Bio-Inspired Fluorine-Free Self-Cleaning Polymer Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Process Methods
2.3. Characterization Methods
3. Results and Discussion
3.1. Segregation of Siloxane Comonomers towards Polymer–Air Interface
3.2. Influence of Texturization with PDMS Templates
3.3. Influence of Creep
3.4. Self-Cleaning
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shirtcliffe, N.J.; McHale, G.; Newton, M.I.; Chabrol, G.; Perry, C.C. Dual-scale roughness produces unusually water-repellent surfaces. Adv. Mater. 2004, 16, 1929–1932. [Google Scholar] [CrossRef]
- Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 2011, 56, 1–108. [Google Scholar] [CrossRef]
- Wong, T.-S.; Kang, S.H.; Tang, S.K.Y.; Smythe, E.J.; Hatton, B.D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roach, P.; Shirtcliffe, N.J.; Newton, M.I. Progress in superhydrophobic surface development. Soft Matter 2008, 4, 224–240. [Google Scholar] [CrossRef]
- Ming, W.; Wu, D.; van Benthem, R.; de With, G. Superhydrophobic films from raspberry-like particles. Nano Lett. 2005, 5, 2298–2301. [Google Scholar] [CrossRef] [PubMed]
- Budunoglu, H.; Yildirim, A.; Guler, M.O.; Bayindir, M. Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films. ACS Appl. Mater. Interfaces 2011, 3, 539–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mates, J.E.; Ibrahim, R.; Vera, A.; Guggenheim, S.; Qin, J.; Calewarts, D.; Waldroup, D.E.; Megaridis, C.M. Environmentally-safe and transparent superhydrophobic coatings. Green Chem. 2016, 18, 2185–2192. [Google Scholar] [CrossRef]
- Schutzius, T.M.; Bayer, I.S.; Qin, J.; Waldroup, D.; Megaridis, C.M. Water-Based, Nonfluorinated dispersions for environmentally benign, large-area, superhydrophobic coatings. ACS Appl. Mater. Interfaces 2013, 5, 13419–13425. [Google Scholar] [CrossRef] [PubMed]
- Olin, P.; Hyll, C.; Ovaskainen, L.; Ruda, M.; Schmidt, O.; Turner, C.; Wågberg, L. Development of a semicontinuous spray process for the production of superhydrophobic coatings from supercritical carbon dioxide solutions. Ind. Eng. Chem. Res. 2015, 54, 1059–1067. [Google Scholar] [CrossRef]
- Smith, J.D.; Dhiman, R.; Anand, S.; Reza-Garduno, E.; Cohen, R.E.; McKinley, G.H.; Varanasi, K.K. Droplet mobility on lubricant-impregnated surfaces. Soft Matter 2013, 9, 1772–1780. [Google Scholar] [CrossRef] [Green Version]
- Schlaich, C.; Yu, L.; Cuellar Camacho, L.; Wei, Q.; Haag, R. Fluorine-free superwetting systems: Construction of environmentally friendly superhydrophilic, superhydrophobic, and slippery surfaces on various substrates. Polym. Chem. 2016, 7, 7446–7454. [Google Scholar] [CrossRef]
- Torstensson, M.; Ranby, B.; Hult, A. Monomeric surfactants for surface modification of polymers. Macromolecules 1990, 23, 126–132. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Malucelli, G.; Priola, A. Modification of surface properties of UV-cured films in the presence of long chain acrylic monomers. J. Colloid Interface Sci. 1995, 171, 283–287. [Google Scholar] [CrossRef]
- Van der Grinten, M.G.D.; Clough, A.S.; Shearmur, T.E.; Bongiovanni, R.; Priola, A. Surface segregation of fluorine-ended monomers. J. Colloid Interface Sci. 1996, 182, 511–515. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Sangermano, M.; Medici, A.; Tonelli, C.; Rizza, G. Nanostructured hybrid networks based on highly fluorinated acrylates. J. Sol-Gel Sci. Technol. 2009, 52, 291–298. [Google Scholar] [CrossRef]
