High-Strength, Stable, and Energy-Efficient Bacterial Nanocellulose Composite Films for Building-Integrated Photovoltaics Facade System
Abstract
1. Introduction
2. Experimental Section
2.1. Experimental Materials and Reagents
2.2. Preparation of BNC Films
2.3. Preparation of BNC/ZnO Composite Films
2.4. Preparation of BNC/ZnO–PF Composite Films
2.5. Preparation of GaAs Batteries with BNC/ZnO–PF Films
2.6. Material Characterization
3. Results and Discussion
3.1. Morphological and Chemical Characterization of BNC/ZnO–PF Films
3.2. The Mechanical Properties and Water Stability of BNC/ZnO-PF Fllm
3.3. The Thermal and Thermal Insulation Performance
3.4. Optical Performances of BNC/ZnO–PF Fllm
3.5. The Application of BNC/ZnO–PF Fllm in Solar Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Griffini, G.; Turri, S. Polymeric materials for long-term durability of photovoltaic systems. J. Appl. Polym. Sci. 2016, 133, 43080. [Google Scholar] [CrossRef]
- Anctil, A.; Beattie, M.N.; Case, C.; Chaudhary, A.; Chrysler, B.D.; Debije, M.G.; Essig, S.; Ferry, D.K.; Ferry, V.E.; Freitag, M.; et al. Status report on emerging photovoltaics. J. Photonics Energy 2023, 13, 042301. [Google Scholar] [CrossRef]
- Guo, W.; Xu, Z.; Li, T. Metal-based semiconductor nanomaterials for thin-film solar cells. In Multifunctional Photocatalytic Materials for Energy; Woodhead Publishing: Cambridge, UK, 2018; pp. 153–185. [Google Scholar]
- Huang, Y.C.; Lee, C.C.; Lee, Y.Y.; Chung, S.; Lin, H.C.; Kasimayan, U.; Li, C.F.; Liu, S.W. High-efficiency ITO-free organic solar cells through top illumination. Mater. Adv. 2024, 5, 2411–2419. [Google Scholar] [CrossRef]
- Fang, Z.; Zhu, H.; Yuan, Y.; Ha, D.; Zhu, S.; Preston, C.; Chen, Q.; Li, Y.; Han, X.; Lee, S.; et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 2014, 14, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Xiao, Z.; Liu, D.; Li, Y.; Weadock, N.J.; Fang, Z.; Huang, J.; Hu, L. Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci. 2013, 6, 2105–2111. [Google Scholar] [CrossRef]
- Fang, Z.; Zhu, H.; Preston, C.; Han, X.; Li, Y.; Lee, S.; Chai, X.; Chen, G.; Hu, L. Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J. Mater. Chem. C 2013, 1, 6191–6197. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, Y.; Li, H.; Xu, M.; He, M.; Ke, W.; Tan, H.; Han, Y.; Li, Z.; Wang, D.; et al. High-performance polarization management devices based on thin-film lithium niobate. Light Sci. Appl. 2022, 11, 93. [Google Scholar] [CrossRef]
- Kim, K.J.; Lu, P.; Culp, J.T.; Ohodnicki, K.J. Metal–organic framework thin film coated optical fiber sensors: A novel waveguide-based chemical sensing platform. ACS Sens. 2018, 3, 386–394. [Google Scholar] [CrossRef]
- Kumar, V.; Raghuwanshi, S.K.; Kumar, S. Advances in nanocomposite thin-film-based optical fiber sensors for environmental health monitoring—A review. IEEE Sens. J. 2022, 22, 14696–14707. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Y.; Guo, X.; Zeng, K.; Mondal, A.K.; Li, J.; Yao, Y.; Chen, L. Strong, robust cellulose composite film for efficient light management in energy efficient building. Chem. Eng. J. 2021, 425, 131469. [Google Scholar] [CrossRef]
- Gago, E.J.; Muneer, T.; Knez, M.; Köster, H. Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load. Renew. Sustain. Energy Rev. 2015, 41, 1–13. [Google Scholar] [CrossRef]
- Löber, D.; Hasan, M.K.; Liebermann, S.; Iskhandar, M.S.Q.; Baby, S.; Chen, J.; Farrag, E.; Ahmed, N.; Liu, S.; Elsaka, B.; et al. MEMS smart glass for personalized lighting and energy management in buildings: Working principles, characterization, active light steering, thermal management, energy saving considering different locations on earth, comparison of different smart glass technologies. J. Build. Des. Environ. 2023, 1, 22962. [Google Scholar]
