Evaluation of Hydrothermally Treated Wood Fibre Performance in Cement Mortars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Wood Fibres and Hydrothermal Treatment
2.1.2. Chemical Analysis of Fibres
2.1.3. Preparation of Mortars
2.2. Methods
3. Results and Discussion
3.1. Physical Properties
3.2. Mechanical Properties
3.3. Hygrothermal Properties
3.4. Weathering Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Ligne, L.; Van Acker, J.; Baetens, J.M.; Omar, S.; De Baets, B.; Thygesen, L.G.; Van den Bulcke, J.; Thybring, E. Moisture Dynamics of Wood-Based Panels and Wood Fibre Insulation Materials. Front. Plant Sci. 2022, 13, 951175. [Google Scholar] [CrossRef]
- Sierra Beltran, M.G.; Schlangen, E. Interface bond characteristics between wood fibres and a cement matrix. Brittle Matrix Compos. 2009, 9, 43–51. [Google Scholar] [CrossRef]
- Sierra Beltran, M.G.; Schlangen, E. Fibre-matrix interface properties in a wood fibre reinforced cement matrix. Proceedings of FraMCoS-7, 23–28 May 2010. In Fracture Mechanics of Concrete and Concrete Structures-High Performance, Fibre Reinforced Concrete, Special Loadings and Structural Applications; Oh, B.H., Ed.; Korea Concrete Institute: Seoul, Republic of Korea, 2010; pp. 1425–1430. ISBN 978-89-5708-182-2. Available online: https://www.framcos.org/FraMCoS-7/12-07.pdf (accessed on 1 October 2023).
- Han, F.Q.; Tan, X.; Zhao, F.Q. Modification of Wood Fibre for Use in Cement Board. IOP Conf. Ser. Mater. Sci. Eng. 2017, 281, 012020. [Google Scholar] [CrossRef]
- Shao, Y.; Moras, S.; Ulkem, N.; Kubes, G. Wood fibre-cement composites by extrusion. Can. J. Civ. Eng. 2000, 27, 543–552. [Google Scholar] [CrossRef]
- Da Silva Bertolini, M.; Inácio de Campos, C.; de Souza, A.M.; Hallak Panzera, T.; Christoforo A Land Rocco Lahr, F.A. Wood-cement composites from wastes of Pinus Sp. wood: Effect of particles treatment. Int. J. Compos. Mater. 2014, 4, 146–149. [Google Scholar] [CrossRef]
- Vo, L.T.; Navard, P. Treatments of plant biomass for cementitious building materials—A review. Constr. Build. Mater. 2016, 121, 161–176. [Google Scholar] [CrossRef]
- Stefanidou, M.; Kampragkou, P.; Kamperidou, V. Wood fibres as additives in mortars: A sustainable reinforcement. IOP Conf. Ser. Earth Environ. Sci. 2023, 1196, 012067. [Google Scholar] [CrossRef]
- Badejo, S.O.O. Effect of flake geometry on properties of cement-bonded particle board from mixed tropical hardwoods. Wood Sci. Technol. 1988, 22, 357–369. [Google Scholar] [CrossRef]
- Frybort, S.; Mauritz, R.; Teischinger, A.; Muller, U. Cement bonded composites: A mechanical review. BioResources 2008, 3, 602–626. [Google Scholar] [CrossRef]
- Soares Del Menez, C.H.; de Castro, V.G.; de Souza, M.R. Production and properties of amedium density wood-cement boards produced with oriented strands and silica fume. Maderas. Cienc. Tecnol. 2007, 9, 105–115. [Google Scholar]
- Zakaria, M.; Ahmed, M.; Hoque, M.; Islam, S. Scope of using jute fibre for the reinforcement of concrete material Text. Cloth. Sustain. 2016, 2, 11. [Google Scholar] [CrossRef]
- Campbell, M.D.; Coutts, R.S.P. Wood fibre-reinforced cement composites. J. Mater. Sci. 1980, 15, 1962–1970. [Google Scholar] [CrossRef]
- Moslemi, A. Technology and market considerations for fibre cement composites. In Proceedings of the 11th International Inorganic-Bonded Fiber Composites Conference, Madrid, Spain, 5–7 November 2008; pp. 113–129. [Google Scholar]