- Sangermano, M.; Bongiovanni, R.; Longhin, M.; Rizza, G.; Kausch, C.M.; Kim, Y.; Thomas, R.R. Hybrid organic/inorganic UV-cured acrylic films with hydrophobic surface properties. Macromol. Mater. Eng. 2009, 294, 525–531. [Google Scholar] [CrossRef]
- González Lazo, A.M.; Katrantzis, I.; Dalle Vacche, S.; Karasu, F.; Leterrier, Y. A Facile in situ and UV printing process for bioinspired self-cleaning surfaces. Materials 2016, 9, 738. [Google Scholar] [CrossRef] [PubMed]
- Koch, K.; Dommisse, A.; Barthlott, W. Chemistry and crystal growth of plant wax tubules of lotus (nelumbo nucifera) and nasturtium (tropaeolum majus) leaves on technical substrates. Cryst. Growth Des. 2006, 6, 2571–2578. [Google Scholar] [CrossRef]
- Neinhuis, C.; Barthlott, W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 1997, 79, 667–677. [Google Scholar] [CrossRef]
- Schmidt, L.E.; Schmah, D.; Leterrier, Y.; Manson, J.A.E. Time-intensity transformation and internal stress in UV-curable hyperbranched acrylates. Rheol. Acta 2007, 46, 693–701. [Google Scholar] [CrossRef]
- Schmidt, L.E.; Yi, S.; Jin, Y.-H.; Leterrier, Y.; Cho, Y.H.; Månson, J.A.E. Acrylated hyperbranched polymer photoresist for ultra-thick and low-stress high aspect ratio micropatterns. J. Micromech. Microeng. 2008, 18, 045022. [Google Scholar] [CrossRef] [Green Version]
- Geiser, V.; Jin, Y.H.; Leterrier, Y.; Manson, J.A.E. Nanoimprint lithography with UV-curable hyperbranched polymer nanocomposites. Macromol. Symp. 2010, 296, 144–153. [Google Scholar] [CrossRef]
- Geiser, V.; Leterrier, Y.; Månson, J.-A.E. Low-stress hyperbranched polymer/silica nanostructures produced by uv-curing, sol-gel processing and nanoimprint lithography. Macromol. Mater. Eng. 2012, 297, 155–166. [Google Scholar] [CrossRef]
- Cheng, J.; Li, M.; Cao, Y.; Gao, Y.; Liu, J.; Sun, F. Synthesis and properties of photopolymerizable bifunctional polyether-modified polysiloxane polyurethane acrylate prepolymer. J. Adhes. Sci. Technol. 2016, 30, 2–12. [Google Scholar] [CrossRef]
- Bhushan, B. Biomimetics: Lessons from nature—An overview. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 2009, 367, 1445–1486. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.S.; Abhishek, K.; Katepalli, H.; Sharma, A. Biomimicked superhydrophobic polymeric and carbon surfaces. Ind. Eng. Chem. Res. 2011, 50, 13012–13020. [Google Scholar] [CrossRef]
- Sun, M.; Luo, C.; Xu, L.; Ji, H.; Ouyang, Q.; Yu, D.; Chen, Y. Artificial lotus leaf by nanocasting. Langmuir 2005, 21, 8978–8981. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-M.; Kwon, T.H. Effects of intrinsic hydrophobicity on wettability of polymer replicas of a superhydrophobic lotus leaf. J. Micromech. Microeng. 2007, 17, 687. [Google Scholar] [CrossRef]
- Vitale, A.; Quaglio, M.; Cocuzza, M.; Pirri, C.F.; Bongiovanni, R. Photopolymerization of a perfluoropolyether oligomer and photolithographic processes for the fabrication of microfluidic devices. Eur. Polym. J. 2012, 48, 1118–1126. [Google Scholar] [CrossRef]
- Nakajima, A. Design of hydrophobic surfaces for liquid droplet control. NPG Asia Mater. 2011, 3, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Mikhaylova, Y.; Adam, G.; Häussler, L.; Eichhorn, K.-J.; Voit, B. Temperature-dependent FTIR spectroscopic and thermoanalytic studies of hydrogen bonding of hydroxyl (phenolic group) terminated hyperbranched aromatic polyesters. J. Mol. Struct. 2006, 788, 80–88. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Di Meo, A.; Pollicino, A.; Priola, A.; Tonelli, C. New perfluoropolyether urethane methacrylates as surface modifiers: Effect of molecular weight and end group structure. React. Funct. Polym. 2008, 68, 189–200. [Google Scholar] [CrossRef]