- Wang, X.; Xu, X.; Fan, D.; Zhang, G.; Lu, Y. wood composites as sustainable energy conversion materials for efficient solar energy harvesting and light management. J. Mater. Sci. 2024, 59, 4383–4403. [Google Scholar] [CrossRef]
- Jacucci, G.; Schertel, L.; Zhang, Y.; Yang, H.; Vignolini, S. Light management with natural materials: From whiteness to transparency. Adv. Mater. 2021, 33, 2001215. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, P.; Punetha, D. Progress, challenges, and perspectives on polymer substrates for emerging flexible solar cells: A holistic panoramic review. Prog. Photovolt. Res. Appl. 2023, 31, 753–789. [Google Scholar] [CrossRef]
- Cheng, P.; Zhan, X. Stability of organic solar cells: Challenges and strategies. Chem. Soc. Rev. 2016, 45, 2544–2582. [Google Scholar] [CrossRef]
- Bing, J.; Caro, L.G.; Talathi, H.P.; Chang, N.L.; McKenzie, D.R.; Ho-Baillie, A.W.Y. Perovskite solar cells for building integrated photovoltaics—Glazing applications. Joule 2022, 6, 1446–1474. [Google Scholar] [CrossRef]
- Alrefaee, S.H.; Al-Ghamdi, S.A.; Alrashdi, K.S.; Almahri, A.; Alaysuy, O.; Alatawi, N.M.; Alghasham, H.A.; El-Metwaly, N.M. Effect of titanium oxide (TiO2) nanoparticles on the opto-mechanical properties of polyethylene terephthalate (PET) fibers. Opt. Mater. 2024, 157, 116242. [Google Scholar] [CrossRef]
- Stanculescu, F.; Stanculescu, A. Polycarbonate-based blends for optical non-linear applications. Nanoscale Res. Lett. 2016, 11, 87. [Google Scholar] [CrossRef]
- Jastaneyah, Z.; Kamar, H.M.; Alansari, A.; Al Garalleh, H. A comparative analysis of standard and nano-structured glass for enhancing heat transfer and reducing energy consumption using metal and oxide nanoparticles: A review. Sustainability 2023, 15, 9221. [Google Scholar] [CrossRef]
- Zier, M.; Stenzel, P.; Kotzur, L.; Stolten, D. A review of decarbonization options for the glass industry. Energy Convers. Manag. X 2021, 10, 100083. [Google Scholar] [CrossRef]
- Zhu, M.; Li, T.; Davis, C.S.; Yao, Y.; Dai, J.; Wang, Y.; AlQatari, F.; Gilman, J.W.; Hu, L. Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 2016, 26, 332–339. [Google Scholar] [CrossRef]
- Pandit, K.H.; Goswami, A.D.; Holkar, C.R.; Pinjari, D.V. A review on recent developments in transparent wood: Sustainable alternative to glass. Biomass Convers. Biorefinery 2025, 15, 6331–6343. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Cai, T.; Ge-Zhang, S.; Mu, H. Light and wood: A review of optically transparent wood for architectural applications. Ind. Crops Prod. 2023, 204, 117287. [Google Scholar]
- Wu, J.; Wu, Y.; Yang, F.; Tang, C.; Huang, Q.; Zhang, J. Impact of delignification on morphological, optical and mechanical properties of transparent wood. Compos. Part A Appl. Sci. Manuf. 2019, 117, 324–331. [Google Scholar]
- Wang, W.; Liu, Z.; Huang, Y. Research progress on preparation and application of transparent bamboo: A review. Constr. Build. Mater. 2024, 425, 136100. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Shen, X.; Cao, M.; Wang, Y.; Zhang, W.; Xu, Y.; Ling, Z.; Chen, S.; Xu, F. Transparent cellulose/lignin composite films with adjustable haze and UV-blocking performance for light management. ACS Sustain. Chem. Eng. 2024, 12, 5427–5435. [Google Scholar]
- Zhang, Y.; Wang, S.; You, S.; Wang, J.; Wang, J.; Jia, L.; Zhang, H.; Zhang, M. Fabrication of transparent and hazy cellulosic light-management film for enhancing photon utilization in photocatalytic membrane process. J. Membr. Sci. 2023, 685, 121923. [Google Scholar] [CrossRef]