- Sierra Beltran, M.G.; Schlangen, E. Wood fibre reinforced cement matrix: A micromechanical based approach. Key Eng. Mater. 2008, 385–387, 445–458. [Google Scholar] [CrossRef]
- Morjène, L.; Aloulou, F.; Seffen, M. Effect of organoclay and wood fibre inclusion on the mechanical properties and thermal conductivity of cement-based mortars. Comptes Rendus. Chim. 2020, 23, 733–746. [Google Scholar] [CrossRef]
- Kamperidou, V. The Biological Durability of Thermally- and Chemically-Modified Black Pine and Poplar Wood against Basidiomycetes and Mold Action. Forests 2019, 10, 1111. [Google Scholar] [CrossRef]
- Lin, C.; Kanstad, T.; Jacobsen, S.; Ji, G. Bonding property between fiber and cementitious matrix: A critical review. Constr. Build. Mater. 2023, 378, 131169. [Google Scholar] [CrossRef]
- Cai, C.; Javed, M.A.; Komulainen, S.; Telkki, V.V.; Haapala, A.; Heräjärvi, H. Effect of natural weathering on water absorption and pore size distribution in thermally modified wood determined by nuclear magnetic resonance. Cellulose 2020, 27, 4235–4247. [Google Scholar] [CrossRef]
- Stefanidou, M.; Kamperidou, V.; Konstantinidis, A.; Koltsou, P.; Papadopoulos, S. Use of Posidonia oceanica fibres in lime mortars. Constr. Build. Mater. 2021, 298, 123881. [Google Scholar] [CrossRef]
- Stefanidou, M.; Kamperidou, V.; Konstantinidis, A.; Koltsou, P.; Papadopoulos, S. 24-Rheological properties of biofibres in cementitious composite matrix. In Advances in Bio-Based Fibre; Elsevier: Amsterdam, The Netherlands, 2022; pp. 553–573. [Google Scholar] [CrossRef]
- ISO 13061-1; Physical and Mechanical Properties of Wood. Test Methods for Small Clear Wood Specimens. Part 1: Determination of Moisture Content for Physical and Mechanical Tests. ISO: Geneva, Switzerland, 2014.
- Garcia, R.A.; de Carvalho, A.M.; Latorraca, J.V.; de Matos, J.M.; Santos, W.A.; De Medeiros Silva, R.F. Nondestructive evaluation of heat-treated Eucalyptus grandis Hill ex Maiden wood using stress wave method. Wood Sci. Technol. 2010, 46, 41–52. [Google Scholar] [CrossRef]
- Esteves, B.; Velez Marques, A.; Domingos, I.; Pereira, H. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas Cienc. Y Tecnol. 2013, 15, 245–258. [Google Scholar] [CrossRef]
- Kamperidou, V. Chemical and Structural Characterization of Poplar and Black Pine Wood Exposed to Short Thermal Modification. Drv. Ind. 2021, 72, 155–167. [Google Scholar] [CrossRef]
- Kotilainen, R.; Toivannen, T.; Alén, R. FTIR monitoring of chemical changes in softwood during heating. J. Wood Chem. Technol. 2000, 20, 307–320. [Google Scholar] [CrossRef]
- Stefanidou, M.; Papayianni, I.; Pachta, V. Evaluation of inclusions in mortars of different historical periods from greek monuments. Archaeometry 2012, 54, 737–751. [Google Scholar] [CrossRef]
- EN 1015-3; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table). CEN/TC 125. CEN: Brussels, Belgium, 2020.
- RILEM. CPC 11.3 Absorption d’eau par immersion sous vide. Mater. Et Constr. 1984, 17, 391–394. [Google Scholar] [CrossRef]
- EN 1015-18; Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar. CEN: Brussels, Belgium, 2002.
- EN 16322; Conservation of Cultural Heritage—Test Methods—Determination of Drying Properties. CEN: Brussels, Belgium, 2013.
- EN 1015-11; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. CEN: Brussels, Belgium, 2019.
- EN 12504-4; Testing Concrete in Structures—Part 4: Determination of Ultrasonic Pulse Velocity. CEN: Brussels, Belgium, 2021.
