Experimental and Statistical Study of the Effect of Steel Fibers and Design Strength on the Variability in Repeated Impact Test Results
Abstract
:1. Introduction
2. The Experimental Work
2.1. Materials and Mixture Details
2.2. Repeated Impact Test
3. Results and Discussion
3.1. Compressive Strength
3.2. Influence of Investigated Parameters on Impact Number Results
3.2.1. Influence of Steel Fibers
3.2.2. Influence of Compressive Strength
3.3. Variation Analysis of Impact Number Results
4. Normality Analysis of Impact Number Results
5. Weibull Distribution
6. Conclusions
- The test results showed that the addition of 0.5% steel fibers to the NC mixture resulted in an increase of the cracking impact number (N1) by approximately 26 to 66%, while increasing the fiber percentage to 1.0% increased the N1 by approximately 101 to 111%. Moreover, incorporating 0.5% of steel fibers increased the failure impact number (N2) by approximately 114%, while adding 1.0% of steel fibers resulted in a significant jump in the N2 by approximately 374% compared to the NC reference specimens. The positive role of steel fibers becomes higher after cracking than before cracking due to the increase in crack numbers, width and length, which means that most of the steel fibers crossing the cracks become active in crack arresting.
- Duplicating the design compressive strength of the specimens from 40 to 80 MPa increased the impact strength by approximately three times. The percentage increase in N1 of the HC over the NC was approximately 192%, while it was approximately 188% at the failure stage (N2). The results also showed that the effect of compressive strength on the impact strength was higher than the effect of steel fibers at the cracking stage, while steel fibers were more effective at the failure stage.
- There was no specific fixed trend of an increase or decrease in result variability, represented by the COV, with the content of steel fibers. However, it was recorded that at the cracking stage, fibrous mixtures exhibited slightly higher COVs compared to plain specimens, while their COVs were lower at the failure stage. The normal distribution histograms showed that none of the four mixtures exhibited a clear tendency to follow the normal distribution, which was also confirmed by the probability plots, while the p-values of the Anderson–Darling normality test showed no significant departure from the normal distribution.
- The results of all of the specimens that were evaluated using the Weibull distribution showed a linear correlation, whereas the information showing impact strength approximated the Weibull distribution with two parameters. Therefore, a Weibull distribution with only two parameters can be considered as a good technique to save money and time by doing away with the need for an actual experiment. The designers can then use a determined reliability–impact strength curve to choose the suitable impact strength needed for engineering calculations.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, H.; Tao, J.; Chen, Y.; Li, D.; Jia, B.; Zhai, Y. Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete. Constr. Build. Mater. 2019, 224, 504–514. [Google Scholar] [CrossRef]
- Larsen, I.L.; Thorstensen, R.T. The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: A review. Constr. Build. Mater. 2020, 256, 119459. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Shi, C.; Chen, X. Experimental and numerical study on tensile strength and failure pattern of high performance steel fiber reinforced concrete under dynamic splitting tension. Constr. Build. Mater. 2020, 259, 119796. [Google Scholar] [CrossRef]
