Extraction and Physico-Chemical Characterization of Pineapple Crown Leaf Fibers (PCLF)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Fiber
2.2. Scraping and Retting Process of Pineapple Leaves
2.3. Scanning Electron Microscopy (SEM)
2.4. Thermogravimetric Analysis (TGA)
2.5. X-ray Diffraction (XRD)
2.6. Atomic Force Microscopy (AFM)
2.7. Single Fiber Tensile Tests (SFTT)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rao, K.M.M. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos. Struct. 2007, 77, 288–295. [Google Scholar] [CrossRef]
- Ogah, A.O.; Afiukwa, J.N.; Englund, K. Characterization and comparison of thermal stability of agro waste fibers in bio-composites application. J. Chem. Eng. Chem. Res. 2014, 1, 84–93. [Google Scholar]
- Thomsen, A.B.; Rasmussen, S.; Bohn, V.; Nielsen, K.V.; Thygesen, A. Hemp Raw Materials: The Effect of Cultivar, Growth Conditions and Pretreatment on the Chemical Composition of the Fibres; Risø DTU-National Laboratory for Sustainable Energy: Roskilde, Denmark, 2005. [Google Scholar]
- Jumaidin, R.; Diah, N.; Ilyas, R.; Alamjuri, R.; Yusof, F. Processing and Characterisation of Banana Leaf Fibre Reinforced Thermoplastic Cassava Starch Composites. Polymers 2021, 13, 1420. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.A.; Siddiqui, Q.; Khan, M.R.; Mushtaq, M.; Wasim, M.; Farooq, A.; Naveed, T.; Wei, Q. Bacterial cellulose-natural fiber composites produced by fibers extracted from banana peel waste. J. Ind. Text. 2020, 51, 990S–1006S. [Google Scholar] [CrossRef]
- Ferrante, A.; Santulli, C.; Summerscales, J. Evaluation of Tensile Strength of Fibers Extracted from Banana Peels. J. Nat. Fibers 2019, 17, 1519–1531. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.; Salema, A.A.; Ani, F.N.; Abu Bakar, A. A review on oil palm empty fruit bunch fiber-reinforced polymer composite materials. Polym. Compos. 2010, 31, 2079–2101. [Google Scholar] [CrossRef]
- Momoh, E.O.; Osofero, A.I. Recent developments in the application of oil palm fibers in cement composites. Front. Struct. Civ. Eng. 2020, 14, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Hasan, K.M.F.; Horváth, P.G.; Bak, M.; Alpár, T. A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Adv. 2021, 11, 10548–10571. [Google Scholar] [CrossRef]
- Muhammad, A.; Rahman, M.; Hamdan, S.; Sanaullah, K. Recent developments in bamboo fiber-based composites: A review. Polym. Bull. 2018, 76, 2655–2682. [Google Scholar] [CrossRef]
- Valvez, S.; Maceiras, A.; Santos, P.; Reis, P. Olive Stones as Filler for Polymer-Based Composites: A Review. Materials 2021, 14, 845. [Google Scholar] [CrossRef]
- Han, X.; Ding, L.; Tian, Z.; Wu, W.; Jiang, S. Extraction and characterization of novel ultrastrong and tough natural cellulosic fiber bundles from manau rattan (Calamus manan). Ind. Crops Prod. 2021, 173, 114103. [Google Scholar] [CrossRef]
- Han, X.; Wang, J.; Wang, J.; Ding, L.; Zhang, K.; Han, J.; Jiang, S. Micro- and nano-fibrils of manau rattan and solvent-exchange-induced high-haze transparent holocellulose nanofibril film. Carbohydr. Polym. 2022, 298, 120075. [Google Scholar] [CrossRef]
- Kengkhetkit, N.; Amornsakchai, T. A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Mater. Des. 2014, 55, 292–299. [Google Scholar] [CrossRef]