- Yang, H.; Jacucci, G.; Schertel, L.; Vignolini, S. Cellulose-based scattering enhancers for light management applications. ACS Nano 2022, 16, 7373–7379. [Google Scholar] [CrossRef]
- Xia, Q.; Chen, C.; Li, T.; He, S.; Gao, J.; Wang, X.; Hu, L. Solar-assisted fabrication of large-scale, patternable transparent wood. Sci. Adv. 2021, 7, eabd7342. [Google Scholar]
- Luo, Z.; Liu, J.; Lin, H.; Ren, X.; Tian, H.; Liang, Y.; Wang, W.; Wang, Y.; Yin, M.; Huang, Y.; et al. In situ fabrication of nano ZnO/BCM biocomposite based on MA modified bacterial cellulose membrane for antibacterial and wound healing. Int. J. Nanomed. 2020, 6, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Wu, J.; Liu, H.; Ye, S.; Jiang, L.; Liu, X. Novel bioactive surface functionalization of bacterial cellulose membrane. Carbohydr. Polym. 2017, 178, 270276. [Google Scholar] [CrossRef] [PubMed]
- Osorio, M.; Fernández-Morales, P.; Gañán, P.; Zuluaga, R.; Kerguelen, H.; Ortiz, I.; Castro, C. Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area. J. Biomed. Mater. Res. Part A 2019, 107, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Nabeela, K.; Thorat, M.N.; Backer, S.N.; Ramachandran, A.M.; Thomas, R.T.; Preethikumar, G.; Mohamed, A.P.; Asok, A.; Dastager, S.G.; Pillai, S. Hydrophilic 3D interconnected network of bacterial Nanocellulose/black titania photothermal foams as an efficient interfacial solar evaporator. ACS Appl. Bio Mater. 2021, 4, 4373–4383. [Google Scholar] [CrossRef]
- Wang, T.; Sun, J.; Zhang, F.; Tan, J.; Wang, C. Ultra-lightweight and reinforced ZnO/Cellulose layered cryogel for thermal insulation. Cellulose 2025, 32, 1627–1644. [Google Scholar] [CrossRef]
- Li, Y.; Fu, C.; Wang, Z.; Huang, L.; Chen, L.; Liao, G.; Zhang, Q.; Ni, Y. Novel cellulose-based films with highly efficient photothermal performance for sustainable solar evaporation and solar-thermal power generation. J. Clean. Prod. 2024, 458, 142416. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Z.; Sun, C.; Li, J.; Zhang, H. Fibrous porous ceramics with devisable phenolic resin reinforcing layer. Ceram. Int. 2019, 45, 5413–5417. [Google Scholar] [CrossRef]
- Wang, L.; Liu, M.; Yang, F.; Wu, T.; Rao, W.; Liu, Y.; Wei, C.; Yu, C. Comparative study on the structure, mechanical, thermal, and tribological properties of PF composites reinforced by different kinds of mesoporous silicas. J. Inorg. Organomet. Polym. Mater. 2021, 31, 2939–2948. [Google Scholar] [CrossRef]
- Karekar, S.E.; Bhanvase, B.A.; Sonawane, S.H.; Deosarkar, M.P.; Pinjari, D.V.; Pandit, A.B. Synthesis of zinc molybdate and zinc phosphomolybdate nanopigments by an ultrasound assisted route: Advantage over conventional method. Chem. Eng. Process. Process Intensif. 2015, 87, 51–59. [Google Scholar] [CrossRef]
- Sikwal, N.R.; Sonawane, S.H.; Bhanvase, B.A.; Ramisetty, K.; Pinjari, D.V.; Gogate, P.R.; Babu, R.S. Ultrasound-assisted preparation of ZnO nanostructures: Understanding the effect of operating parameters. Green Process. Synth. 2016, 5, 163–172. [Google Scholar] [CrossRef]
- Oxley, J.D.; Prozorov, T.; Suslick, K.S. Sonochemistry and sonoluminescence of room-temperature ionic liquids. J. Am. Chem. Soc. 2003, 125, 11138–11139. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Ji, J.; Chen, D. Ultrasound assisted synthesis of ZnO/reduced graphene oxide composites with enhanced photocatalytic activity and anti-photocorrosion. Appl. Surf. Sci. 2015, 356, 762–768. [Google Scholar] [CrossRef]
