites. J. Nat. Fibers 2022, 19, 16017–16028. [Google Scholar] [CrossRef]
- Kymäläinen, H.-R. Quality of Linum usitatissimum L. (Flax and Linseed) and Cannabis sativa L. (Fibre Hemp) during the Production Chain of Fibre Raw Material for Thermal Insulations; University of Helsinki: Helsinki, Finland, 2004. [Google Scholar]
- Kymäläinen, H.-R. Hygienic Quality of Stem Fractions of Mechanically Processed Fiber Hemp and Linseed. Agric. Food Sci. 2005, 14, 143–153. [Google Scholar] [CrossRef]
- Kymäläinen, H.-R.; Hautala, M.; Kuisma, R.; Pasila, A. Capillarity of Flax/Linseed (Linum usitatissimum L.) and Fibre Hemp (Cannabis sativa L.) Straw Fractions. Ind. Crops Prod. 2001, 14, 41–50. [Google Scholar] [CrossRef]
- Nykter, M. Microbial Quality of Hemp (Cannabis sativa L.) and Flax (Linum usitatissimum L.) from Plants to Thermal Insulation. Ph.D. Dissertation, University of Helsinki, Helsinki, Finland, 2006. [Google Scholar]
- Nykter, M.; Kymäläinen, H.-R.; Thomsen, A.B.; Lilholt, H.; Koponen, H.; Sjöberg, A.-M.; Thygesen, A. Effects of Thermal and Enzymatic Treatments and Harvesting Time on the Microbial Quality and Chemical Composition of Fibre Hemp (Cannabis sativa L.). Biomass Bioenergy 2008, 32, 392–399. [Google Scholar] [CrossRef]
- Repeèkienë, J.; Lugauskas, A.; Jankauskiene, Z. Diversity of Fungal Species on Laid and Stand-Retted Flax. Bot. Lith. 2007, 13, 51–59. [Google Scholar]
- Assirelli, A.; Dal Re, L.; Esposito, S.; Cocchi, A.; Santangelo, E. The Mechanical Harvesting of Hemp Using In-Field Stand-Retting: A Simpler Approach Converted to the Production of Fibers for Industrial Use. Sustainability 2020, 12, 8795. [Google Scholar] [CrossRef]
- Richter, S. Der Anbau von Faserhanf (Cannabis sativa L.) als Winterzwischenfrucht. Ph.D. Dissertation, Bergische Universität, Wuppertal, Germany, 2018. [Google Scholar]
- Liu, J.; Guan, Z.; Li, Z. Application of Cryogenic and Mechanical Treatment in Degumming of Hemp Stems. Biosyst. Eng. 2018, 174, 144–152. [Google Scholar] [CrossRef]
- Akin, D.E.; Himmelsbach, D.S.; Morrison, W.H. Biobased Fiber Production: Enzyme Retting for Flax/Linen Fibers. J. Polym. Environ. 2000, 8, 103–109. [Google Scholar] [CrossRef]
- Sauvageon, T.; Lavoie, J.-M.; Segovia, C.; Brosse, N. Toward the Cottonization of Hemp Fibers by Steam Explosion—Part 1: Defibration and Morphological Characterization. Text. Res. J. 2018, 88, 1047–1055. [Google Scholar] [CrossRef]
- Summerscales, J. A Review of Bast Fibres and Their Composites: Part 4~Organisms and Enzyme Processes. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106149. [Google Scholar] [CrossRef]