- Arib, R.M.N.; Sapuan, S.M.; Hamdan, M.A.M.M.; Paridah, M.T.; Zaman, H.M.D.K. A Literature Review of Pineapple Fibre Reinforced Polymer Composites. Polym. Polym. Compos. 2004, 12, 341–348. [Google Scholar] [CrossRef]
- Jain, J.; Sinha, S. Pineapple Leaf Fiber Polymer Composites as a Promising Tool for Sustainable, Eco-friendly Composite Material: Review. J. Nat. Fibers 2021, 19, 10031–10052. [Google Scholar] [CrossRef]
- Joshi, S.; Patel, S. Review on Mechanical and Thermal Properties of Pineapple Leaf Fiber (PALF) Reinforced Composite. J. Nat. Fibers 2021, 19, 10157–10178. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Rangappa, S.M.; Siengchin, S.; Parameswaranpillai, J. A review on the extraction of pineapple, sisal and abaca fibers and their use as reinforcement in polymer matrix. Express Polym. Lett. 2020, 14, 309–335. [Google Scholar] [CrossRef]
- Todkar, S.S.; Patil, S.A. Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Compos. Part B Eng. 2019, 174, 106927. [Google Scholar] [CrossRef]
- Laftah, W.A.; Rahman, W.A.W.A. Pulping Process and the Potential of Using Non-Wood Pineapple Leaves Fiber for Pulp and Paper Production: A Review. J. Nat. Fibers 2015, 13, 85–102. [Google Scholar] [CrossRef]
- Van Tran, A. Chemical analysis and pulping study of pineapple crown leaves. Ind. Crops Prod. 2006, 24, 66–74. [Google Scholar] [CrossRef]
- Prado, K.S.; Spinacé, M.A. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int. J. Biol. Macromol. 2018, 122, 410–416. [Google Scholar] [CrossRef] [PubMed]
- De Souza, N.; D’Almeida, J. Tensile, Thermal, Morphological and Structural Characteristics of Abaca (Musa Textiles) Fibers. Polym. Renew. Resour. 2014, 5, 47–60. [Google Scholar] [CrossRef]
- Aseer, J.R.; Sankaranarayanasamy, K.; Jayabalan, P.; Natarajan, R.; Dasan, K.P. Morphological, Physical, and Thermal Properties of Chemically Treated Banana Fiber. J. Nat. Fibers 2013, 10, 365–380. [Google Scholar] [CrossRef]
- Yudhanto, F.; Jamasri; Rochardjo, H.S.B. Application of taguchi method for selection parameter bleaching treatments against mechanical and physical properties of agave cantala fiber. IOP Conf. Series Mater. Sci. Eng. 2018, 352, 012002. [Google Scholar] [CrossRef] [Green Version]
- D’Almeida, A.L.F.S.; Barreto, D.W.; Calado, V.; D’Almeida, J.R.M. Thermal analysis of less common lignocellulose fibers. J. Therm. Anal. Calorim. 2007, 91, 405–408. [Google Scholar] [CrossRef]
- De Rosa, I.; Kenny, J.M.; Puglia, D.; Santulli, C.; Sarasini, F. Tensile behavior of New Zealand flax (Phormium tenax) fibers. J. Reinf. Plast. Compos. 2010, 29, 3450–3454. [Google Scholar] [CrossRef]
- Rwawiire, S.; Tomkova, B. Morphological, thermal, and mechanical characterization of Sansevieria trifasciata fibers. J. Nat. Fibers 2015, 12, 201–210. [Google Scholar] [CrossRef]
- Caraschi, J.C.; Leãto, A.L. Characterization of curaua fiber. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 2000, 353, 149–152. [Google Scholar] [CrossRef]
- Han, S.O.; Jung, Y.M. Characterization of henequen natural fiber by using two-dimensional correlation spectroscopy. J. Mol. Struct. 2008, 883, 142–148. [Google Scholar] [CrossRef]