- Kesikidou, F.; Stefanidou, M. Natural fiber-reinforced mortars. J. Build. Eng. 2019, 25, 100786. [Google Scholar] [CrossRef]
- EN 12667; Thermal Performance of Building Materials and Products. Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods. Products of High and Medium Thermal Resistance. CEN: Brussels, Belgium, 2001.
- EN 1015-19; Methods of Test for Mortar for Masonry—Part 19: Determination of Water Vapour Permeability of Hardened Rendering and Plastering Mortars. CEN: Brussels, Belgium, 2019.
- ISO 12572; Hygrothermal Performance of Building Materials and Products. Determination of Water Vapour Transmission Properties Cup Method. ISO: Geneva, Switzerland, 2016.
- ASTM C666/ C666M-03; Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. ASTM: West Conshohocken, PA, USA, 2015.
- Çavdar, A. Investigation of freeze–thaw effects on mechanical properties of fiber reinforced cement mortars. Compos. Part B Eng. 2014, 58, 463–472. [Google Scholar] [CrossRef]
- Markovski, G.; Ćećez, M.; Šahinagić-Isović, M. Shrinkage strain of concrete-causes and types. Građevinar 2012, 64, 727–734. [Google Scholar] [CrossRef]
- Ajouguim, S.; Stefanidou, M.; Abdelouahdi, K.; Waqif, M.; Saâdi, L. Influence of treated bio-fibers on the mechanical and physical properties of cement mortars. Eur. J. Environ. Civ. Eng. 2022, 26, 3120–3135. [Google Scholar] [CrossRef]
- Zobel, B. Tree breeding, practices | biological improvement of wood properties. Encycl. For. Sci. 2004, 1458–1466. [Google Scholar] [CrossRef]
- Esteves, L.P. On the hydration of water-entrained cement–silica systems: Combined SEM, XRD and thermal analysis in cement pastes. Thermochim. Acta 2011, 518, 27–35. [Google Scholar] [CrossRef]
- De Azevedo, A.R.G.; Marvila, M.T.; Tayeh, B.A.; Cecchin, D.; Pereira, A.C.; Monteiro, S.N. Technological performance of açaí natural fibre reinforced cement-based mortars. J. Build. Eng. 2021, 33, 101675. [Google Scholar] [CrossRef]
- Seyam, A.M.; Nemes, R. Age influence on compressive strength for concrete made with different types of aggregates after exposed to high temperatures. Mater. Today Proc. 2023, S2214785323037975. [Google Scholar] [CrossRef]
- Caronge, M.A.; Tjaronge, M.W.; Hamada, H.; Irmawaty, R. Effect of water curing duration on strength behaviour of portland composite cement (Pcc) mortar. IOP Conf. Ser. Mater. Sci. Eng. 2017, 271, 012018. [Google Scholar] [CrossRef]
- Tolêdo Filho, R.D.; Scrivener, K.; England, G.L.; Ghavami, K. Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cem. Concr. Compos. 2000, 22, 127–143. [Google Scholar] [CrossRef]
- Chavhan, P.P.; Vyawahare, M.R. Correlation of Compressive strength and Dynamic modulus of Elasticity for high strength SCC Mixes. Int. J. Eng. Technol. Res. 2015, 3, 42–46. [Google Scholar]
- Jongvisuttisun, P.; Kurtis, K.E. The role of hardwood pulp fibers in mitigation of early-age cracking. Cem. Concr. Compos. 2015, 57, 84–93. [Google Scholar] [CrossRef]
- Wei, J.; Meyer, C. Degradation rate of natural fiber in cement composites exposed to various accelerated aging environment conditions. Corros. Sci. 2014, 88, 118–132. [Google Scholar] [CrossRef]
