The Influence of Low-Pressure Plasma and Ozone Pretreatment on the Stability of Polyester/Chitosan Structure in the Washing Process—Part 1
Abstract
1. Introduction
2. Materials, Procedures and Methods
2.1. Materials
2.2. Procedures
2.3. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Palacios-Mateo, C.; Van der Meer, Y.; Seide, G. Analysis of the polyester clothing value chain to identify key intervention points for sustainability. Environ. Sci. Eur. 2021, 33, 2. [Google Scholar] [CrossRef] [PubMed]
- The Fiber Year. The Fiber Year: World Survey on Textiles and Nonwovens; The Fiber Year: Roggwil, Switzerland, 2019. [Google Scholar]
- Haap, J.; Classen, E.; Beringer, J.; Mecheels, S.; Gutmann, J.S. Microplastic fibers released by textile laundry: A new analytical approach for the determination of fibers in effluents. Water 2019, 11, 2088. [Google Scholar] [CrossRef]
- Gaylarde, C.; Baptista-Neto, J.A.; da Fonseca, E.M. Plastic microfibre pollution: How important is clothes’ laundering? Heliyon 2021, 7, e07105. [Google Scholar] [CrossRef]
- Miraftab, M.; Horrocks, A.R. (Eds.) Ecotextiles: The Way Forward for Sustainable Development in Textiles; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Soljačić, I.; Pušić, T. Njega Tekstila, Knjiga 1; Sveučilište u Zagrebu: Zagreb, Croatia, 2005; Volume 23, p. 139. [Google Scholar]
- Carney Almroth, B.M.; Åström, L.; Roslund, S.; Petersson, H.; Johansson, M.; Persson, N.K. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environ. Sci. Pollut. Res. 2018, 25, 1191–1199. [Google Scholar] [CrossRef]
- Hernandez, E.; Nowack, B.; Mitrano, D.M. Polyester textiles as a source of microplastics from households: A mechanistic study to understand microfiber release during washing. Environ. Sci. Technol. 2017, 51, 7036–7046. [Google Scholar] [CrossRef] [PubMed]
- Anitha, A.; Sowmya, S.; Kumar, P.S.; Deepthi, S.; Chennazhi, K.P.; Ehrlich, H.; Tsurkan, M.; Jayakumar, R. Chitin and chitosan in selected biomedical applications. Prog. Polym. Sci. 2014, 39, 1644–1667. [Google Scholar] [CrossRef]
- Dodane, V.; Vilivalam, V.D. Pharmaceutical applications of chitosan. Pharm. Sci. Technol. Today 1998, 1, 246–253. [Google Scholar] [CrossRef]
- Hirano, S.; Hirochi, K.; Hayashi, K.I.; Mikami, T.; Tachibana, H. Cosmetic and pharmaceutical uses of chitin and chitosan. In Cosmetic and Pharmaceutical Applications of Polymers; Springer: Boston, MA, USA, 1991; pp. 95–104. [Google Scholar]
- Shahid, M.; Mohammad, F. Green Chemistry Approaches to Develop Antimicrobial Textiles Based on Sustainable Biopolymers—A Review. Ind. Eng. Chem. Res. 2013, 52, 5245–5260. [Google Scholar] [CrossRef]
- Lalov, I.G.; Guerginov, I.I.; Krysteva, M.A.; Fartsov, K. Treatment of waste water from distilleries with chitosan. Water Res. 2000, 34, 1503–1506. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef]
- Del Valle, L.J.; Díaz, A.; Puiggalí, J. Hydrogels for biomedical applications: Cellulose, chitosan, and protein/peptide derivatives. Gels 2017, 3, 27. [Google Scholar] [CrossRef]
- Santos-Moriano, P.; Fernandez-Arrojo, L.; Mengibar, M.; Belmonte-Reche, E.; Peñalver, P.; Acosta, F.N.; Ballesteros, A.O.; Morales, J.C.; Kidibule, P.; Fernandez-Lobato, M.; et al. Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. Biocatal. Biotransform. 2018, 36, 57–67. [Google Scholar] [CrossRef]
- Kang, H.; Park, S.; Lee, B.; Ahn, J.; Kim, S. Impact of chitosan pretreatment to reduce microfibers released from synthetic garments during laundering. Water 2021, 13, 2480. [Google Scholar] [CrossRef]
- Kaurin, T.; Pušić, T.; Čurlin, M. Biopolymer textile structure of chitosan with polyester. Polymers 2022, 14, 3088. [Google Scholar] [CrossRef] [PubMed]
