Crashworthiness Design with a New Optimization Criterion for Multilevel Thin-Walled Structures
Abstract
1. Introduction
2. Methods
2.1. Crashworthiness Indicator
2.2. Optimization Criterion
2.3. Theoretics
2.3.1. Theoretical Prediction of Square Tube
2.3.2. Theoretical Prediction of Multilevel Thin-Walled Structures
2.3.3. Dynamic Theoretical Prediction of Multilevel Thin-Walled Structures
3. Results
3.1. Experimental Setup
3.1.1. Experimental Specimens and Material Properties
3.1.2. Dynamic Impact Experimental Apparatus
3.1.3. Experimental Results
3.2. Numerical Simulation
3.2.1. FE Model
3.2.2. Validation of FE Model
4. Discussion
4.1. The Comparison BETWEEN Multilevel Thin-Walled Tube and Single Level Thin-Walled Tube
4.2. The Effect of Different Length
4.3. The Effect of Different Width
5. Crashworthiness Optimization
5.1. Description of the Crashworthiness Optimization Problem
5.2. Surrogate Model
5.3. Optimization Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abramowicz, W. Thin-walled structures as impact energy absorbers. Thin-Walled Struct. 2003, 41, 91–107. [Google Scholar] [CrossRef]
- Hou, S.; Dong, D.; Ren, L.; Han, X. Multivariable crashworthiness optimization of vehicle body by unreplicated saturated factorial design. Struct. Multidiscip. Optim. 2012, 46, 891–905. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H. Numerical and theoretical studies on energy absorption of three-panel angle elements. Int. J. Impact Eng. 2012, 46, 23–40. [Google Scholar] [CrossRef]
- Sun, G.; Xu, F.; Li, G.; Li, Q. Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness. Int. J. Impact Eng. 2014, 64, 62–74. [Google Scholar] [CrossRef]
- Hou, S.; Li, Q.; Long, S.; Yang, X.; Li, W. Multiobjective optimization of multi-cell sections for the crashworthiness design. Int. J. Impact Eng. 2008, 35, 1355–1367. [Google Scholar] [CrossRef]
- Abramowicz, W.; Jones, N. Dynamic axial crushing of square tubes. Int. J. Impact Eng. 1984, 2, 179–208. [Google Scholar] [CrossRef]
- Reid, S. Plastic deformation mechanisms in axially compressed metal tubes used as impact energy absorbers. Int. J. Mech. Sci. 1993, 35, 1035–1052. [Google Scholar] [CrossRef]
- Song, J. Numerical simulation on windowed tubes subjected to oblique impact loading and a new method for the design of obliquely loaded tubes. Int. J. Impact Eng. 2013, 54, 192–205. [Google Scholar] [CrossRef]
- Nagel, G.; Thambiratnam, D. A numerical study on the impact response and energy absorption of tapered thin-walled tubes. Int. J. Mech. Sci. 2004, 46, 201–216. [Google Scholar] [CrossRef]
- Nagel, G.; Thambiratnam, D. Computer simulation and energy absorption of tapered thin-walled rectangular tubes. Thin-Walled Struct. 2005, 43, 1225–1242. [Google Scholar] [CrossRef]
- Wierzbicki, T.; Abramowicz, W. On the crushing mechanics of thin-walled structures. J. Appl. Mech. 1983, 50, 727–734. [Google Scholar] [CrossRef]
- Abramowicz, W.; Wierzbicki, T. Axial crushing of multicorner sheet metal columns. J. Appl. Mech. 1989, 56, 113–120. [Google Scholar] [CrossRef]
- Chen, W.; Wierzbicki, T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption. Thin-Walled Struct. 2001, 39, 287–306. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H. Crush resistance of square tubes with various thickness configurations. Int. J. Mech. Sci. 2016, 107, 58–68. [Google Scholar] [CrossRef]