- Yixin, C.; Jianye, Z.; Jicheng, M.; Shunli, Z.; Yongsheng, L.; Zhixuan, Z. Tensile strength and fracture toughness of steel fiber reinforced concrete measured from small notched beams. Case Stud. Constr. Mater. 2022, 17, e01401. [Google Scholar] [CrossRef]
- Chen, G.; Gao, D.; Zhu, H.; Yuan, J.S.; Xiao, X.; Wang, W. Effects of novel multiple hooked-end steel fibres on flexural tensile behaviour of notched concrete beams with various strength grades. Structures 2021, 33, 3644–3654. [Google Scholar] [CrossRef]
- Abbass, A.A.; Abid, S.R.; Özakça, M. Experimental investigation on the effect of steel fibers on the flexural behavior and ductility of high-strength concrete hollow beams. Adv. Civ. Eng. 2019, 2019, 8390345. [Google Scholar] [CrossRef]
- Sabetifar, H.; Nematzadeh, M. An evolutionary approach for formulation of ultimate shear strength of steel fiber-reinforced concrete beams using gene expression programming. Structures 2021, 34, 4965–4976. [Google Scholar] [CrossRef]
- Algassem, O.; Li, Y.; Aoude, H. Ability of steel fibers to enhance the shear and flexural behavior of high-strength concrete beams subjected to blast loads. Eng. Struct. 2019, 199, 109611. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Tran, M.T.; Kim, S.; Bakhshpoori, T.; Deo, R.C. Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: A new approach. Eng. Struct. 2018, 177, 244–255. [Google Scholar] [CrossRef]
- Maya, L.F.; Ruiz, M.F.; Muttoni, A.; Foster, S.J. Punching shear strength of steel fibre reinforced concrete slabs. Eng. Struct. 2012, 40, 83–94. [Google Scholar] [CrossRef]
- Arna’ot, F.H.; Abbass, A.A.; Abualtemen, A.A.; Abid, S.R.; Özakça, M. Residual strength of high strength concentric column-SFRC flat plate exposed to high temperatures. Constr. Build. Mater. 2017, 154, 204–218. [Google Scholar] [CrossRef]
- Ju, M.; Ju, J.-W.W.; Sim, J. A new formula of punching shear strength for fiber reinforced polymer (FRP) or steel reinforced two-way concrete slabs. Compos. Struct. 2021, 259, 113471. [Google Scholar] [CrossRef]
- Ali, S.H.; Ayoob, N.S.; Abdul Hussein, M.L.; Abid, S.R. Water impact-abrasion erosion of hybrid fiber-reinforced high performance concrete. Nano Hybrids Compos. 2020, 30, 63–72. [Google Scholar]
- Liu, Y.-W.; Lin, Y.-Y.; Cho, S.-W. Abrasion behavior of steel-fiber-reinforced concrete in hydraulic structures. Appl. Sci. 2020, 10, 5562. [Google Scholar] [CrossRef]
- Ayoob, N.S.; Abid, S.R.; Hilo, A.N. Water-impact abrasion of self-compacting concrete. Mag. Civ. Eng. 2020, 96, 60–69. [Google Scholar]
- Zhang, W.; Chen, S.; Liu, Y. Effect of weight and drop height of hammer on the flexural impact performance of fiber-reinforced concrete. Constr. Build. Mater. 2017, 140, 31–35. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, C.; Cheng, X.; Li, V.C.; He, L. Impact fatigue behaviour of GFRP mesh reinforced engineered cementitious composites for runway pavement. Constr. Build. Mater. 2020, 230, 116398. [Google Scholar] [CrossRef]
- Salaimanimagudam, M.P.; Suribabu, C.R.; Murali, G.; Abid, S.R. Impact response of hammerhead pier fibrous concrete beams designed with topology optimization. Period. Polytech. Civ. Eng. 2020, 64, 1244–1258. [Google Scholar] [CrossRef]
- Kryžanowski, A.; Mikoš, M.; Šušteršič, J.; Ukrainczyk, V.; Planinc, I. Abrasion resistance of concrete in hydraulic structures. ACI Mater. J. 2009, 106, 349–356. [Google Scholar]
- Abid, S.R.; Ali, S.H.; Murali, G.; Al-Gasham, T.S. A simple suggested approach to reduce the testing time of concrete surface abrasion using ASTM C1138. Case Studies Constr. Mater. 2021, 15, e00685. [Google Scholar] [CrossRef]