- Sharma, H.S.S.; Mercer, P.C.; Brown, A.E. A Review of Recent Research on the Retting of Flax in Northern Ireland. Int. Biodeterior. 1989, 25, 327–342. [Google Scholar] [CrossRef]
- Li, Y.; Pickering, K.L.; Farrell, R.L. Analysis of Green Hemp Fibre Reinforced Composites Using Bag Retting and White Rot Fungal Treatments. Ind. Crops Prod. 2009, 29, 420–426. [Google Scholar] [CrossRef]
- Fan, P.; He, F.; Yang, Y.; Ao, M.; Ouyang, J.; Liu, Y.; Yu, L. In-Situ Microbial Degumming Technology with Bacillus Sp. HG-28 for Industrial Production of Ramie Fibers. Biochem. Eng. J. 2015, 97, 50–58. [Google Scholar] [CrossRef]
- Horne, M.R.L. 5B—Bast Fibres: Hemp Cultivation and Production. In Handbook of Natural Fibres, 2nd ed.; Kozłowski, R.M., Mackiewicz-Talarczyk, M., Eds.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Sawston, MA, USA, 2020; pp. 163–196. ISBN 978-0-12-818398-4. [Google Scholar]
- Subash, M.C.; Muthiah, P. Eco-Friendly Degumming of Natural Fibers for Textile Applications: A Comprehensive Review. Clean. Eng. Technol. 2021, 5, 100304. [Google Scholar] [CrossRef]
- Moawad, H.; Abd El-Rahim, W.M.; Hashem, M.M.; Gebreil, G.M.; Sabbor, A.; Sedik, M.Z. Retting and Degumming of Flax Using Biotechnology Eco-Friendly Approach. Egypt. J. Chem. 2019, 62, 2033–2045. [Google Scholar] [CrossRef]
- Chiliveri, S.R.; Koti, S.; Linga, V.R. Retting and Degumming of Natural Fibers by Pectinolytic Enzymes Produced from Bacillus Tequilensis SV11-UV37 Using Solid State Fermentation. SpringerPlus 2016, 5, 559. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, G.; Akin, D.E.; Slomczynski, D.; Eriksson, K.-E.L. Production of Highly Efficient Enzymes for Flax Retting by Rhizomucor Pusillus. J. Biotechnol. 1999, 68, 115–123. [Google Scholar] [CrossRef]
- Akin, D.E.; Morrison, W.H.; Gamble, G.R.; Rigsby, L.L.; Henriksson, G.; Eriksson, K.-E.L. Effect of Retting Enzymes on the Structure and Composition of Flax Cell Walls. Text. Res. J. 1997, 67, 279–287. [Google Scholar] [CrossRef]
- De Prez, J.; Van Vuure, A.W.; Ivens, J.; Aerts, G.; Van de Voorde, I. Enzymatic Treatment of Flax for Use in Composites. Biotechnol. Rep. 2018, 20, e00294. [Google Scholar] [CrossRef] [PubMed]
- Van Sumere, C.F.; Sharma, H.S.S. (PDF) Analyses of Fine Flax Fibre Produced by Enzymatic Retting. Available online: https://www.researchgate.net/publication/281414439_Analyses_of_fine_flax_fibre_produced_by_enzymatic_retting (accessed on 9 September 2019).