- Jusuf, A.; Dirgantara, T.; Gunawan, L.; Putra, I.S. Crashworthiness analysis of multi-cell prismatic structures. Int. J. Impact Eng. 2015, 78, 34–50. [Google Scholar] [CrossRef]
- Baroutaji, A.; Morris, E.; Olabi, A.E. Quasi-static response and multi-objective crashworthiness optimization of oblong tube under lateral loading. Thin-Walled Struct. 2014, 82, 262–277. [Google Scholar] [CrossRef]
- Kim, H.-S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency. Thin-Walled Struct. 2002, 40, 311–327. [Google Scholar] [CrossRef]
- Deng, X.; Qin, S.; Huang, J. Crashworthiness analysis of gradient hierarchical multicellular columns evolved from the spatial folding. Mater. Des. 2022, 215, 110435. [Google Scholar] [CrossRef]
- Tam, L.; Calladine, C. Inertia and strain-rate effects in a simple plate-structure under impact loading. Int. J. Impact Eng. 1991, 11, 349–377. [Google Scholar] [CrossRef]
- Chen, Y.; Clausen, A.; Hopperstad, O.; Langseth, M. Stress–strain behaviour of aluminium alloys at a wide range of strain rates. Int. J. Solids Struct. 2009, 46, 3825–3835. [Google Scholar] [CrossRef]
- Hanssen, A.; Langseth, M.; Hopperstad, O.S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. Int. J. Impact Eng. 2000, 24, 475–507. [Google Scholar] [CrossRef]
- Langseth, M.; Hopperstad, O.; Hanssen, A. Crash behaviour of thin-walled aluminium members. Thin-Walled Struct. 1998, 32, 127–150. [Google Scholar] [CrossRef]
- Tarigopula, V.; Langseth, M.; Hopperstad, O.S.; Clausen, A.H. Axial crushing of thin-walled high-strength steel sections. Int. J. Impact Eng. 2006, 32, 847–882. [Google Scholar] [CrossRef]
- Wu, S.; Zheng, G.; Sun, G.; Liu, Q.; Li, G.; Li, Q. On design of multi-cell thin-wall structures for crashworthiness. Int. J. Impact Eng. 2016, 88, 102–117. [Google Scholar] [CrossRef]
- Jin, R.; Chen, W.; Simpson, T. Comparative studies of metamodelling techniques under multiple modelling criteria. Struct. Multidiscip. Optim. 2001, 23, 1–13. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Murugan, P.; Kannan, S.; Baskar, S. NSGA-II algorithm for multi-objective generation expansion planning problem. Electr. Power Syst. Res. 2009, 79, 622–628. [Google Scholar] [CrossRef]
1 mm | 1.5 mm | 2 mm | 2.5 mm | |||||
---|---|---|---|---|---|---|---|---|
1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd | |
Simulation (kN) | 7.44 | 8.82 | 14.53 | 17.22 | 23.19 | 27.81 | 33.78 | 40.90 |
Theory (kN) | 7.37 | 9.13 | 14.50 | 17.95 | 23.43 | 29.00 | 33.97 | 42.06 |
Error (%) | 0.94 | −3.43 | 0.25 | −4.09 | −0.98 | −4.10 | −0.57 | −2.76 |
n | (mm) | (mm) | (mm) | (kN) | (kN) | CLE | SEA (kJ/kg) |
---|---|---|---|---|---|---|---|
1 | 1.828 | 1.103 | 48.28 | 60.345 | 23.733 | 0.354883 | 8.053953 |
2 | 2.397 | 1.155 | 51.38 | 81.8 | 40.6885 | 0.396449 | 9.567369 |
3 | 1.259 | 2.448 | 61.72 | 36.57 | −20.86 | 0.713873 | 9.031858 |
4 | 1.207 | 1.414 | 65.86 | 34.7 | 8.452 | 0.431454 | 6.531269 |
5 | 1.155 | 1.517 | 54.48 | 32.5315 | 7.229 | 0.464691 | 7.085111 |
6 | 1.983 | 1.828 | 66.9 | 65.585 | 17.1665 | 0.460895 | 8.681732 |