- Zarrabi, N.; Moghim, M.N.; Eftekhar, M.R. Effect of hydraulic parameters on abrasion erosion of fiber reinforced concrete in hydraulic structures. Constr. Build. Mater. 2021, 267, 120966. [Google Scholar] [CrossRef]
- Nili, M.; Afroughsabet, V. Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. Int. J. Impact Eng. 2010, 37, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Chen, S.; Zhang, N.; Zhou, Y. Low-velocity flexural impact response of steel fiber reinforced concrete subjected to freeze-thaw cycles in NaCl solution. Constr. Build. Mater. 2015, 101, 522–526. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Fang, J.; Su, Y.; Wu, C. Ultra-high performance concrete targets against high velocity projectile impact—A-state-of-the-art review. Int. J. Impact Eng. 2022, 160, 104080. [Google Scholar] [CrossRef]
- Feng, J.; Gao, X.; Li, J.; Dong, H.; He, Q.; Liang, J.; Sun, W. Penetration resistance of hybrid-fiber-reinforced high-strength concrete under projectile multi-impact. Constr. Build. Mater. 2019, 202, 341–352. [Google Scholar] [CrossRef]
- Lee, M.; Park, G.K.; Kim, S.W.; Kwak, H.G. Damage characteristics of high performance fiber-reinforced cement composites panels subjected to projectile impact. Int. J. Mech. Sci. 2022, 214, 106919. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Abdelgader, H.S.; Amran, Y.H.M.; Shekarchi, M.; Wilde, K. Repeated projectile impact tests on multi-layered fibrous cementitious composites. Int. J. Civ. Eng. 2021, 19, 635–651. [Google Scholar] [CrossRef]
- Mina, A.L.; Petrou, M.F.; Trezos, K.G. Resistance of an optimized ultra-high performance fiber reinforced concrete to projectile impact. Buildings 2021, 11, 63. [Google Scholar] [CrossRef]
- Ziada, M.; Erdem, S.; Tammam, Y.; Kara, S.; Lezcano, R.A.G. The effect of basalt fiber on mechanical, microstructural, and high-temperature properties of fly ash-based and basalt powder waste-filled sustainable geopolymer mortar. Sustainability 2021, 13, 12610. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Banthia, N. Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Constr. Build. Mater. 2017, 149, 416–431. [Google Scholar] [CrossRef]
- Yılmaz, T.; Anil, Ö.; Tuğrul Erdem, R. Experimental and numerical investigation of impact behavior of RC slab with different opening size and layout. Structures 2022, 35, 818–832. [Google Scholar] [CrossRef]
- Batran, T.Z.; Ismail, M.K.; Hassan, A.A.A. Behavior of novel hybrid lightweight concrete composites under drop-weight impact loading. Structures 2021, 34, 2789–2800. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, W.; Tran, T.T.; Pham, T.M.; Hao, H.; Chen, Z.; Elchalakani, M. Experimental and numerical study on concrete beams reinforced with Basalt FRP bars under static and impact loads. Compos. Struct. 2021, 263, 113648. [Google Scholar] [CrossRef]
- Ashraf, M.R.; Akmal, U.; Khurram, N.; Aslam, F.; Deifalla, A.F. Impact resistance of Styrene–Butadiene Rubber (SBR) latex-modified fiber-reinforced concrete: The Role of Aggregate Size. Materials 2022, 15, 1283. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Van Beers, L.; Spiesz, P.; Brouwers, H.J.H. Impact resistance of a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) under pendulum impact loadings. Constr. Build. Mater. 2016, 107, 203–215. [Google Scholar] [CrossRef]
- Saleem, M.A.; Saleem, M.M.; Ahmad, Z.; Hayat, S. Predicting compressive strength of concrete using impact modulus of toughness. Case Stud. Constr. Mater. 2021, 14, e00518. [Google Scholar] [CrossRef]
- ACI 544.2R-89; Measurement of Properties of Fiber Reinforced Concrete. American Concrete Institute: Farmington Hills, MI, USA, 1999.