- Smith, D.S.; Alzina, A.; Bourret, J.; Nait-Ali, B.; Pennec, F.; Tessier-Doyen, N.; Otsu, K.; Matsubara, H.; Elser, P.; Gonzenbach, U.T. Thermal conductivity of porous materials. J. Mater. Res. 2013, 28, 2260–2272. [Google Scholar] [CrossRef]
- Androutsopoulos, A.; Aptalidou, F.; Aravantinos, D.; Theodosiou, T.; Labropoulou, H.; Laskos, K.; Tsikaloudaki, C.; Avdelidis, N.; Axarli, K.; Argyriou, A.; et al. EBPD 20701-2/2017. Detailed National Performance Specifications for the Thermophysical Properties of Building Materials and Control of the Thermal Insulation Adequacy of Buildings, 1st ed.; Technical Chamber of Greece: Athens, Greece, 2017. [Google Scholar]
- Grammatikos, S.; Riley, M.; Bras, A. Analysis of dynamic moisture movement within bio-based earth mortars. Constr. Build. Mater. 2021, 306, 124862. [Google Scholar] [CrossRef]
- Zhang, H.; Yoshino, H.; Hasegawa, K. Assessing the moisture buffering performance of hygroscopic material by using experimental method. Build. Environ. 2012, 48, 27–34. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, T.; Jiang, C.; Chen, Z.; Zhou, K.; Chen, L. The freeze-thaw strength evolution of fiber-reinforced cement mortar based on NMR and fractal theory: Considering porosity and pore distribution. Materials 2022, 15, 7316. [Google Scholar] [CrossRef] [PubMed]
- Soroushian, P.; Won, J.-P.; Hassan, M. Durability characteristics of CO2-cured cellulose fiber reinforced cement composites. Constr. Build. Mater. 2012, 34, 44–53. [Google Scholar] [CrossRef]
Mortars | Cement | Aggregates | Wood Fibres (% v/v) | w/c | Superplasticiser (% w/w) | Workability (cm) |
---|---|---|---|---|---|---|
C’R | 1 | 2.5 | - | 0.45 | - | 12.0 |
C’pn | 1 | 2.5 | 1.5 | 0.45 | 0.25 | 12.0 |
C’fs | 1 | 2.5 | 1.5 | 0.45 | 0.25 | 12.0 |
Sample | Absorption (%) | Open Porosity (%) | Specific Gravity [g/cm3] | ||||||
---|---|---|---|---|---|---|---|---|---|
28 d | 90 d | 365 d | 28 d | 90 d | 365 d | 28 d | 90 d | 365 d | |
C’R | 1.77 | 2.43 | 2.33 | 3.91 | 5.29 | 5.20 | 2.21 | 2.18 | 2.20 |
C’pn | 2.74 | 2.79 | 2.80 | 5.93 | 6.04 | 6.18 | 2.16 | 2.16 | 2.14 |
C’fs | 3.48 | 2.65 | 3.19 | 7.38 | 5.78 | 6.85 | 2.12 | 2.16 | 2.15 |
Samples | λ [W/(m*K)] | μ | |||||
---|---|---|---|---|---|---|---|
28 Days | 90 Days | 365 Days | |||||
10 °C | 20 °C | 10 °C | 20 °C | 10 °C | 20 °C | ||
C’R | 1.2597 | 1.3008 | 1.2050 | 1.2586 | 1.1101 | 1.0723 | 57 |
C’pn | 0.8093 | 0.8302 | 0.8032 | 0.8474 | 0.7440 | 0.7210 | 44 |
C’fs | 0.9251 | 0.9426 | 0.9164 | 0.9158 | 0.9421 | 0.9635 | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampragkou, P.; Kamperidou, V.; Stefanidou, M. Evaluation of Hydrothermally Treated Wood Fibre Performance in Cement Mortars. Fibers 2024, 12, 21. https://doi.org/10.3390/fib12030021
Kampragkou P, Kamperidou V, Stefanidou M. Evaluation of Hydrothermally Treated Wood Fibre Performance in Cement Mortars. Fibers. 2024; 12(3):21. https://doi.org/10.3390/fib12030021
Chicago/Turabian StyleKampragkou, Petrini, Vasiliki Kamperidou, and Maria Stefanidou. 2024. "Evaluation of Hydrothermally Treated Wood Fibre Performance in Cement Mortars" Fibers 12, no. 3: 21. https://doi.org/10.3390/fib12030021
APA StyleKampragkou, P., Kamperidou, V., & Stefanidou, M. (2024). Evaluation of Hydrothermally Treated Wood Fibre Performance in Cement Mortars. Fibers, 12(3), 21. https://doi.org/10.3390/fib12030021