7 | 1.052 | 1.724 | 44.14 | 27.988 | −8.4785 | 0.537822 | 7.715403 |
8 | 2.448 | 1.621 | 58.62 | 84.235 | 37.4215 | 0.435524 | 9.704583 |
9 | 1.724 | 1.31 | 67.93 | 56.645 | 25.257 | 0.381318 | 7.535052 |
10 | 2.241 | 1.259 | 41.03 | 75.55 | 27.534 | 0.394007 | 9.499417 |
11 | 2.034 | 2.034 | 55.52 | 67.345 | 19.785 | 0.484033 | 9.433416 |
12 | 1.931 | 2.19 | 43.1 | 63.855 | 1.44 | 0.470429 | 9.500554 |
13 | 2.138 | 1.672 | 47.24 | 71.16 | 12.525 | 0.436996 | 9.525628 |
14 | 2.086 | 1 | 60.69 | 69.095 | 33.8365 | 0.377914 | 8.607745 |
15 | 1.517 | 1.879 | 59.66 | 48.076 | 10.9815 | 0.467885 | 7.933706 |
16 | 2.19 | 2.5 | 50.34 | 73.465 | −2.25 | 0.530934 | 10.37376 |
17 | 1.879 | 1.466 | 56.55 | 62.085 | 28.275 | 0.392498 | 8.139321 |
18 | 1.31 | 1.207 | 45.17 | 38.3 | 10.8495 | 0.369219 | 6.874827 |
19 | 1.414 | 1.983 | 70 | 41.535 | −3.699 | 0.555257 | 7.790227 |
20 | 1.466 | 1.052 | 57.59 | 45.0335 | 26.7135 | 0.341592 | 6.694343 |
21 | 2.5 | 2.086 | 46.21 | 86.985 | 16.44 | 0.475864 | 10.73856 |
22 | 1.621 | 2.397 | 53.45 | 52.8 | −1.555 | 0.581301 | 9.879302 |
23 | 1.776 | 2.345 | 64.83 | 58.52 | −0.205 | 0.548107 | 9.133727 |
24 | 1.103 | 2.138 | 52.41 | 29.949 | −14.674 | 0.663902 | 8.481699 |
25 | 2.293 | 1.362 | 68.97 | 77.69 | 31.9315 | 0.420325 | 9.104742 |
26 | 2.345 | 2.293 | 63.79 | 79.735 | 13.845 | 0.518732 | 10.00832 |
27 | 1.362 | 2.241 | 42.07 | 39.946 | −8.8595 | 0.533593 | 8.571884 |
28 | 1 | 1.931 | 62.76 | 26.274 | −15.305 | 0.63057 | 7.182122 |
29 | 1.672 | 1.569 | 40 | 54.685 | 14.584 | 0.397753 | 8.489397 |
30 | 1.569 | 1.776 | 49.31 | 50.605 | 9.053 | 0.436074 | 8.265555 |
(kN) | (kN) | CLE | SEA (kJ/kg) | |
---|---|---|---|---|
RAAE | 0.0076 | 0.01796 | 0.04245 | 0.05382 |
RMAE | 0.01907 | 0.04738 | 0.11643 | 0.10112 |
RMSE | 0.00977 | 0.02373 | 0.0579 | 0.06056 |
0.99914 | 0.99571 | 0.97504 | 0.97499 |
(mm) | (mm) | (mm) | (kN) | (kN) | CLE | SEA (kJ/kg) | |
---|---|---|---|---|---|---|---|
Optimization results | 2.35 | 2.50 | 50.02 | 79.90 | 0.55 | 1.89 | 10.88 |
Simulation results | 79.95 | 5.85 | 1.87 | 10.86 | |||
Error (%) | 0.06 | - | 1.06 | 0.18 |
(mm) | (mm) | (mm) | (kN) | ||
---|---|---|---|---|---|
Optimization results | 2.35 | 2.50 | 50.02 | 32.07 | 38.66 |
Simulation results | 30.65 | 38.74 | |||
Error (%) | 4.63 | −0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Z.; Liu, M.; Zhang, Z.; Feng, J. Crashworthiness Design with a New Optimization Criterion for Multilevel Thin-Walled Structures. Coatings 2025, 15, 1058. https://doi.org/10.3390/coatings15091058
Deng Z, Liu M, Zhang Z, Feng J. Crashworthiness Design with a New Optimization Criterion for Multilevel Thin-Walled Structures. Coatings. 2025; 15(9):1058. https://doi.org/10.3390/coatings15091058
Chicago/Turabian StyleDeng, Zhifang, Mengni Liu, Zheyi Zhang, and Jianghua Feng. 2025. "Crashworthiness Design with a New Optimization Criterion for Multilevel Thin-Walled Structures" Coatings 15, no. 9: 1058. https://doi.org/10.3390/coatings15091058
APA StyleDeng, Z., Liu, M., Zhang, Z., & Feng, J. (2025). Crashworthiness Design with a New Optimization Criterion for Multilevel Thin-Walled Structures. Coatings, 15(9), 1058. https://doi.org/10.3390/coatings15091058