- Fischer, H.; Müssig, J.; Bluhm, C. Enzymatic Modification of Hemp Fibres for Sustainable Production of High Quality Materials. J. Nat. Fibers 2006, 3, 39–53. [Google Scholar] [CrossRef]
- Henriksson, G.; Eriksson, K.-E.L.; Kimmel, L.; Akin, D.E. Chemical/Physical Retting of Flax Using Detergent and Oxalic Acid at High pH. Text. Res. J. 1998, 68, 942–947. [Google Scholar] [CrossRef]
- Akin, D.E.; Foulk, J.A.; Dodd, R.B.; McAlister, D.D. Enzyme-Retting of Flax and Characterization of Processed Fibers. J. Biotechnol. 2001, 89, 193–203. [Google Scholar] [CrossRef]
- Sharma, H.S.S. Chemical Retting of Flax Using Chelating Compounds. Ann. Appl. Biol. 1988, 113, 159–165. [Google Scholar] [CrossRef]
- Marek, J.; Antonov, V.; Bjelkova, M.; Smirous, P.; Fischer, H.; Janosik, S. Enzymatic Bioprocessing—New Tool of Extensive Natural Fibre Source Utilization. In Proceedings of the International Conference on Flax and Other Bast Plants, Saskatoon, SK, Canada, 20–23 July 2008; pp. 21–23. [Google Scholar]
- Adamsen, A.P.S.; Akin, D.E.; Rigsby, L.L. Chemical Retting of Flax Straw Under Alkaline Conditions. Text. Res. J. 2002, 72, 789–794. [Google Scholar] [CrossRef]
- van den Oever, M.J.A.; Bas, N.; van Soest, L.J.M.; Melis, C.; van Dam, J.E.G. Improved Method for Fibre Content and Quality Analysis and Their Application to Flax Genetic Diversity Investigations. Ind. Crops Prod. 2003, 18, 231–243. [Google Scholar] [CrossRef]
- Bredemann, G. Die Bestimmung des Fasergehaltes Bei Massenuntersuchungen von Hanf, Flachs. Fasernesseln Und Anderen Bastfaserpflanzen. Faserforschung 1942, 16, 14–39. [Google Scholar]
- Garcia-Jaldon, C.; Dupeyre, D.; Vignon, M.R. Fibres from Semi-Retted Hemp Bundles by Steam Explosion Treatment. Biomass Bioenergy 1998, 14, 251–260. [Google Scholar] [CrossRef]
- Kessler, R.W.; Becker, U.; Kohler, R.; Goth, B. Steam Explosion of Flax—A Superior Technique for Upgrading Fibre Value. Biomass Bioenergy 1998, 14, 237–249. [Google Scholar] [CrossRef]
- Vignon, M.R.; Dupeyre, D.; Garcia-Jaldon, C. Morphological Characterization of Steam-Exploded Hemp Fibers and Their Utilization in Polypropylene-Based Composites. Bioresour. Technol. 1996, 58, 203–215. [Google Scholar] [CrossRef]
- Väisänen, T.; Kilpeläinen, P.; Kitunen, V.; Lappalainen, R.; Tomppo, L. Effect of Steam Treatment on the Chemical Composition of Hemp (Cannabis sativa L.) and Identification of the Extracted Carbohydrates and Other Compounds. Ind. Crops Prod. 2019, 131, 224–233. [Google Scholar] [CrossRef]
- Ruan, P.; Du, J.; Gariepy, Y.; Raghavan, V. Characterization of Radio Frequency Assisted Water Retting and Flax Fibers Obtained. Ind. Crops Prod. 2015, 69, 228–237. [Google Scholar] [CrossRef]
- Ruan, P.; Raghavan, V.; Du, J.; Gariepy, Y.; Lyew, D.; Yang, H. Effect of Radio Frequency Pretreatment on Enzymatic Retting of Flax Stems and Resulting Fibers Properties. Ind. Crops Prod. 2020, 146, 112204. [Google Scholar] [CrossRef]
- Nair, G.R.; Rho, D.; Raghavan, G.S.V. Application of Electro-Technologies in Processing of Flax Fiber. Fibers 2013, 1, 21–35. [Google Scholar] [CrossRef]