- Hajiha, H.; Sain, M.; Mei, L.H.I. Modification and Characterization of Hemp and Sisal Fibers. J. Nat. Fibers 2014, 11, 144–168. [Google Scholar] [CrossRef]
- Langhorst, A.; Paxton, W.; Bollin, S.; Frantz, D.; Burkholder, J.; Kiziltas, A.; Mielewski, D. Heat-treated blue agave fiber composites. Compos. Part B Eng. 2019, 165, 712–724. [Google Scholar] [CrossRef]
- Réquilé, S.; Le Duigou, A.; Bourmaud, A.; Baley, C. Peeling experiments for hemp retting characterization targeting biocomposites. Ind. Crops Prod. 2018, 123, 573–580. [Google Scholar] [CrossRef]
- Motaleb, K.Z.M.A.; Islam, S.; Hoque, M.B. Improvement of Physicomechanical Properties of Pineapple Leaf Fiber Reinforced Composite. Int. J. Biomater. 2018, 2018, 7384360. [Google Scholar] [CrossRef]
- Custodio, C.L.; Yang, X.; Wilsby, A.E.; Waller, V.F.; Aquino, R.R.; Tayo, L.L.; Senoro, D.B.; Berglund, L.A. Effect of a Chemical Treatment Series on the Structure and Mechanical Properties of Abaca Fiber (Musa textilis). Mater. Sci. Forum 2020, 1015, 64–69. [Google Scholar] [CrossRef]
- Manimaran, P.; Pillai, G.P.; Vignesh, V.; Prithiviraj, M. Characterization of natural cellulosic fibers from Nendran Banana Peduncle plants. Int. J. Biol. Macromol. 2020, 162, 1807–1815. [Google Scholar] [CrossRef]
- Sreenivasan, V.S.; Somasundaram, S.; Ravindran, D.; Manikandan, V.; Narayanasamy, R. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres—An exploratory investigation. Mater. Des. 2011, 32, 453–461. [Google Scholar] [CrossRef]
- Mylsamy, K.; Rajendran, I. Investigation on Physio-chemical and Mechanical Properties of Raw and Alkali-treated Agave americana Fiber. J. Reinf. Plast. Compos. 2010, 29, 2925–2935. [Google Scholar] [CrossRef]
- Bekele, A.E.; Lemu, H.G.; Jiru, M.G. Experimental study of physical, chemical and mechanical properties of enset and sisal fibers. Polym. Test. 2021, 106, 107453. [Google Scholar] [CrossRef]
- Yahya, S.A.B.; Yusof, Y. Comprehensive Review on the Utilization of PALF. Adv. Mater. Res. 2013, 701, 430–434. [Google Scholar] [CrossRef]
- Armecin, R.B.; Sinon, F.G.; Moreno, L.O. Abaca Fiber: A Renewable Bio-resource for Industrial Uses and Other Applications. In Biomass and Bioenergy; Springer: Cham, Switzerland, 2014; pp. 107–118. [Google Scholar] [CrossRef]
- Mishra, S.; Mohanty, A.K.; Drzal, L.T.; Misra, M.; Hinrichsen, G. A Review on Pineapple Leaf Fibers, Sisal Fibers and Their Biocomposites. Macromol. Mater. Eng. 2004, 289, 955–974. [Google Scholar] [CrossRef]
- Gebremedhin, N.; Rotich, G.K. Manufacturing of bathroom wall tile composites from recycled low-density polyethylene reinforced with pineapple leaf fiber. Int. J. Polym. Sci. 2020, 2020, 2732571. [Google Scholar] [CrossRef]
- Kanimozhi, M. Investigating the physical characteristics of Sansevieria trifasciata fibre. Int. J. Sci. Res. Pub. 2011, 1, 30–33. [Google Scholar]
- Araujo, J.R.; Mano, B.; Teixeira, G.M.; Spinacé, M.A.S.; De Paoli, M.A. Biomicrofibrilar composites of high density polyethylene reinforced with curauá fibers: Mechanical, interfacial and morphological properties. Comp. Sci. Technol. 2010, 70, 1637–1644. [Google Scholar] [CrossRef]
