Surface Friction and Interfacial Wear Mechanisms in CeO2-Ni/WC Cladding Layers on 45 Steel
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Materials Characterization
2.3. Mechanical Properties
2.4. Friction Test
3. Result and Discussion
3.1. Phase Composition and Distribution of Elements
3.2. Microhardness and Nanoindentation Analysis
3.3. Surface Friction Analysis
3.4. Interface Friction Analysis
3.5. Discussion
4. Conclusions
- (1)
- The phases present in the CeO2-Ni/WC composite cladding layer include γ-Ni, Ni3Si, Ni3Fe, Ni3B, WC, W2C, Cr7C3, Cr23C6, and CeO2. Among all cladding layers, NWC5 exhibited the lowest porosity (0.0673%) and the smallest average grain size (12.06 nm).
- (2)
- The microhardness and elastic modulus of NWC5 are 1042.74 ± 34.58 HV0.2 and 269.06 GPa, respectively. The combined effects of reduced porosity and grain refinement enhance the mechanical properties of NWC5.
- (3)
- NWC20 demonstrated the lowest average friction coefficient (0.579) and the highest wear rate (15.43 × 10−8 mm3/(N·m)). This correlation originates from the synergistic effects of structural defects in NWC20, characterized by high porosity (0.253%) and coarse grains (15.64 nm), where porous architecture facilitates crack propagation while grain coarsening diminishes grain boundary strengthening. NWC5 achieved the minimum wear rate of 1.46 × 10-8 mm3/(N·m), representing a 90.54% reduction compared to NWC20. The wear mechanism was predominantly governed by the three-body abrasion from hard phase particles, coupled with cyclic formation/delamination of tribo-oxidation layers.
- (4)
- The interfacial steady-state friction coefficient of CeO2-Ni/WC composite cladding layers ranged from 0.343 to 0.444, with wear mechanisms dominated by abrasive wear and oxidative wear. Quantitative analysis revealed a 22.1%–43.2% increase in wear track width at the CTSZ compared to the STCZ. Mechanistic investigations demonstrated that cyclic stress impacts generated by silicon nitride counter balls traversing abrupt hardness transition interfaces in CTSZ induced a characteristic three-tiered stepped morphology (step height differential: 2.1–4.1 μm). In contrast, STCZ exhibited progressive hardness gradients and homogenized stress distribution, resulting in smooth transitional morphology in wear track.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, M.; Chen, S.; Shang, F.; Liang, J.; Cui, T.; Liu, C.; Wang, M. Laser Cladding Novel NiCrSiFeBW–CeO2 Coating with Both High Wear and Corrosion Resistance. Met. Mater. Int. 2020, 27, 2706–2719. [Google Scholar] [CrossRef]
- Gao, Z.; Ren, H.; Yuan, Y.; Gao, Z.; Liu, E.; Zhang, C. Effect of CeO2 on the microstructure and microhardensss of laser-cladded Ni60 on 35CrMoV alloys. Micron. 2021, 150, 103146. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, M.; Miao, X.; Cui, C. Effect of CeO2 on crack sensitivity and tribological properties of Ni60A coatings prepared by laser cladding. Adv. Mech. Eng. 2021, 13. [Google Scholar] [CrossRef]