- Aliannezhadi, M.; Doost Mohamadi, F.; Jamali, M.; Shariatmadar Tehrani, F. Ultrasound-assisted green synthesized ZnO nanoparticles with different solution pH for water treatment. Sci. Rep. 2025, 15, 7203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hu, Y.; Wang, X.; Zhang, A.; Gao, X.; Yagoub, A.E.G.A.; Ma, H.; Zhou, C. Ultrasound-assisted synthesis of potentially food-grade nano-zinc oxide in ionic liquids: A safe, green, efficient approach and its acoustics mechanism. Foods 2022, 11, 1656. [Google Scholar] [CrossRef]
- Drabczyk, A.; Ciężkowska, M.; Kałahurska, K.; Zięba, A.; Bulowski, W.; Bucka, K.; Kasza, P.; Socha, R.P. The Application of Ultrasound Pre-Treatment in Low-Temperature Synthesis of Zinc Oxide Nanorods. Materials 2024, 17, 4980. [Google Scholar] [CrossRef]
- Alammar, T.; Mudring, A.V. Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid. Mater. Lett. 2009, 63, 732–735. [Google Scholar]
- Bhanvase, B.A.; Patel, M.A.; Sonawane, S.H.; Pandit, A. Intensification of ultrasound-assisted process for the preparation of spindle-shape sodium zinc molybdate nanoparticles. Ultrason. Sonochem. 2016, 28, 311–318. [Google Scholar]
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Kim, H.C.; Kim, H.Y.; Chung, Y.S.; Park, W.H.; Youk, J.H. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 2005, 340, 2376–2391. [Google Scholar] [CrossRef]
- Rudlicka, M.; Zarski, A.; Pokora-Carzynska, M.; Kapusniak, J. Solvent-Free Lipase-Catalysed Esterification of Potato Maltodextrins. Polysaccharides 2025, 6, 29. [Google Scholar] [CrossRef]
- Yang, H.; Gong, M.; Hu, J.; Liu, B.; Chen, Y.; Xiao, J.; Li, S.; Dong, Z.; Chen, H. Cellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy. Energy Fuels 2020, 34, 3412–3421. [Google Scholar] [CrossRef]
- Mo, Y.; Yang, L.; Hou, W.; Zou, T.; Huang, Y.; Zheng, X.; Liao, R. Preparation of cellulose insulating paper of low dielectric constant by OAPS grafting. Cellulose 2019, 26, 7451–7468. [Google Scholar] [CrossRef]
- Di Filippo, M.F.; Dolci, L.S.; Liccardo, L.; Bigi, A.; Bonvicini, F.; Gentilomi, G.A.; Passerini, N.; Panzavolta, S.; Albertini, B. Cellulose derivatives-snail slime films: New disposable eco-friendly materials for food packaging. Food Hydrocoll. 2021, 111, 106247. [Google Scholar] [CrossRef]
- Xu, X.; Long, Y.; Li, Q.; Li, D.; Mao, D.; Chen, X.; Chen, Y. Modified cellulose membrane with good durability for effective oil-in-water emulsion treatment. J. Clean. Prod. 2019, 211, 1463–1470. [Google Scholar] [CrossRef]
- Guo, T.; Gu, L.; Zhang, Y.; Chen, H.; Jiang, B.; Zhao, H.; Jin, Y.; Xiao, H. Bioinspired self-assembled films of carboxymethyl cellulose–dopamine/montmorillonite. J. Mater. Chem. A 2019, 7, 14033–14041. [Google Scholar] [CrossRef]
- Deng, S.; Jiang, Y.; Qu, Y.; Li, A.; Zhang, R.; Xie, Z. Improving the rate and cycle performance of V-based cathodes through regulation of the Zn2+ desolvation process. Mater. Today Energy 2024, 44, 101624. [Google Scholar] [CrossRef]
- Zhou, G.; Yin, L.C.; Wang, D.W.; Li, L.; Pei, S.; Gentle, I.R.; Li, F.; Cheng, H.M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 2013, 7, 5367–5375. [Google Scholar] [CrossRef]
- Xia, G.; Ji, X.; Peng, J.; Ji, X. Cellulose/poly (meta-phenylene isophthalamide) light-management films with high antiultraviolet and tunable haze performances. ACS Appl. Polym. Mater. 2022, 4, 8407–8417. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, S.; He, J. A transparent and waterproof cellulose composite film with carbon quantum dots: A greener agricultural film capable of light management. Int. J. Biol. Macromol. 2025, 320, 146133. [Google Scholar] [CrossRef]
