Next Article in Journal
Thermal-Sprayed Coatings on Bushing and Sleeve-Pipe Surfaces in Continuous Galvanizing Sinking Roller Production Line Applications
Next Article in Special Issue
Epitaxial Growth of AlN on (0001) Sapphire: Assessment of HVPE Process by a Design of Experiments Approach
Previous Article in Journal
Thermal Analysis of Tantalum Carbide-Hafnium Carbide Solid Solutions from Room Temperature to 1400 °C
Previous Article in Special Issue
The Effect of Deposition Parameters on the Growth Rate of Microcrystalline Diamond Powders Synthesized by HFCVD Method
Open AccessArticle

Numerical Verification of Gallium Nitride Thin-Film Growth in a Large MOCVD Reactor

1
Department of Mechanical Engineering, National Central University, Taoyuan 32001, Taiwan
2
Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
3
Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu 31040, Taiwan
*
Author to whom correspondence should be addressed.
Coatings 2017, 7(8), 112; https://doi.org/10.3390/coatings7080112
Received: 20 June 2017 / Revised: 28 July 2017 / Accepted: 29 July 2017 / Published: 31 July 2017
(This article belongs to the Special Issue Chemical Vapor Deposition)
A numerical verification procedure and the effects of operating conditions in a large, vertical, and close-spaced reactor for metalorganic chemical vapor deposition are investigated through simulation and analysis. A set of epitaxy experiments are presented for verifying the growth rate of the gallium nitride (GaN) mechanism reported in our previous study. The full governing equations for continuity, momentum, energy, and chemical reaction are solved numerically. The results show that the real operating parameters (susceptor temperature: 1188 °C or 1238 °C; pressure: 100–300 torr) affect thin-film uniformity, and the predicted growth rates agree reasonably well with the experimental data, indicating the accuracy of the projected chemical reaction mechanisms. View Full-Text
Keywords: MOCVD; mechanism; GaN; numerical verification; thin film; growth rate MOCVD; mechanism; GaN; numerical verification; thin film; growth rate
Show Figures

Figure 1

MDPI and ACS Style

Hu, C.-K.; Chen, C.-J.; Wei, T.-C.; Li, T.T.; Huang, C.-Y.; Chao, C.-L.; Lin, Y.-J. Numerical Verification of Gallium Nitride Thin-Film Growth in a Large MOCVD Reactor. Coatings 2017, 7, 112.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

1
Back to TopTop