- Samiey, B.; Cheng, C.H.; Wu, J. Effects of surfactants on the rate of chemical reactions. J. Chem. 2014, 2014, 908476. [Google Scholar] [CrossRef]
- Peran, J.; Ercegović Ražić, S. Application of atmospheric pressure plasma technology for textile surface modification. Text. Res. J. 2020, 90, 1174–1197. [Google Scholar] [CrossRef]
- Guimond, S.; Hanselmann, B.; Amberg, M.; Hegemann, D. Plasma functionalization of textiles: Specifics and possibilities. Pure Appl. Chem. 2010, 82, 1239–1245. [Google Scholar] [CrossRef]
- Seki, Y.; Sarikanat, M.; Sever, K.; Erden, S.; Ali Gulec, H. Effect of the low and radio frequency oxygen plasma treatment of jute fiber on mechanical properties of jute fiber/polyester composite. Fibers Polym. 2010, 11, 1159–1164. [Google Scholar] [CrossRef]
- Chinta, S.K.; Landage, S.M.; Kumar, S. Plasma Technology & Its Application In Textile Wet Processing. Int. J. Eng. Res. Tehnol. 2012, 1, 18. [Google Scholar]
- Ražić, S.E.; Čunko, R. Modification of textile properties using plasma. Tekst. J. Text. Cloth. Technol. 2009, 58, 55–74. [Google Scholar]
- Mercado-Cabrera, A.; Jaramillo-Sierra, B.; López-Callejas, R.; Valencia-Alvarado, R.; De La Piedad-Beneitez, A.; Peña-Eguiluz, R.; Barocio-Delgado, S.; Muñoz-Castro, A.; Rodríguez-Méndez, B. Surface modification of polypropylene fiber for hydrophilicity enhancement aided by DBD plasma. Prog. Org. Coat. 2013, 76, 1858–1862. [Google Scholar] [CrossRef]
- Nikitin, D.; Lipatova, I.; Naumova, I.; Sirotkin, N.; Pleskunov, P.; Krakovský, I.; Khalakhan, I.; Choukourov, A.; Titov, V.; Agafonov, A. Immobilization of chitosan onto polypropylene foil via air/solution atmospheric pressure plasma afterglow treatment. Plasma Chem. Plasma Process. 2020, 40, 207–220. [Google Scholar] [CrossRef]
- Peran, J.; Ercegović Ražić, S.; Sutlović, A.; Ivanković, T.; Glogar, M.I. Oxygen plasma pretreatment improves dyeing and antimicrobial properties of wool fabric dyed with natural extract from pomegranate peel. Color. Technol. 2020, 136, 177–187. [Google Scholar] [CrossRef]
- Wrobel, A.M.; Kryszewski, M.; Rakowski, W.; Okoniewski, M.; Kubacki, Z. Effect of plasma treatment on surface structure and properties of polyester fabric. Polymer 1978, 19, 908–912. [Google Scholar] [CrossRef]
- Saleem, M.; Naz, M.Y.; Shoukat, B.; Shukrullah, S.; Hussain, Z. Functionality and applications of non-thermal plasma activated textiles: A review. Mater. Today Proc. 2021, 47, S74–S82. [Google Scholar] [CrossRef]
- Rombaldoni, F.; Mahmood, K.; Varesano, A.; Songia, M.B.; Aluigi, A.; Vineis, C.; Mazzuchetti, G. Adhesion enhancement of electrospun nanofiber mats to polypropylene nonwoven fabric by low-temperature oxygen plasma treatment. Surf. Coat. Technol. 2013, 216, 178–184. [Google Scholar] [CrossRef]
- Raffaele-Addamo, A.; Selli, E.; Barni, R.; Riccardi, C.; Orsini, F.; Poletti, G.; Meda, L.; Massafra, M.R.; Marcandalli, B. Cold plasma-induced modification of the dyeing properties of poly (ethylene terephthalate) fibers. Appl. Surf. Sci. 2006, 252, 2265–2275. [Google Scholar] [CrossRef]
- Tehrani-Bagha, A.R.; Mahmoodi, N.M.; Menger, F.M. Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination 2010, 260, 34–38. [Google Scholar] [CrossRef]
- Turhan, K.; Ozturkcan, S.A. Decolorization and degradation of reactive dye in aqueous solution by ozonation in a semi-batch bubble column reactor. Water Air Soil Pollut. 2013, 224, 1353. [Google Scholar] [CrossRef]
- Venkatesh, S.; Quaff, A.R.; Pandey, N.D.; Venkatesh, K. Decolorization and mineralization of CI direct red 28 azo dye by ozonation. Desalination Water Treat. 2016, 57, 4135–4145. [Google Scholar] [CrossRef]
- Contreras Iglesias, S. Degradation and Biodegradability Enhancement of Nitrobenzene and 2, 4-Dichlorophenol by Means of Advanced Oxidation Processes Based on Ozone; Universitat de Barcelona: Barcelona, Spain, 2003. [Google Scholar]