- Cao, Q.; Fan, L.; Chen, H.; Hou, Y.; Dong, L.; Ni, Z. Wear and corrosion mechanisms of Ni–WC coatings modified with different Y2O3 by laser cladding on AISI 4145H steel. Sci. Eng. Compos. Mater. 2022, 29, 364–377. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Zhu, Z.; Gao, M.; Gao, J.; Guo, Z. Effects of nano-CeO2 on microstructure and properties of Ni625 alloy prepared by laser cladding. J. Alloys Compd. 2022, 918, 165571. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Zang, S. The influence of ultrasonic vibration on the microstructure and properties of laser-cladded Fe-Ni-Ti composite coatings. Heliyon 2024, 10, e38429. [Google Scholar] [CrossRef]
- Du, J.; Li, F.; Li, Y.; Lu, H.; Qi, X.; Yang, B.; Li, C.; Yu, P.; Wang, J.; Gao, L. The influence of nano-CeO2 on tribological properties and microstructure evolution of Cr3C2-NiCrCoMo composite coatings at high temperature. Surf. Coatings Technol. 2021, 428, 127913. [Google Scholar] [CrossRef]
- Aliabadi, M.; Khodabakhshi, F.; Soltani, R.; Gerlich, A.P. Modification of flame-sprayed NiCrBSi alloy wear-resistant coating by friction stir processing and furnace re-melting treatments. Surf. Coatings Technol. 2023, 455, 129236. [Google Scholar] [CrossRef]
- Gao, R.; Huang, Y.; Zhou, X.; Ma, G.; Jin, G.; Li, T.; Wang, H.; Liu, M. Material system and tribological mechanism of plasma sprayed wear resistant coatings: Overview. Surf. Coatings Technol. 2024, 483, 130758. [Google Scholar] [CrossRef]
- Preuß, B.; Lindner, T.; Kaur, S.; Cabrera, J.E.T.; Hanisch, N.; Schwarz, H.; Lampke, T. Development of CoCr0.65FeNi-BSiC as a self-fluxing high-entropy alloy for thermal spraying. Surf. Coatings Technol. 2023, 476, 130259. [Google Scholar] [CrossRef]
- Zhu, R.; Zhu, C.; Wu, S.; Wan, X.; Li, G. Effect of CeO2 on microstructure and properties of Ni–Co-based coatings. J. Mater. Res. Technol. 2023, 26, 7329–7339. [Google Scholar] [CrossRef]
- You, S.; Xing, S.; Jiang, C. Synergistic optimization of microstructures and properties of electrodeposited Ni–CeO2 composite coatings with CeO2 microparticles and CeO2 nanoparticles. J. Mater. Res. Technol. 2024, 29, 181–195. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, Z.; Sun, A.; Liu, J.; Xiao, M. Preparation and investigation of Ni-W/CeO2 composite coating and its structure and anti-corrosion properties with different ceria content and deposition time. Ceram. Int. 2024, 50, 44560–44571. [Google Scholar] [CrossRef]
- Shu, D.; Dai, S.; Wang, G.; Si, W.; Xiao, P.; Cui, X.; Chen, X. Influence of CeO2 content on WC morphology and mechanical properties of WC/Ni matrix composites coating prepared by laser in-situ synthesis method. J. Mater. Res. Technol. 2020, 9, 11111–11120. [Google Scholar] [CrossRef]
- Hu, T.; Yuan, X.; Shi, Z.; Rao, L.; Zhou, Y.; Xing, X.; Yang, Q. Improving the porosity of the alloy Ni-Cr-WC by coating CeO2: First principles calculation combined with experiment. Comput. Mater. Sci. 2020, 171, 109267. [Google Scholar] [CrossRef]
- Haghighi, N.E.; Hadianfard, M.J. Fabrication of Ni–ZrO2 nanocomposites through a new electroforming bath and Assessment of their morphology, wear, and corrosion resistance. Heliyon 2024, 10, e35779. [Google Scholar] [CrossRef] [PubMed]
- Rominiyi, A.L.; Mashinini, P.M. Assessment of microstructure, nanomechanical and tribological properties of TixNi alloys fabricated by spark plasma sintering. Heliyon 2023, 9, e15887. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Zhang, X.; Chen, J.; Yang, X. Friction and wear properties of Ni3Si alloy under different vacuum conditions. Vacuum 2019, 161, 443–449. [Google Scholar] [CrossRef]
