Liquid Crystal Coated Yarns for Thermo-Responsive Textile Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Coating Process
2.3. Fabric Construction: Weaving & Knitting
2.4. Characterization
3. Results and Discussion
3.1. Coated Yarn Morphology
3.2. Fabric Characteristics
3.3. Thermochromic Response
3.4. Reflectance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- van Langenhove, L. Smart textiles for protection: An overview. In Smart Textiles for Protection; Chapman, R.A., Ed.; Woodhead: Oxford, UK, 2013; pp. 3–33. [Google Scholar]
- Koncar, V. Introduction to smart textiles and their applications. In Smart Textiles and their Applications; Koncar, V., Ed.; Woodhead: Oxford, UK, 2016; pp. 1–8. [Google Scholar]
- Kongahage, D.; Foroughi, J. Actuator Materials: Review on Recent Advances and Future Outlook for Smart Textiles. Fibers 2019, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Krifa, M. Electrically Conductive Textile Materials—Application in Flexible Sensors and Antennas. Textiles 2021, 1, 239–257. [Google Scholar] [CrossRef]
- Laufer, G.; Kirkland, C.; Cain, A.A.; Grunlan, J.C. Clay–Chitosan Nanobrick Walls: Completely Renewable Gas Barrier and Flame-Retardant Nanocoatings. ACS Appl. Mater. Interfaces 2012, 4, 1643–1649. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.A.R.; Wang, L.; Ding, J.; Shaid, A.; Shanks, R.A. Advances and applications of chemical protective clothing system. J. Ind. Text. 2018, 49, 97–138. [Google Scholar] [CrossRef]
- Shastri, J.P.; Rupani, M.G.; Jain, R.L. Antimicrobial activity of nanosilver-coated socks fabrics against foot pathogens. J. Text. Inst. 2012, 103, 1234–1243. [Google Scholar] [CrossRef]
- Pakdel, E.; Naebe, M.; Sun, L.; Wang, X. Advanced Functional Fibrous Materials for Enhanced Thermoregulating Performance. ACS Appl. Mater. Interfaces 2019, 11, 13039–13057. [Google Scholar] [CrossRef]
- Liu, L.; Jia, N.; Zhou, Q.; Yan, M. Electrochemically fabricated nanoelectrode ensembles for glucose biosensors. Mater. Sci. Eng. C 2007, 27, 57–60. [Google Scholar] [CrossRef]
- Ekanayake, E.M.I.; Preethichandra, D.M.G.; Kaneto, K. Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Biosens. Bioelectron. 2007, 23, 107–113. [Google Scholar] [CrossRef]
- Nambiar, S.; Yeow, J.T.W. Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 2011, 26, 1825–1832. [Google Scholar] [CrossRef]
- Gualandi, I.; Tessarolo, M.; Mariani, F.; Possanzini, L.; Scavetta, E.; Fraboni, B. Textile Chemical Sensors Based on Conductive Polymers for the Analysis of Sweat. Polymers 2021, 13, 894. [Google Scholar] [CrossRef]
- Mirzaei, H.; Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram Int. 2017, 43, 907–914. [Google Scholar] [CrossRef]
- Naseri, N.; Algan, C.; Jacobs, V.; John, M.; Oksman, K.; Mathew, A.P. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr. Polym. 2014, 10, 7–15. [Google Scholar] [CrossRef]
- Ignatova, M.; Manolova, N.; Rashkov, I. Electrospun Antibacterial Chitosan-Based Fibers. Macromol. Biosci. 2013, 13, 860–872. [Google Scholar] [CrossRef]
- Wang, J.; Jákli, A.; Guan, Y.; Fu, S.; West, J. Developing Liquid-Crystal Functionalized Fabrics for Wearable Sensors. Soc. Inf. Disp. 2017, 33, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Kolacz, J.; Chen, Y.; Jákli, A.; Kawalec, J.; Benitez, M.; West, J.L. Smart Fabrics Functionalized by Liquid Crystals. Soc. Inf. Disp. Symp. Dig. Tech. Pap. 2017, 48, 147–149. [Google Scholar] [CrossRef]
- West, J.L.; Wang, J.; Jákli, A. Airbrushed Liquid Crystal/Polymer Fibers for Responsive Textiles. Adv. Sci. Technol. 2016, 100, 43–49. [Google Scholar]
- Guan, Y.; Agra-Kooijman, D.M.; Fu, S.; Jákli, A.; West, J.L. Responsive Liquid-Crystal-Clad Fibers for Advanced Textiles and Wearable Sensors. Adv. Mater. 2019, 31, 1902168. [Google Scholar] [CrossRef]
- Agra-Kooijman, D.M.; Robb, C.; Guan, Y.; Jákli, A.; West, J.L. Liquid crystal core polymer fiber mat electronic gas sensors. Liq. Cryst. 2021, 48, 1880–1887. [Google Scholar] [CrossRef]
- Lai, Y.T.; Kuo, J.C.; Yang, Y.J. A novel gas sensor using polymer-dispersed liquid crystal doped with carbon nanotubes. Sens. Actuators A Phys. 2014, 215, 83–88. [Google Scholar] [CrossRef]
- Sivakumar, S.; Wark, K.L.; Gupta, J.K.; Abbott, N.L.; Caruso, F. Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses. Adv. Funct. Mater. 2009, 19, 2260–2265. [Google Scholar] [CrossRef]