- Hulle, A.; Kadole, P.; Katkar, P. Agave Americana Leaf Fibers. Fibers 2015, 3, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Gnanasekaran, S.; Li, Y.Y.; Shariffuddin, J.H.; Nordin, N.I.A.A. Production of cellulose and microcellulose from pineapple leaf fibre by chemical-mechanical treatment. IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012055. [Google Scholar] [CrossRef]
- Samal, R.K.; Ray, M.C. Effect of chemical modifications on FTIR spectra. II. Physicochemical behavior of pineapple leaf fiber (PALF). J. Appl. Polym. Sci. 1997, 64, 2119–2125. [Google Scholar] [CrossRef]
- Lee, C.H.; Khalina, A.; Lee, S.H.; Padzil, F.N.M.; Ainun, Z.M.A. Physical, morphological, structural, thermal and mechanical properties of pineapple leaf fibers. In Pineapple Leaf Fibers; Jawaid, M., Asim, M., Tahir, M.P., Nasir, M., Eds.; Springer: Singapore, 2020; pp. 91–121. [Google Scholar]
- Das, M.; Chakraborty, D. Influence of alkali treatment on the fine structure and morphology of bamboo fibers. J. Appl. Polym. Sci. 2006, 102, 5050–5056. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Neto, A.R.S.; Araujo, M.A.; Barboza, R.M.; Fonseca, A.S.; Tonoli, G.H.; Souza, F.V.; Mattoso, L.H.; Marconcini, J.M. Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Ind. Crops Prod. 2015, 64, 68–78. [Google Scholar] [CrossRef]
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Gaba, E.; Asimeng, B.; Kaufmann, E.; Katu, S.; Foster, E.; Tiburu, E. Mechanical and Structural Characterization of Pineapple Leaf Fiber. Fibers 2021, 9, 51. [Google Scholar] [CrossRef]
- Amirulhakim, H.; Juwono, A.L.; Roseno, S. Isolation and characterization of cellulose nanofiber from subang pineapple leaf fiber waste produced using ultrafine grinding method. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1098, 062067. [Google Scholar] [CrossRef]
- Jalil, M.A.; Moniruzzaman, M.; Parvez, M.S.; Siddika, A.; Gafur, M.A.; Repon, M.R.; Hossain, M.T. A novel approach for pineapple leaf fiber processing as an ultimate fiber using existing machines. Heliyon 2021, 7, e07861. [Google Scholar] [CrossRef]
- Balaji, A.N.; Nagarajan, K.J. Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydr. Polym. 2017, 174, 200–208. [Google Scholar]
- Demosthenes, L.C.D.C.; Nascimento, L.F.C.; Monteiro, S.N.; Costa, U.O.; Filho, F.D.C.G.; da Luz, F.S.; Oliveira, M.S.; Ramos, F.J.H.T.V.; Pereira, A.C.; Braga, F.O. Thermal and structural characterization of buriti fibers and their relevance in fabric reinforced composites. J. Mater. Res. Technol. 2019, 9, 115–123. [Google Scholar] [CrossRef]
- Manimaran, P.; Senthamaraikannan, P.; Sanjay, M.R.; Marichelvam, M.K.; Jawaid, M. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr. Polym. 2018, 181, 650–658. [Google Scholar] [CrossRef]
- Thomas, E.N.M.; Holmes, L.E. The development and structure of the seedling and young plant of the pineapple (Ananas sativus). New Phytol. 1930, 29, 199–226. [Google Scholar] [CrossRef]
- Teles, M.C.A.; Glória, G.O.; Altoé, G.R.; Netto, P.A.; Margem, F.M.; Braga, F.O.; Monteiro, S.N. Evaluation of the Diameter Influence on the Tensile Strength of Pineapple Leaf Fibers (PALF) by Weibull Method. Mater. Res. 2015, 18, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Najeeb, M.; Sultan, M.; Andou, Y.; Shah, A.; Eksiler, K.; Jawaid, M.; Ariffin, A. Characterization of silane treated Malaysian Yankee Pineapple AC6 leaf fiber (PALF) towards industrial applications. J. Mater. Res. Technol. 2020, 9, 3128–3139. [Google Scholar] [CrossRef]