- Jabir, H.A.; Abid, S.R.; Murali, G.; Ali, S.H.; Klyuev, S.; Fediuk, R.; Vatin, N.; Promakhov, V.; Vasilev, Y. Experimental tests and reliability analysis of the cracking impact resistance of uhpfrc. Fibers 2020, 8, 74. [Google Scholar] [CrossRef]
- Abid, S.R.; Abbass, A.A.; Murali, G.; Al-Sarray, M.L.J.; Nader, I.A.; Ali, S.H. Repeated impact response of normal- and high-strength concrete subjected to temperatures up to 600 °C. Materials 2022, 15, 5283. [Google Scholar] [CrossRef]
- Nili, M.; Afroughsabet, V. The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Constr. Build. Mater. 2010, 24, 927–933. [Google Scholar] [CrossRef]
- Alavi Nia, A.; Hedayatian, M.; Nili, M.; Sabet, V.A. An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete. Int. J. Impact Eng. 2012, 46, 62–73. [Google Scholar] [CrossRef]
- Fakharifar, M.; Dalvand, A.; Arezoumandi, M.; Sharbatdar, M.K.; Chen, G.; Kheyroddin, A. Mechanical properties of high performance fiber reinforced cementitious composites. Comput. Chem. Eng. 2014, 71, 510–520. [Google Scholar] [CrossRef]
- Al-Ameri, R.A.; Abid, S.R.; Murali, G.; Ali, S.H.; Özakça, M.; Vatin, N.I. Residual impact performance of ECC subjected to sub-high temperatures. Materials 2022, 15, 454. [Google Scholar] [CrossRef] [PubMed]
- Al-Ameri, R.A.; Abid, S.R.; Özakça, M. Mechanical and impact properties of engineered cementitious composites reinforced with PP fibers at elevated temperatures. Fire 2022, 5, 3. [Google Scholar] [CrossRef]
- Ismail, M.K.; Hassan, A.A.A.; Lachemi, M. Performance of Self-Consolidating Engineered Cementitious Composite under Drop-Weight Impact Loading. J. Mater. Civ. Eng. 2019, 31, 04018400. [Google Scholar] [CrossRef]
- Yildirim, S.T.; Ekinci, C.E.; Findik, F. Properties of hybrid fiber reinforced concrete under repeated impact loads 1. Russ. J. Nondestruct. Test. 2010, 46, 538–546. [Google Scholar] [CrossRef]
- Ali, M.A.E.M.; Soliman, A.M.; Nehdi, M.L. Hybrid-fiber reinforced engineered cementitious composite under tensile and impact loading. Mater. Des. 2017, 117, 139–149. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A. The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces. Compos. Part B Eng. 2016, 92, 360–376. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A. The impact resistance and mechanical properties of the reinforced self-compacting concrete incorporating recycled CFRP fiber with different lengths and dosages. Compos. Part B Eng. 2017, 112, 74–92. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A.R. The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fibre reinforced polymers. J. Clean. Prod. 2016, 124, 312–324. [Google Scholar] [CrossRef]
- Abid, S.R.; Gunasekaran, M.; Ali, S.H.; Kadhum, A.L.; Al-Gasham, T.S.; Fediuk, R.; Vatin, N.; Karelina, M. Impact performance of steel fiber-reinforced self-compacting concrete against repeated drop weight impact. Crystals 2021, 11, 91. [Google Scholar] [CrossRef]
- Murali, G.; Prasad, N.; Klyuev, S.; Fediuk, R.; Abid, S.R.; Amran, M.; Vatin, N. Impact resistance of functionally layered two-stage fibrous concrete. Fibers 2021, 9, 88. [Google Scholar] [CrossRef]