- Cheng, J.; Zhen, J.; Zhu, S.; Yang, J.; Ma, J.; Li, W.; Liu, W. Friction and wear behavior of Ni-based solid-lubricating composites at high temperature in a vacuum environment. Mater. Des. 2017, 122, 405–413. [Google Scholar] [CrossRef]
- Ni, J.; Wen, M.; Jayalakshmi, S.; Geng, Y.; Chen, X. Investigation on microstructure, wear and friction properties of CoCrFeNiMox high-entropy alloy coatings deposited by powder plasma arc cladding. Mater. Today Commun. 2024, 39, 108807. [Google Scholar] [CrossRef]
- Radhika, N.; Kamal, M.; Srivatsav, V.R.; Sathishkumar, M.; Ramkumar, T. Microstructural evaluation and optimization of wear behaviour of vacuum arc melted AlFeCrNiSi high entropy alloy. Mater. Today Commun. 2024, 41, 110594. [Google Scholar] [CrossRef]
- Du, M.; Wang, L.; Gao, Z.; Yang, X.; Liu, T.; Zhan, X. Microstructure and element distribution characteristics of Y2O3 modulated WC reinforced coating on Invar alloys by laser cladding. Opt. Laser Technol. 2022, 153, 108205. [Google Scholar] [CrossRef]
- Su, Z.; Li, J.; Shi, Y.; Zhang, Z.; Wang, X.; Hou, G. Effect of Y2O3 addition on the organization and tribological properties of Ni60A/Cr3C2 composite coatings obtained by laser-cladding. Ceram. Int. 2024, 50, 17261–17273. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, S.; Lu, H.; Li, W. Process optimization, microstructure characterization, and tribological performance of Y2O3 modified Ti6Al4V-WC gradient coating produced by laser cladding. Surf. Coatings Technol. 2024, 478, 130496. [Google Scholar] [CrossRef]
- Fu, S.; Xu, Y.; Zhu, L.; Lu, H.; Li, W. Enhanced in-situ reinforcement evolution and superior wear resistance by changing Y2O3 addition in Ti6Al4V-based WC gradient coatings through laser cladding. Tribol. Int. 2025, 205, 110524. [Google Scholar] [CrossRef]
- Cheng, X.; He, Y.; Song, R.; Li, H.; Liu, B.; Zhou, H.; Yan, L. Study of mechanical character and corrosion properties of La2O3 nanoparticle reinforced Ni-W composite coatings. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129799. [Google Scholar] [CrossRef]
- Li, Z.; Chen, W.; Li, D.; Yang, J.; Zhang, Y.; Yang, X.; Dai, B.; Zhang, J.; Qiu, Z. Frictional wear properties of different nano La2O3 composite FeCoNiCrMo high-entropy alloy coatings under soil conditions. J. Mater. Res. Technol. 2025, 35, 6874–6888. [Google Scholar] [CrossRef]
- Li, O.; Yang, G.; Song, W.; Ma, Y. Effect of Graphene Oxide (GO) content on bending fracture, wear and corrosion resistance of GO-Ni/WC cladding layers produced by vacuum cladding. Mater. Chem. Phys. 2025, 345, 131202. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, C.; Ye, H.; Li, M.; Hu, C. Effect of nanoscale CeO2 powder on wear and corrosion resistance of Ni60A-WC coatings. Ceram. Int. 2025, 51, 10913–10932. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, K.; Li, J.; Chen, B.; Huang, C.; Soboleva, N. A comprehensive review on the rare earth elements improving microstructure and properties of laser cladded coatings. J. Alloys Compd. 2025, 1036, 181761. [Google Scholar] [CrossRef]
- Li, J.; Guo, Q.; Tang, Q.; Zhao, G.; Li, H.; Ma, L. Effect of electron beam remelting on microstructure and wear properties of HVOF Ni/WC coatings. Wear 2024, 558–559, 205560. [Google Scholar] [CrossRef]