- Lee, J.N.; Park, C.; Whitesides, G.M. Solvent Compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 2003, 75, 6544–6554. [Google Scholar] [CrossRef] [PubMed]
- Vitale, A.; Touzeau, S.; Sun, F.; Bongiovanni, R. Compositional gradients in siloxane copolymers by photocontrolled surface segregation. Macromolecules 2018, 51, 4023–4031. [Google Scholar] [CrossRef]
- Sacco, A.; Bella, F.; De La Pierre, S.; Castellino, M.; Bianco, S.; Bongiovanni, R.; Pirri Candido, F. Electrodes/electrolyte interfaces in the presence of a surface-modified photopolymer electrolyte: Application in dye-sensitized solar cells. ChemPhysChem 2015, 16, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.; Clanet, C.; Quéré, D. Contact time of a bouncing drop. Nature 2002, 417, 811. [Google Scholar] [CrossRef] [PubMed]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
Siloxane Comonomer | Molecular Weight (g/mol) | Number of –(Si–O)– Units | Concentration of Si (wt %) |
---|---|---|---|
PDMSat | 581 | 3 | 14.5 |
PESiUA1 | 5600 | 16 | 8.7 |
PESiUA2 | 10400 | 16 | 4.3 |
Surface | Material | Air Exposure Prior to Polymerization (min) | Template Material | WCA (°) | WSA 1 (°) |
---|---|---|---|---|---|
Flat | Acrylate | 0 | Air | 61.0 ± 1.3 | – |
Acrylate | 0 | N2 | 61.9 ± 2.3 | – | |
Acrylate | 120 | Air | 71.8 ± 3.7 | – | |
Acrylate + 5 wt % PESiUA2 | 0 | Air | 104.5 ± 3.6 | – | |
Acrylate + 5 wt % PESiUA2 | 120 | Air | 101.5 ± 4.0 | – | |
PDMS | 0 | Air | 112.7 ± 4.1 | – | |
Acrylate + 5 wt % PESiUA2 | 0 | PDMS | 91.4 ± 1.3 | – | |
Acrylate + 5 wt % PESiUA2 | 120 | PDMS | 90.7 ± 1.9 | – | |
Nasturtium | Fresh leaf | – | – | 143.9 ± 1.6 | – |
Acrylate | 0 | PDMS | 100.7 ± 3.6 | – | |
Acrylate + 5 wt % PESiUA2 | 0 | PDMS | 102.0 ± 2.1 | – | |
Acrylate + 5 wt % PESiUA2 | 120 | PDMS | 103.3 ± 3.2 | – | |
Lotus | Fresh leaf | – | – | 140.2 ± 0.9 | – |
Acrylate | 0 | PDMS | 139.1 ± 1.8 | – | |
Acrylate + 5 wt % PESiUA2 | 0 | PDMS | 143.9 ± 3.1 | 45 | |
Acrylate + 5 wt % PESiUA2 | 120 | PDMS | 141.7 ± 3.3 | 38 | |
Acrylate + 5 wt % PESiUA2 | 0 | PDMS (5 min creep) | 151.6 ± 1.0 | 30 |
Sample | Material | Air Exposure Prior to Polymerization (min) | Template Material | Si 2p (at.%) | N 1s (at.%) |
---|---|---|---|---|---|
A | Acrylate | 0 | air | 0 | 0 |
B | Acrylate + 5 wt % PESiUA2 | 0 | air | 1.0 | 2.0 |
C | Acrylate + 5 wt % PESiUA2 | 120 | air | 8.5 | 1.3 |
D | Acrylate + 5 wt % PESiUA2 | 120 | PDMS (Lotus) | 12.7 | 0.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasser, L.; Dalle Vacche, S.; Karasu, F.; Müller, L.; Castellino, M.; Vitale, A.; Bongiovanni, R.; Leterrier, Y. Bio-Inspired Fluorine-Free Self-Cleaning Polymer Coatings. Coatings 2018, 8, 436. https://doi.org/10.3390/coatings8120436
Wasser L, Dalle Vacche S, Karasu F, Müller L, Castellino M, Vitale A, Bongiovanni R, Leterrier Y. Bio-Inspired Fluorine-Free Self-Cleaning Polymer Coatings. Coatings. 2018; 8(12):436. https://doi.org/10.3390/coatings8120436
Chicago/Turabian StyleWasser, Lionel, Sara Dalle Vacche, Feyza Karasu, Luca Müller, Micaela Castellino, Alessandra Vitale, Roberta Bongiovanni, and Yves Leterrier. 2018. "Bio-Inspired Fluorine-Free Self-Cleaning Polymer Coatings" Coatings 8, no. 12: 436. https://doi.org/10.3390/coatings8120436
APA StyleWasser, L., Dalle Vacche, S., Karasu, F., Müller, L., Castellino, M., Vitale, A., Bongiovanni, R., & Leterrier, Y. (2018). Bio-Inspired Fluorine-Free Self-Cleaning Polymer Coatings. Coatings, 8(12), 436. https://doi.org/10.3390/coatings8120436