- Kathirvel, P.; Murali, G.; Vatin, N.I.; Abid, S.R. Experimental study on self compacting fibrous concrete comprising magnesium sulphate solution treated recycled aggregates. Materials 2022, 15, 340. [Google Scholar] [CrossRef] [PubMed]
- Murali, G.; Abid, S.R.; Amran, M.; Fediuk, R.; Vatin, N.; Karelina, M. Combined effect of multi-walled carbon nanotubes, steel fibre and glass fibre mesh on novel two-stage expanded clay aggregate concrete against impact loading. Crystals 2021, 11, 720. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Mugahed Amran, Y.H.; Abdelgader, H.S.; Fediuk, R.; Susrutha, A.; Poonguzhali, K. Impact performance of novel multi-layered prepacked aggregate fibrous composites under compression and bending. Structures 2020, 28, 1502–1515. [Google Scholar] [CrossRef]
- Wang, W.; Chouw, N. The behaviour of coconut fibre reinforced concrete (CFRC) under impact loading. Constr. Build. Mater. 2017, 134, 452–461. [Google Scholar] [CrossRef]
- Swaminathan, P.; Karthikeyan, K.; Subbaram, S.R.; Sudharsan, J.S.; Abid, S.R.; Murali, G.; Vatin, N.I. Experimental and statistical investigation to evaluate impact strength variability and reliability of preplaced aggregate concrete containing crumped rubber and fibres. Materials 2022, 15, 5156. [Google Scholar] [CrossRef]
- AbdelAleem, B.H.; Ismail, M.K.; Hassan, A.A.A. The combined effect of crumb rubber and synthetic fibers on impact resistance of self-consolidating concrete. Constr. Build. Mater. 2018, 162, 816–829. [Google Scholar] [CrossRef]
- Khalil, E.; Abd-Elmohsen, M.; Anwar, A.M. Impact resistance of rubberized self-compacting concrete. Water Sci. 2015, 29, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.K.; Hassan, A.A.A. Impact resistance and mechanical properties of self-consolidating rubberized concrete reinforced with steel fibers. J. Mater. Civ. Eng. 2017, 29, 04016193. [Google Scholar] [CrossRef]
- Vatin, N.I.; Murali, G.; Abid, S.R.; de Azevedo, A.R.G.; Tayeh, B.; Dixit, S. Enhancing the impact strength of prepacked aggregate fibrous concrete using asphalt-coated aggregates. Materials 2022, 15, 2598. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Vatin, N.I.; Amran, M.; Fediuk, R. Influence of height and weight of drop hammer on impact strength and fracture toughness of two-stage fibrous concrete comprising nano carbon tubes. Constr. Build. Mater. 2022, 349, 128782. [Google Scholar] [CrossRef]
- Soroushian, P.; Nagi, M.; Alhozaimy, A. Statistical variations in the mechanical properties of carbon fiber reinforced cement composites. ACI Mater. J. 1992, 89, 131–138. [Google Scholar]
- Badr, A.; Ashour, A.F. Modified ACI drop-weight impact test for concrete. ACI Mater. J. 2005, 102, 249–255. [Google Scholar]
- Abid, S.R.; Abdul Hussein, M.L.; Ali, S.H.; Kazem, A.F. Suggested modified testing techniques to the ACI 544-R repeated drop-weight impact test. Constr. Build. Mater. 2020, 244, 118321. [Google Scholar] [CrossRef]
- Myers, J.J.; Tinsley, M. Impact resistance of blast mitigation material using modified ACI drop-weight impact test. ACI Mater. J. 2013, 110, 339–348. [Google Scholar] [CrossRef]