- Han, B.Y.; Gao, X.H.; Chen, S.Y.; Cong, M.Q.; Li, R.X.; Liu, X.; Hang, W.X.; Cui, F.F. Microstructure and tribological behavior of plasma spray Ni60 alloy coating deposited on ZL109 aluminum alloy substrate. Tribol. Int. 2022, 175, 107859. [Google Scholar] [CrossRef]
- Yang, R.; Ma, W.; Duan, C.; Li, S.; Wang, T.; Wang, Q. Self-lubrication of tribologically-induced oxidation during dry reciprocating sliding of aged Ti-Ni51·5 at% alloy. Friction 2020, 9, 1038–1049. [Google Scholar] [CrossRef]
- Cheng, J.; Mao, M.; Gan, X.; Lei, Q.; Li, Z.; Zhou, K. Microstructures, mechanical properties, and grease-lubricated sliding wear behavior of Cu-15Ni-8Sn-0.8Nb alloy with high strength and toughness. Friction 2020, 9, 1061–1076. [Google Scholar] [CrossRef]
- Tan, H.; Wang, S.; Cheng, J.; Zhu, S.; Yu, Y.; Qiao, Z.; Yang, J. Tribological properties of Al-20Si-5Fe-2Ni-Graphite solid-lubricating composites. Tribol. Int. 2018, 121, 214–222. [Google Scholar] [CrossRef]
- Yan, X.; Chang, C.; Deng, Z.; Lu, B.; Chu, Q.; Chen, X.; Ma, W.; Liao, H.; Liu, M. Microstructure, interface characteristics and tribological properties of laser cladded NiCrBSi-WC coatings on PH 13-8 Mo steel. Tribol. Int. 2021, 157, 106873. [Google Scholar] [CrossRef]
Sample | Nanohardness | Elasticity Modulus | H/E | H3/E2 |
---|---|---|---|---|
H (GPa) | E (GPa) | / | GPa | |
NWC5 | 12.34 ± 1.43 | 269.06 ± 6.61 | 0.0459 | 0.0260 |
NWC10 | 10.94 ± 1.06 | 240.47 ± 5.94 | 0.0455 | 0.0226 |
NWC15 | 10.17 ± 1.39 | 237.09 ± 7.16 | 0.0429 | 0.0187 |
NWC20 | 9.98 ± 1.63 | 222.91 ± 8.09 | 0.0434 | 0.0188 |
Point | Ni | Cr | B | Si | Fe | C | O | W | Ce |
---|---|---|---|---|---|---|---|---|---|
5 | 4.3 | 2.6 | 3.2 | 5.6 | 3.1 | 26.8 | 22.2 | 32.2 | 0 |
6 | 20.5 | 18.9 | 0.6 | 6.2 | 3.2 | 23.5 | 25.3 | 1.7 | 0.1 |
7 | 27.5 | 2.9 | 1.2 | 12.6 | 6.3 | 15.8 | 31.5 | 2.2 | 0 |
Area | C | O | Si | Cr | Fe | Ni | Ce | W |
---|---|---|---|---|---|---|---|---|
1 | 14.87 | 4.87 | 0.57 | 0.03 | 79.16 | 0.38 | 0.03 | 0.07 |
2 | 11.24 | 50.49 | 5.19 | 2.87 | 20.07 | 8.20 | 0.05 | 1.88 |
3 | 9.67 | 49.97 | 6.70 | 5.11 | 11.48 | 14.31 | 0.06 | 2.69 |
4 | 17.77 | 24.20 | 2.72 | 8.10 | 22.45 | 22.49 | 0.12 | 2.16 |
Sample | SZ | STCZ | CZ | CTSZ |
---|---|---|---|---|
NWC5 | 874 ± 106 | 558 ± 65 | 474 ± 46 | 799 ± 98 |
NWC10 | 747 ± 95 | 464 ± 42 | 432 ± 39 | 598 ± 52 |
NWC15 | 811 ± 89 | 562 ± 34 | 553 ± 45 | 686 ± 56 |
NWC20 | 695 ± 72 | 437 ± 37 | 411 ± 39 | 622 ± 43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, O.; Yang, G.; Song, W.; Ma, Y. Surface Friction and Interfacial Wear Mechanisms in CeO2-Ni/WC Cladding Layers on 45 Steel. Coatings 2025, 15, 1037. https://doi.org/10.3390/coatings15091037
Li O, Yang G, Song W, Ma Y. Surface Friction and Interfacial Wear Mechanisms in CeO2-Ni/WC Cladding Layers on 45 Steel. Coatings. 2025; 15(9):1037. https://doi.org/10.3390/coatings15091037
Chicago/Turabian StyleLi, Ouyang, Guirong Yang, Wenming Song, and Ying Ma. 2025. "Surface Friction and Interfacial Wear Mechanisms in CeO2-Ni/WC Cladding Layers on 45 Steel" Coatings 15, no. 9: 1037. https://doi.org/10.3390/coatings15091037
APA StyleLi, O., Yang, G., Song, W., & Ma, Y. (2025). Surface Friction and Interfacial Wear Mechanisms in CeO2-Ni/WC Cladding Layers on 45 Steel. Coatings, 15(9), 1037. https://doi.org/10.3390/coatings15091037