- Shanmugasundaram, N.; Rajendran, I.; Ramkumar, T. Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydr. Polym. 2018, 195, 566–575. [Google Scholar]
- Manimaran, P.; Saravanan, S.; Sanjay, M.; Siengchin, S.; Jawaid, M.; Khan, A. Characterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures. J. Mater. Res. Technol. 2019, 8, 1952–1963. [Google Scholar] [CrossRef]
- Rathinavelu, R.; Paramathma, B.S. Comprehensive characterization of Echinochloa frumentacea leaf fiber as a novel reinforcement for composite applications. Polym. Compos. 2022, 43, 5031–5046. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Mohanty, A.K.; Misra, M. Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos. Interfaces 2008, 15, 169–191. [Google Scholar] [CrossRef]
- Atalie, D.; Gideon, R.K. Extraction and characterization of Ethiopian palm leaf fibers. Res. J. Text. Appar. 2018, 22, 15–25. [Google Scholar] [CrossRef]
- Gowda, N.K.S.; Vallesha, N.C.; Awachat, V.B.; Anandan, S.; Pal, D.T.; Prasad, C.S. Study on evaluation of silage from pineapple (Ananas comosus) fruit residue as livestock feed. Trop. Anim. Health Prod. 2015, 47, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Meena, L.; Sengar, A.S.; Neog, R.; Sunil, C.K. Pineapple processing waste (PPW): Bioactive compounds, their extraction, and utilisation: A review. J. Food Sci. Technol. 2021, 59, 4152–4164. [Google Scholar] [CrossRef]
- Ketnawa, S.; Chaiwut, P.; Rawdkuen, S. Pineapple wastes: A potential source for bromelain extraction. Food Bioprod. Process. 2012, 90, 385–391. [Google Scholar] [CrossRef]
- Rabiu, Z.; Maigari, F.U.; Lawan, U.; Mukhtar, Z.G. Pineapple waste utilization as a sustainable means of waste management. In Sustainable Technologies for the Management of Agricultural Wastes; Zakaria, Z.A., Ed.; Springer: Singapore, 2018; pp. 143–154. [Google Scholar]
- Lopattananon, N.; Panawarangkul, K.; Sahakaro, K.; Ellis, B. Performance of pineapple leaf fiber–natural rubber composites: The effect of fiber surface treatments. J. Appl. Polym. Sci. 2006, 102, 1974–1984. [Google Scholar] [CrossRef]
- Hariwongsanupab, N.; Thanawan, S.; Amornsakchai, T.; Vallat, M.-F.; Mougin, K. Improving the mechanical properties of short pineapple leaf fiber reinforced natural rubber by blending with acrylonitrile butadiene rubber. Polym. Test. 2017, 57, 94–100. [Google Scholar] [CrossRef]
- Chollakup, R.; Tantatherdtam, R.; Ujjin, S.; Sriroth, K. Pineapple leaf fiber reinforced thermoplastic composites: Effects of fiber length and fiber content on their characteristics. J. Appl. Polym. Sci. 2010, 119, 1952–1960. [Google Scholar] [CrossRef]
- Pereira, P.H.F.; Ornaghi, H.L., Jr.; Arantes, V.; Cioffi, M.O.H. Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydr. Res. 2021, 499, 108227. [Google Scholar] [CrossRef]
- Neto, A.R.S.; Araujo, M.A.; Souza, F.V.; Mattoso, L.H.; Marconcini, J.M. Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Ind. Crops Prod. 2013, 43, 529–537. [Google Scholar] [CrossRef]