- Badr, A.; Ashour, A.F.; Platten, A.K. Statistical variations in impact resistance of polypropylene fibre-reinforced concrete. Int. J. Impact Eng. 2006, 32, 1907–1920. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.C.; Zhu, H.; Li, H.R. Drop-weight impact test on U-shape concrete specimens with statistical and regression analyses. Materials 2015, 8, 5877–5890. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim Haruna, S.; Zhu, H.; Jiang, W.; Shao, J. Evaluation of impact resistance properties of polyurethane-based polymer concrete for the repair of runway subjected to repeated drop-weight impact test. Constr. Build. Mater. 2021, 309, 125152. [Google Scholar] [CrossRef]
- Ramakrishnan, K.; Depak, S.R.; Hariharan, K.R.; Abid, S.R.; Murali, G.; Cecchin, D.; Fediuk, R.; Mugahed Amran, Y.H.; Abdelgader, H.S.; Khatib, J.M. Standard and modified falling mass impact tests on preplaced aggregate fibrous concrete and slurry infiltrated fibrous concrete. Constr. Build. Mater. 2021, 298, 123857. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Amran, M.; Vatin, N.I.; Fediuk, R. Drop weight impact test on prepacked aggregate fibrous concrete—An experimental study. Materials 2022, 15, 3096. [Google Scholar] [CrossRef]
- Nataraja, M.C.; Dhang, N.; Gupta, A.P. Statistical variations in impact resistance of steel fiber-reinforced concrete subjected to drop weight test. Cem. Concr. Res. 1999, 29, 989–995. [Google Scholar] [CrossRef]
- Song, P.S.; Wu, J.C.; Hwang, S.; Sheu, B.C. Statistical analysis of impact strength and strength reliability of steel-polypropylene hybrid fiber-reinforced concrete. Constr. Build. Mater. 2005, 19, 1–9. [Google Scholar] [CrossRef]
- Song, P.S.; Wu, J.C.; Hwang, S.; Sheu, B.C. Assessment of statistical variations in impact resistance of high-strength concrete and high-strength steel fiber-reinforced concrete. Cem. Concr. Res. 2005, 35, 393–399. [Google Scholar] [CrossRef]
- Rahmani, T.; Kiani, B.; Shekarchi, M.; Safari, A. Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test. Constr. Build. Mater. 2012, 37, 360–369. [Google Scholar] [CrossRef]
- Schrader, E.K. Impact Resistance and Test Procedure for Concrete. J. Am. Concr. Inst. 1981, 78, 141–146. [Google Scholar] [CrossRef]
- Li, P.P.; Cao, Y.Y.Y.; Sluijsmans, M.J.C.; Brouwers, H.J.H.; Yu, Q. Synergistic effect of steel fibres and coarse aggregates on impact properties of ultra-high performance fibre reinforced concrete. Cem. Concr. Compos. 2021, 115, 103866. [Google Scholar] [CrossRef]
- Chen, M.; Si, H.; Fan, X.; Xuan, Y.; Zhang, M. Dynamic compressive behaviour of recycled tyre steel fibre reinforced concrete. Constr. Build. Mater. 2022, 3, 125896. [Google Scholar] [CrossRef]
- Meesala, C.R. Influence of different types of fiber on the properties of recycled aggregate concrete. Struct. Concr. 2019, 20, 1656–1669. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Y.J.; Yang, Z.-J.; Guo, F.-Q.; Shen, L.-H. 3D meso-scale investigation of ultra high performance fibre reinforced concrete (UHPFRC) using cohesive crack model and Weibull random field. Constr. Build. Mater. 2022, 327, 127013. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Vatin, N.I. Experimental and analytical modeling of flexural impact strength of preplaced aggregate fibrous concrete beams. Materials 2022, 15, 3857. [Google Scholar] [CrossRef]