- Nair, G.R.; Kurian, J.; Yaylayan, V.; Rho, D.; Lyew, D.; Raghavan, G.S.V. Microwave-Assisted Retting and Optimization of the Process through Chemical Composition Analysis of the Matrix. Ind. Crops Prod. 2014, 52, 85–94. [Google Scholar] [CrossRef]
- Nair, G.R.; Lyew, D.; Yaylayan, V.; Raghavan, V. Application of Microwave Energy in Degumming of Hemp Stems for the Processing of Fibres. Biosyst. Eng. 2015, 131, 23–31. [Google Scholar] [CrossRef]
- Ruan, P.; Du, J.; Raghavan, V.; Lyew, D.; Gariepy, Y.; Yang, H. Microwave Pretreated Enzymatic Retting of Flax Stems and Comparison with the Effect of Radio Frequency Pretreatment. Ind. Crops Prod. 2020, 151, 112312. [Google Scholar] [CrossRef]
- Easson, D.L.; Anderson, R.; Sharma, H.S.S. The Sealed Storage of Moist Flax with and without the Use of Chemical Preservatives. Ann. Appl. Biol. 1994, 125, 567–579. [Google Scholar] [CrossRef]
- Maeyer, E.A.A.D.; Huisman, W. New Technology for Harvesting and Storage of Fibre Hemp for Paper Pulp. J. Int. Hemp Assoc. 1994, 1, 2–41. [Google Scholar]
- von Buttlar, H.-B.; Müssig, J.; Theis, M. Products from Hemp Silage. In Proceedings of the Second International Symposium ‘Biorohstoff Hanf’, Frankfurt am Main, Germany, 27 February–2 March 1997; Nova-Institut: Köln/Hürth, Germany, 1997. [Google Scholar]
- Einsiedel, R.; Bayer, R.; Buttlar, H.B.V.; Scheffer, K. Fibres and Composites from Hemp Silage. In Proceedings of the 10th International Conference ‘Biomass for Energy and Industry’, Würzburg, Germany, 8–11 June 1998; Kopetz, H., Weber, T., Palz, W., Chartier, P., Ferrero, G.L., Eds.; Carmen Publ.: Würzburg, Germany, 1998; pp. 509–510. [Google Scholar]
- Gusovius, H.-J.; Lühr, C.; Hoffmann, T.; Pecenka, R.; Idler, C. An Alternative to Field Retting: Fibrous Materials Based on Wet Preserved Hemp for the Manufacture of Composites. Agriculture 2019, 9, 140. [Google Scholar] [CrossRef]
- Idler, C.; Pecenka, R.; Fürll, C.; Gusovius, H.-J. Wet Processing of Hemp: An Overview. J. Nat. Fibers 2011, 8, 59–80. [Google Scholar] [CrossRef]
- Pecenka, R.; Idler, C.; Grundmann, P.; Fuerll, C.; Gusovius, H.-J. Tube Ensiling of Hemp—Initial Practical Experience. Wiss. Z. Agrartech. Forschungseinrichtungen 2007, 13, 15–26. [Google Scholar]
- Clarke, A.; Dennis, H.; Wang, X.; Hurren, C. Degumming of Bast Fibres 2004. U.S. Patent US20040191888A1, 30 September 2004. [Google Scholar]
- McAlister III, D.D.; Foulk, J.A.; Akin, D.E.; Annis, P.A. Cotton Fibers: Properties and Interaction with Flax Fibers in Blends: Focus on Rotor Spun Yarn. In Proceedings of the 26th International Cotton Conference Bremen, Faserinstitut, Bremen, Germany, 24–27 March 2002; pp. 207–211. [Google Scholar]
- Schenek, A. Naturfaser-Lexikon; Edition Textil; Dt. Fachverl.: Frankfurt am Main, Germany, 2001; ISBN 978-3-87150-638-3. [Google Scholar]
- Różańska, W.; Romanowska, B.; Rojewski, S. The Quantity and Quality of Flax and Hemp Fibers Obtained Using the Osmotic, Water-, and Dew-Retting Processes. Materials 2023, 16, 7436. [Google Scholar] [CrossRef] [PubMed]
- Song, K.H.; Obendorf, S.K. Chemical and Biological Retting of Kenaf Fibers. Text. Res. J. 2006, 76, 751–756. [Google Scholar] [CrossRef]