- Qi, Y.; Lin, S.; Lan, J.; Zhan, Y.; Guo, J.; Shang, J. Fabrication of super-high transparent cellulose films with multifunctional performances via postmodification strategy. Carbohydr. Polym. 2021, 260, 117760. [Google Scholar] [CrossRef]
- Wu, T.; Xu, Y.; Cui, Z.; Li, H.; Wang, K.; Kang, L.; Cai, Y.; Li, J.; Tian, D. Efficient heat shielding and ultraviolet isolating transparent wood via in situ generation of TiO2 nanoparticles. ACS Sustain. Chem. Eng. 2022, 10, 15380–15388. [Google Scholar] [CrossRef]
- Li, T.; Zhu, M.; Yang, Z.; Song, J.; Dai, J.; Yao, Y.; Luo, W.; Pastel, G.; Yang, B.; Hu, L. Wood composite as an energy efficient building material: Guided sunlight transmittance and effective thermal insulation. Adv. Energy Mater. 2016, 6, 1601122. [Google Scholar] [CrossRef]
- Liu, C.; Lyu, J.; Shi, N.; Cheng, Q.; Liu, Z.; Xiong, Y.; Zhang, X. Kevlar nanofibrous aerogel-based 3-layer tandem cloak enables highly efficient and long-lasting infrared stealth. Chem. Eng. J. 2023, 462, 142249. [Google Scholar] [CrossRef]
- Zhang, T.; Yuan, T.; Xiao, X.; Peng, H.; Fang, X.; Wang, K.; Liu, X.; Li, Y. Transparent and shape-memory cellulose paper reinforced by vitrimer polymer for efficient light management and sustainability. Cellulose 2022, 29, 8781–8795. [Google Scholar] [CrossRef]
- Li, S.; Cui, B.; Jia, X.; Wang, W.; Cui, Y.; Ding, J.; Fang, Y.; Song, Y.; Zhang, X. A cellulose-based film with self-healing performance for light management. Ind. Crops Prod. 2024, 212, 118312. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, H.; Liu, K.; Xu, T.; Chen, J.; Xie, H.; Du, H.; Dai, L.; Si, C. Cellulose nanofibril aerogels reinforcing polymethyl methacrylate with high optical transparency. Adv. Compos. Hybrid Mater. 2023, 6, 123. [Google Scholar] [CrossRef]
- Zhu, H.; Fang, Z.; Preston, C.; Li, Y.; Hu, L. Transparent paper: Fabrications, properties, and device applications. Energy Environ. Sci. 2014, 7, 269–287. [Google Scholar] [CrossRef]
- Liu, W.; Wang, T.; Tao, Y.; Ling, Z.; Huang, C.; Lai, C.; Yong, Q. Fabrication of anti-bacterial, hydrophobic and UV resistant galactomannan-zinc oxide nanocomposite films. Polymer 2021, 215, 123412. [Google Scholar] [CrossRef]
- Barr, M.C.; Rowehl, J.A.; Lunt, R.R.; Xu, J.; Wang, A.; Boyce, C.M.; Im, S.G.; Bulović, V.; Gleason, K.K. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv. Mater. 2011, 23, 3500. [Google Scholar] [CrossRef]
- Kim, T.S.; Na, S.I.; Kim, S.S.; Yu, B.K.; Yeo, J.S.; Kim, D.Y. Solution-processible polymer solar cells fabricated on a papery substrate. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2012, 6, 13–15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Deng, L.; Zhou, Y. High-Strength, Stable, and Energy-Efficient Bacterial Nanocellulose Composite Films for Building-Integrated Photovoltaics Facade System. Coatings 2025, 15, 1063. https://doi.org/10.3390/coatings15091063
Wang C, Deng L, Zhou Y. High-Strength, Stable, and Energy-Efficient Bacterial Nanocellulose Composite Films for Building-Integrated Photovoltaics Facade System. Coatings. 2025; 15(9):1063. https://doi.org/10.3390/coatings15091063
Chicago/Turabian StyleWang, Chenguang, Libin Deng, and Yanjie Zhou. 2025. "High-Strength, Stable, and Energy-Efficient Bacterial Nanocellulose Composite Films for Building-Integrated Photovoltaics Facade System" Coatings 15, no. 9: 1063. https://doi.org/10.3390/coatings15091063
APA StyleWang, C., Deng, L., & Zhou, Y. (2025). High-Strength, Stable, and Energy-Efficient Bacterial Nanocellulose Composite Films for Building-Integrated Photovoltaics Facade System. Coatings, 15(9), 1063. https://doi.org/10.3390/coatings15091063