- Abid, S.R.; Ali, S.H.; Goaiz, H.A.; Al-Gasham, T.S.; Kadhim, A.L. Impact resistance of steel fiber-reinforced self-compacting concrete. Mag. Civ. Eng. 2021, 105, 2712–8172. [Google Scholar] [CrossRef]
- Murali, G.; Prasad, N.; Abid, S.R.; Vatin, N.I. Response of functionally graded preplaced aggregate fibrous concrete with superior impact strength. Buildings 2022, 12, 563. [Google Scholar] [CrossRef]
- Abid, S.R.; Murali, G.; Ahmad, J.; Al-Ghasham, T.S.; Vatin, N.I. Repeated drop-weight impact testing of fibrous concrete: State-of-the-art literature review, analysis of results variation and test improvement suggestions. Materials 2022, 15, 3948. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Li, D.; Zhang, Y.; Azevedo, C. Experimental investigation on the composite effect of steel rebars and macro fibers on the impact behavior of high performance self-compacting concrete. Constr. Build. Mater. 2017, 136, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Prasad, N.; Murali, G. Exploring the impact performance of functionally-graded preplaced aggregate concrete incorporating steel and polypropylene fibres. J. Build. Eng. 2021, 35, 102077. [Google Scholar] [CrossRef]
- Lv, J.; Zhou, T.; Du, Q.; Li, K. Experimental and analytical study on uniaxial compressive fatigue behavior of self-compacting rubber lightweight aggregate concrete. Constr. Build. Mater. 2020, 237, 117623. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Guo, S.; Huang, Y.; Xu, W. Experimental study on fatigue properties of normal and rubberized self-compacting concrete under bending. Constr. Build. Mater. 2019, 205, 10–20. [Google Scholar] [CrossRef]
- Murali, G.; Gayathri, R.; Ramkumar, V.R.; Karthikeyan, K. Two statistical scrutinize of impact strength and strength reliability of steel Fibre-Reinforced concrete. KSCE J. Civ. Eng. 2018, 22, 257–269. [Google Scholar] [CrossRef]
Material (kg/m3) | NC | NC-SF0.5 | NC-SF1.0 | HC |
---|---|---|---|---|
Cement | 450 | 450 | 450 | 709.5 |
Sand | 675 | 670 | 665 | 648 |
Gravel | 990 | 982 | 974 | 870 |
Water | 207 | 207 | 207 | 189.2 |
SP | - | 1.3 | 1.7 | 4.44 |
Steel Fiber | 0 | 39.25 | 78.5 | 0 |
Mixture | NC | NC-SF0.5 | NC-SF1.0 | HC | ||||
---|---|---|---|---|---|---|---|---|
No. | N1 | N2 | N1 | N2 | N1 | N2 | N1 | N2 |
1 | 103 | 107 | 68 | 144 | 225 | 491 | 224 | 226 |
2 | 106 | 108 | 115 | 241 | 178 | 287 | 282 | 287 |
3 | 50 | 53 | 65 | 154 | 84 | 222 | 363 | 367 |
4 | 47 | 51 | 188 | 283 | 208 | 514 | 325 | 328 |
5 | 80 | 83 | 132 | 212 | 100 | 486 | 188 | 191 |
6 | 73 | 75 | 148 | 174 | 172 | 483 | 156 | 158 |
Mean | 76.5 | 79.5 | 119.333 | 201.333 | 161.167 | 413.833 | 256.333 | 259.5 |
STD | 28.0838 | 27.7993 | 50.7868 | 58.5978 | 63.6867 | 135.209 | 71.5073 | 72.0396 |
COV | 36.7109 | 34.9676 | 42.5588 | 29.1049 | 39.5161 | 32.6724 | 27.8962 | 27.7609 |
Mixture | NC | NC-SF0.5 | NC-SF1.0 | HC | ||||