- Jean, L.J.L. Process for the Chemical Retting of Lengths of Vegetable Textiles 1955. U.S. Patent US2725289A, 29 November 1955. [Google Scholar]
- Zhu, R.; Yu, Y.; Yang, W.; Zhao, J.; Shi, G.; Liu, J. Novel Scouring Method of Hemp Fibers Based on Electrochemical Techniques. Text. Res. J. 2021, 91, 2215–2224. [Google Scholar] [CrossRef]
- Li, Y.; Pickering, K.L. The Effect of Chelator and White Rot Fungi Treatments on Long Hemp Fibre-Reinforced Composites. Compos. Sci. Technol. 2009, 69, 1265–1270. [Google Scholar] [CrossRef]
- Costard, H. Process for Treating Sclerenchyma Fibers, in Particular Flax 1995. World Patent WO1995001468A1, 21 June 1995. [Google Scholar]
- Koschek, K. Design of Natural Fiber Composites Utilizing Interfacial Crystallinity and Affinity. Compos. Part A Appl. Sci. Manuf. 2015, 69, 21–29. [Google Scholar] [CrossRef]
- Müller-Hülstede, J.; Schäfer, H.; Schiffels, P.; Bottke, P.; Wark, M.; Koschek, K. Surface-Initiated Ring-Opening Polymerization of ɛ-Caprolactone as a Feasible Approach to Modify Flax Yarn. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106714. [Google Scholar] [CrossRef]
- Duan, S.; Xu, B.; Cheng, L.; Feng, X.; Yang, Q.; Zheng, K.; Gao, M.; Liu, Z.; Liu, C.; Peng, Y. Bacterial Strain for Bast Fiber Crops Degumming and Its Bio-Degumming Technique. Bioprocess Biosyst. Eng. 2021, 44, 2503–2512. [Google Scholar] [CrossRef] [PubMed]
- Wojtasik, W.; Majewska, K.; Dymińska, L.; Hanuza, J.; Zimniewska, M.; Preisner, M.; Szopa, J.; Wróbel-Kwiatkowska, M. Optimization of Hydrodynamic Degumming of Flax Fiber for Improved Biochemical Profile. Ind. Crops Prod. 2023, 206, 117621. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Ma, Y.; Li, Y.; Li, H.; Ren, L. Microbial Community Structure of Anaerobic Biological Hemp Fiber Continuous Stream Degumming System. J. Environ. Chem. Eng. 2022, 10, 108057. [Google Scholar] [CrossRef]
- Sharma, H.S.S. Enzymatic Degradation of Residual Non-Cellulosic Polysaccharides Present on Dew-Retted Flax Fibres. Appl. Microbiol. Biotechnol. 1987, 26, 358–362. [Google Scholar] [CrossRef]
- Xu, H.; Feng, X.; Yang, Q.; Zheng, K.; Yi, L.; Duan, S.; Cheng, L. Improvement on Thermostability of Pectate Lyase and Its Potential Application to Ramie Degumming. Polymers 2022, 14, 2878. [Google Scholar] [CrossRef]
- Yang, Q.; Duan, S.; Cheng, L.; Feng, X.; Zheng, K.; Liu, Z.; Gao, M.; Peng, Y. An Effective Degumming Technology for Ramie Fibers Based on Microbial Coculture Strategy. J. Nat. Fibers 2022, 19, 1555–1565. [Google Scholar] [CrossRef]
- Ding, J.; Zhou, C.; Dong, Z. Trend of Ramie Industry Development: A Review of Green Degumming and the Utilization of Processing Residues. J. Clean. Prod. 2023, 384, 135487. [Google Scholar] [CrossRef]
- Ren, Y.; Lin, H.; Gong, J.; Li, Z.; Li, Q.; Liu, X.; Zhang, J. A New Method for Bio-Degumming in Less-Water Environment: Solid-State-Fermentation Progressive Bio-Degumming. Ind. Crops Prod. 2022, 183, 114986. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, W.; Nie, K.; Zhang, Y.; Ben, H.; Han, G.; Ragauskas, A.J. An Alkali-Free Method to Manufacture Ramie Fiber. Text. Res. J. 2019, 89, 3653–3659. [Google Scholar] [CrossRef]