- Otón, E.; Otón, J.M.; Caño-García, M.; Escolano, J.M.; Quintana, X.; Geday, M.A. Rapid detection of pathogens using lyotropic liquid crystals. Opt. Express. 2019, 27, 10098–10107. [Google Scholar] [CrossRef] [PubMed]
- Buyuktanir, E.A.; Frey, M.W.; West, J.L. Self-assembled, optically responsive nematic liquid crystal/polymer core-shell fibers: Formation and characterization. Polymer 2010, 51, 4823–4830. [Google Scholar] [CrossRef]
- Buyuktanir, E.A.; West, J.L.; Frey, M.W. Optically responsive liquid crystal microfibers for display and nondisplay applications. In Proceedings SPIE, Emerging Liquid Crystal Technologies; SPIE: Bellingham, WA, USA, 2011. [Google Scholar]
- Lagerwall, J.P.F.; Scalia, G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 2012, 12, 1387–1412. [Google Scholar] [CrossRef]
- Enz, E.; Lagerwall, J. Electrospun microfibres with temperature sensitive iridescence from encapsulated cholesteric liquid crystal. J. Mater. Chem. 2010, 20, 6866–6872. [Google Scholar] [CrossRef] [Green Version]
- Reyes, C.G.; Sharma, A.; Lagerwall, J.P.F. Non-electronic gas sensors from electrospun mats of liquid crystal core fibres for detecting volatile organic compounds at room temperature. Liq. Cryst. 2016, 43, 1986–2001. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, J.; Stwodah, R.M.; Vasey, C.L.; Rabatin, B.E.; Atherton, B.; D’Angelo, P.A.; Swana, K.W.; Tang, C. Thermochromic Fibers via Electrospinning. Polymers 2020, 12, 842. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Jákli, A.; West, J.L. Airbrush Formation of Liquid Crystal/Polymer Fibers. ChemPhysChem 2015, 16, 1839–1841. [Google Scholar] [CrossRef]
- Temperature Responsive Liquid Crystal Sprayable Ink. Available online: https://www.sfxc.co.uk/products/sfxc-sprayable-liquid-crystal-ink (accessed on 20 March 2019).
- TLC Products for Use in Research and Testing Applications. Available online: https://www.lcrhallcrest.com/wp-content/uploads/2019/02/RD-TLC-Products-for-use-in-Research-Testing-Applications.pdf (accessed on 19 June 2020).
- ASTM D3775-18; ASTM, Standard Test Method for End (Warp) and Pick (Filling) Count of Woven Fabrics. American Society for Testing and Materials: West Conshohocken, PA, USA, 2018.
- Wang, J.; Jákli, A.; West, J.L. Liquid crystal/polymer fiber mats as sensitive chemical sensors. J. Mol. Liq. 2018, 267, 490–495. [Google Scholar] [CrossRef]
- Mostafa, M.; Agra-Kooijman, D.M.; Perera, K.; Adaka, A.; West, J.L.; Jákli, A. Colloidal Latex/Liquid Crystal Coatings for Thermochromic Textiles. Col. Interface Sci. Commun. 2022; under reviewing. [Google Scholar]
Fabric Property | Value | Standard Method |
---|---|---|
Plain weave, 100% polyester | ||
Mass per unit area (GSM) | 351 | ASTM D3776 |
End (warp) count/inch | 11 | ASTM D3775 |
Pick (filling) count/inch | 128 | ASTM D3775 |
Single Jersey, 100% polyester (14-gauge digital knitting machine swatch) | ||
Mass per unit area (GSM) | 342 | ASTM D3776 |
Courses/inch (CPI) | 28 | ASTM BS5441 |
Wales/inch (WPI) | 18 | ASTM BS5441 |
Single Jersey, 100% polyester (7-gauge hand knitting machine swatch) | ||
Mass per unit area (GSM) | 110 | |
Courses/inch (CPI) | 14.5 | |
Wales/inch (WPI) | 10.75 |
Sample Configuration | λmax (nm) | Rpeak height (%) |
---|---|---|
CLC | 550 | 96.7 |
Knitted-Coated 1 | 509 | 71.2 |
Hand Woven | 506 | 28.9 |
Wound coated yarn around glass substrate | 498 | 26.0 |
Coated-Knitted 2 | 506 | 13.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agra-Kooijman, D.M.; Mostafa, M.; Krifa, M.; Ohrn-McDaniel, L.; West, J.L.; Jákli, A. Liquid Crystal Coated Yarns for Thermo-Responsive Textile Structures. Fibers 2023, 11, 3. https://doi.org/10.3390/fib11010003
Agra-Kooijman DM, Mostafa M, Krifa M, Ohrn-McDaniel L, West JL, Jákli A. Liquid Crystal Coated Yarns for Thermo-Responsive Textile Structures. Fibers. 2023; 11(1):3. https://doi.org/10.3390/fib11010003
Chicago/Turabian StyleAgra-Kooijman, Deña Mae, Md Mostafa, Mourad Krifa, Linda Ohrn-McDaniel, John L. West, and Antal Jákli. 2023. "Liquid Crystal Coated Yarns for Thermo-Responsive Textile Structures" Fibers 11, no. 1: 3. https://doi.org/10.3390/fib11010003
APA StyleAgra-Kooijman, D. M., Mostafa, M., Krifa, M., Ohrn-McDaniel, L., West, J. L., & Jákli, A. (2023). Liquid Crystal Coated Yarns for Thermo-Responsive Textile Structures. Fibers, 11(1), 3. https://doi.org/10.3390/fib11010003