- Saloni, S.; Chauhan, K.; Tiwari, S. Pineapple production and processing in north eastern India. J. Pharmacogn. Phytochem. 2017, 6, 665–672. [Google Scholar]
Fiber | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Wax (%) | Pectin (%) | Ash (%) | Ref. |
---|---|---|---|---|---|---|---|
PCLF | 67.3 | 16.9 | 7.4 | 3.8 | 1.3 | 0.8 | - |
Abaca | 58.3 | 18.3 | 8.3 | 8.3 | 2.8 | - | [35] |
Banana peduncle | 73.2 | 10.8 | 15.3 | 0.2 | - | 2.6 | [36] |
Sansevieria cylindrica | 79.7 | 10.1 | 3.8 | 0.1 | - | - | [37] |
Curaua | 73.6 | 9.9 | 7.5 | - | - | 0.9 | [29] |
Agave americana | 68.4 | 15.7 | 4.9 | 0.3 | - | - | [38] |
Sisal | 73.4 | 10 | 8 | 1.1 | 1.5 | [39] | |
PALF | 68.5 | 18.8 | 6 | 3.2 | 1.1 | 0.9 | [40] |
Fiber | Diameter (µm) | Length (mm) | Aspect Ratio (×103) | Density (ρ) (kg/m3) | Ref. |
---|---|---|---|---|---|
PCLF | 108 | 155 | 1.43 | 1273 | This study |
PALF | 59.7 | 300.5 | 5.03 | 1440 [42] | [43] |
Sansevieria trifasciata | 120 | 1090 | 9.83 | 1415 | [44] |
Curaua | 65 | 1250 | 19.23 | 1100 | [45] |
Agave americana | 218 | 652 | 2.99 | 1360 | [46] |
Fiber | Peak Cellulose (101) (Deg) | Peak Cellulose (002) (Deg) | Crystallinity Index (%) | Ref. |
---|---|---|---|---|
PCLF | 14.8 | 22.4 | 75.9 | This study |
PALF | 15.1 | 22 | 76 | [54] |
Subang PALF | 15.6 | 22.5 | 75 | [55] |
Queen PALF | 15.5 | 22.9 | 52.2 | [56] |
Saharan aloe vera | - | 22.6 | 52.6 | [57] |
Buriti (Mauritia flexuosa) | - | 21.7 | 63.1 | [58] |
Furcrea foetida | 15 | 22.6 | 52.6 | [59] |
Parameter | Definition | Value |
---|---|---|
Rp | Maximum peak height of the roughness profile | 6.996 µm |
Rv | Maximum valley depth of the roughness profile | 3.183 µm |
Rz | Maximum height of the roughness profile | 10.179 µm |
Rc | Mean height of the maximum profile elements | 7.122 µm |
Rt | Total height of the roughness profile | 19.129 µm |
Ra | Arithmetic mean deviation of the roughness profile | 1.344 µm |
Rq | Root mean square (RMS) deviation of the roughness profile | 1.877 µm |
Rsk | Skewness of the roughness profile | 2.676 |
Rku | Kurtosis of the roughness profile | 20.468 |
Rmr | Relative material ratio of the roughness profile | 0.392% |
Rdc | Roughness profile section height difference | 1.989 µm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johny, V.; Kuriakose Mani, A.; Palanisamy, S.; Rajan, V.K.; Palaniappan, M.; Santulli, C. Extraction and Physico-Chemical Characterization of Pineapple Crown Leaf Fibers (PCLF). Fibers 2023, 11, 5. https://doi.org/10.3390/fib11010005
Johny V, Kuriakose Mani A, Palanisamy S, Rajan VK, Palaniappan M, Santulli C. Extraction and Physico-Chemical Characterization of Pineapple Crown Leaf Fibers (PCLF). Fibers. 2023; 11(1):5. https://doi.org/10.3390/fib11010005
Chicago/Turabian StyleJohny, Vivek, Ajith Kuriakose Mani, Sivasubramanian Palanisamy, Visakh Kunnathuparambil Rajan, Murugesan Palaniappan, and Carlo Santulli. 2023. "Extraction and Physico-Chemical Characterization of Pineapple Crown Leaf Fibers (PCLF)" Fibers 11, no. 1: 5. https://doi.org/10.3390/fib11010005
APA StyleJohny, V., Kuriakose Mani, A., Palanisamy, S., Rajan, V. K., Palaniappan, M., & Santulli, C. (2023). Extraction and Physico-Chemical Characterization of Pineapple Crown Leaf Fibers (PCLF). Fibers, 11(1), 5. https://doi.org/10.3390/fib11010005