- Sutka, A.; Kukle, S.; Gravitis, J.; Berzins, A. Chemical and Physical Modification of Hemp Fibres by Steam Explosion Technology. IOP Conf. Ser. Mater. Sci. Eng. 2013, 49, 012053. [Google Scholar] [CrossRef]
- Keller, A. Compounding and Mechanical Properties of Biodegradable Hemp Fibre Composites. Compos. Sci. Technol. 2003, 63, 1307–1316. [Google Scholar] [CrossRef]
- Zimmer, H.; Kloss, K.D. Ultrasonic Break down of Hemp. In Proceedings of the Symposium Bioresource Hemp, Frankfurt, Germany, 2–5 March 1995. [Google Scholar]
- Renouard, S.; Hano, C.; Doussot, J.; Blondeau, J.-P.; Lainé, E. Characterization of Ultrasonic Impact on Coir, Flax and Hemp Fibers. Mater. Lett. 2014, 129, 137–141. [Google Scholar] [CrossRef]
- Borsa, J.; László, K.; Boguslavsky, L.; Takács, E.; Rácz, I.; Tóth, T.; Szabó, D. Effect of Mild Alkali/Ultrasound Treatment on Flax and Hemp Fibres: The Different Responses of the Two Substrates. Cellulose 2016, 23, 2117–2128. [Google Scholar] [CrossRef]
- Zimniewska, M.; Zbrowski, A.; Konczewicz, W.; Majcher, A.; Przybylski, J.; Matecki, K.; Wiśniewski, M.; Kicińska-Jakubowska, A.; Mańkowski, J. Cottonisation of Decorticated Flax Fibres. Fibres Text. East. Eur. 2017, 25, 123. [Google Scholar] [CrossRef]
- Moussa, M.; El Hage, R.; Sonnier, R.; Chrusciel, L.; Ziegler-Devin, I.; Brosse, N. Toward the Cottonization of Hemp Fibers by Steam Explosion. Flame-Retardant Fibers. Ind. Crops Prod. 2020, 151, 112242. [Google Scholar] [CrossRef]
- Bouloc, P.; Allegret, S.; Arnaud, L. Hemp: Industrial Production and Uses; CABI: Wallingford, UK, 2013; ISBN 978-1-84593-792-8. [Google Scholar]
- Amaducci, S.; Gusovius, H.-J. Hemp—Cultivation, Extraction and Processing. In Industrial Applications of Natural Fibres; John Wiley & Sons, Ltd.: Chichester, UK, 2010; pp. 109–134. ISBN 978-0-470-66032-4. [Google Scholar]
Fiber Crop Straw/Stalks (before Primary Processing) | Separated Bast Containing Fiber or Fiber Bundles (in Further/Secondary Processing) | ||
---|---|---|---|
retting | naturally (dew/field, water, stand) | X | |
inoculation with microorganisms | X | ||
enzymatic treatment | X | ||
chemical treatment | X | ||
Physico (-chemical) treatment | X | ||
degumming | Inoculation with microorganisms | X | |
enzymatic treatment | X | ||
chemical treatment | X | ||
Physico(-chemical) treatment | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angulu, M.; Gusovius, H.-J. Retting of Bast Fiber Crops Like Hemp and Flax—A Review for Classification of Procedures. Fibers 2024, 12, 28. https://doi.org/10.3390/fib12030028
Angulu M, Gusovius H-J. Retting of Bast Fiber Crops Like Hemp and Flax—A Review for Classification of Procedures. Fibers. 2024; 12(3):28. https://doi.org/10.3390/fib12030028
Chicago/Turabian StyleAngulu, Morris, and Hans-Jörg Gusovius. 2024. "Retting of Bast Fiber Crops Like Hemp and Flax—A Review for Classification of Procedures" Fibers 12, no. 3: 28. https://doi.org/10.3390/fib12030028
APA StyleAngulu, M., & Gusovius, H. -J. (2024). Retting of Bast Fiber Crops Like Hemp and Flax—A Review for Classification of Procedures. Fibers, 12(3), 28. https://doi.org/10.3390/fib12030028