---|---|---|---|---|---|---|---|---|
No. | N1 | N2 | N1 | N2 | N1 | N2 | N1 | N2 |
1 | 152 | 153 | 83 | 135 | 220 | 501 | 337 | 338 |
2 | 140 | 141 | 74 | 202 | 358 | 795 | 80 | 82 |
3 | 64 | 65 | 152 | 234 | 230 | 450 | 279 | 280 |
4 | 49 | 50 | 198 | 245 | 228 | 540 | 440 | 442 |
5 | 106 | 107 | 232 | 284 | 127 | 315 | 399 | 400 |
6 | 141 | 142 | 84 | 118 | 145 | 300 | 169 | 170 |
Mean | 108.667 | 109.667 | 137.167 | 203 | 218 | 483.5 | 284 | 285.333 |
STD | 43.514 | 43.514 | 67.3273 | 65.0169 | 81.8022 | 180.952 | 138.012 | 137.943 |
COV | 40.0435 | 39.6784 | 49.0843 | 32.028 | 37.5239 | 37.4254 | 48.5956 | 48.3445 |
Mixture | NC | NC-SF0.5 | NC-SF1.0 | HC | ||||
---|---|---|---|---|---|---|---|---|
No. | N1 | N2 | N1 | N2 | N1 | N2 | N1 | N2 |
1 | 103 | 107 | 68 | 144 | 225 | 491 | 224 | 226 |
2 | 106 | 108 | 115 | 241 | 178 | 287 | 282 | 287 |
3 | 50 | 53 | 65 | 154 | 84 | 222 | 363 | 367 |
4 | 47 | 51 | 188 | 283 | 208 | 514 | 325 | 328 |
5 | 80 | 83 | 132 | 212 | 100 | 486 | 188 | 191 |
6 | 73 | 75 | 148 | 174 | 172 | 483 | 156 | 158 |
7 | 152 | 153 | 83 | 135 | 220 | 501 | 337 | 338 |
8 | 140 | 141 | 74 | 202 | 358 | 795 | 80 | 82 |
9 | 64 | 65 | 152 | 234 | 230 | 450 | 279 | 280 |
10 | 49 | 50 | 198 | 245 | 228 | 540 | 440 | 442 |
11 | 106 | 107 | 232 | 284 | 127 | 315 | 399 | 400 |
12 | 141 | 142 | 84 | 118 | 145 | 300 | 169 | 170 |
Mean | 92.5833 | 94.5833 | 128.25 | 202.167 | 189.583 | 448.667 | 270.167 | 272.417 |
STD | 36.3093 | 35.8611 | 57.2592 | 52.96 | 75.7262 | 152.654 | 109.042 | 109.006 |
COV | 39.2179 | 37.9148 | 44.6466 | 26.1962 | 39.9435 | 34.024 | 40.3608 | 40.0143 |
Mix ID | Impact Numbers | b | a | Intercept | R2 |
---|---|---|---|---|---|
NC | N1 | 2.31 | −10.79 | 106.10 | 0.931 |
N2 | 2.40 | −11.23 | 108.19 | 0.927 | |
NC-SF0.5 | N1 | 2.19 | −10.95 | 147.47 | 0.906 |
N2 | 3.41 | −18.48 | 225.38 | 0.969 | |
NC-SF1.0 | N1 | 2.49 | −13.38 | 216.05 | 0.958 |
N2 | 2.80 | −17.44 | 508.45 | 0.917 | |
HC | N1 | 2.07 | −11.89 | 313.56 | 0.968 |
N2 | 2.09 | −12.03 | 315.99 | 0.969 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbass, A.A.; Abid, S.R.; Abed, A.I.; Ali, S.H. Experimental and Statistical Study of the Effect of Steel Fibers and Design Strength on the Variability in Repeated Impact Test Results. Fibers 2023, 11, 4. https://doi.org/10.3390/fib11010004
Abbass AA, Abid SR, Abed AI, Ali SH. Experimental and Statistical Study of the Effect of Steel Fibers and Design Strength on the Variability in Repeated Impact Test Results. Fibers. 2023; 11(1):4. https://doi.org/10.3390/fib11010004
Chicago/Turabian StyleAbbass, Ahmmad A., Sallal R. Abid, Ali I. Abed, and Sajjad H. Ali. 2023. "Experimental and Statistical Study of the Effect of Steel Fibers and Design Strength on the Variability in Repeated Impact Test Results" Fibers 11, no. 1: 4. https://doi.org/10.3390/fib11010004
APA StyleAbbass, A. A., Abid, S. R., Abed, A. I., & Ali, S. H. (2023). Experimental and Statistical Study of the Effect of Steel Fibers and Design Strength on the Variability in Repeated Impact Test Results. Fibers, 11(1), 4. https://doi.org/10.3390/fib11010004