- Tzortzakis, N. Ozone: A powerful tool for the fresh produce preservation. In Postharvest Management Approaches for Maintaining Quality of Fresh Produce; Springer International Publishing: Cham, Switzerland, 2016; pp. 175–207. [Google Scholar]
- Santos, V.L.V.F.D.; Barcellos, I.O.; Piccoli, H.H. Pre-alvejamento de materiais têxteis com ozônio e avaliação de suas propriedades de superfície, físicas e tintoriais. Matéria 2017, 22, e11790. [Google Scholar] [CrossRef]
- Tzitzi, M.; Vayenas, D.V.; Lyberatos, G. Pretreatment of textile industry wastewaters with ozone. Water Sci. Technol. 1994, 29, 151–160. [Google Scholar] [CrossRef]
- Eren, H.A. Afterclearing by ozonation: A novel approach for disperse dyeing of polyester. Color. Technol. 2006, 122, 329–333. [Google Scholar] [CrossRef]
- Prabaharan, M.; Rao, J.V. Study on ozone bleaching of cotton fabric–process optimisation, dyeing and finishing properties. Color. Technol. 2001, 117, 98–103. [Google Scholar] [CrossRef]
- Gabardo, R.S.; de Carvalho Cotre, D.S.; Lis Arias, M.J.; Moisés, M.P.; Martins Ferreira, B.T.; Samulewski, R.B.; Hinestroza, J.P.; Bezerra, F.M. Surface modification of polyester fabrics by ozone and its effect on coloration using disperse dyes. Materials 2021, 14, 3492. [Google Scholar] [CrossRef]
- Avinc, O.; Eren, H.A.; Uysal, P. Ozone applications for after-clearing of disperse-dyed poly (lactic acid) fibres. Color. Technol. 2012, 128, 479–487. [Google Scholar] [CrossRef]
- Wakida, T.; Tokuyama, T.; Doi, C.; Lee, M.; Jeong, D.S.; Ishida, S. Mechanical properties of polyester/cotton and polyester/rayon fabrics treated with ammonia-gas. Sen’i Gakkaishi 2004, 60, 34–37. [Google Scholar] [CrossRef]
- Bradley, R.H.; Clackson, I.L.; Sykes, D.E. UV ozone modification of wool fibre surfaces. Appl. Surf. Sci. 1993, 72, 143–147. [Google Scholar] [CrossRef]
- Eren, H.A.; Avinc, O.; Erişmiş, B.; Eren, S. Ultrasound-assisted ozone bleaching of cotton. Cellulose 2014, 21, 4643–4658. [Google Scholar] [CrossRef]
- Lee, M.; Lee, M.S.; Wakida, T.; Tokuyama, T.; Inoue, G.; Ishida, S.; Itazu, T.; Miyaji, Y. Chemical modification of nylon 6 and polyester fabrics by ozone-gas treatment. J. Appl. Polym. Sci. 2006, 100, 1344–1348. [Google Scholar] [CrossRef]
- Sargunamani, D.; Selvakumar, N. A study on the effects of ozone treatment on the properties of raw and degummed mulberry silk fabrics. Polym. Degrad. Stab. 2006, 91, 2644–2653. [Google Scholar] [CrossRef]
- Wakida, T.; Lee, M.; Jeon, J.H.; Tokuyama, T.; Kuriyama, H.; Ishida, S. Ozone-gas treatment of wool and silk fabrics. Sen’i Gakkaishi 2004, 60, 213–219. [Google Scholar] [CrossRef]
- He, Z.; Li, M.; Zuo, D.; Xu, J.; Yi, C. Effects of color fading ozonation on the color yield of reactive-dyed cotton. Dye. Pigment. 2019, 164, 417–427. [Google Scholar] [CrossRef]
- Eren, H.A.; Anis, P. Surface trimer removal of polyester fibers by ozone treatment. Text. Res. J. 2009, 79, 652–656. [Google Scholar] [CrossRef]
- Jang, J.; Jeong, Y. Nano roughening of PET and PTT fabrics via continuous UV/O3 irradiation. Dye. Pigment. 2006, 69, 137–143. [Google Scholar] [CrossRef]
- Diener Electronic GmbH & Co. KG, Nagolder Straße 61, 72224 Ebhausen, Germany. Available online: https://www.plasma.com (accessed on 30 July 2025).
- HRN EN ISO 6330:2021; Textiles—Domestic Washing and Drying Procedures for Textile Testing. International Organization for Standardization: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/75934.html (accessed on 26 August 2025).
- HRN EN ISO 5084:1996; Textiles—Determination of Thickness of Textiles and Textile Products. International Organization for Standardization: Geneva, Switzerland, 1996. Available online: https://www.iso.org/standard/23348.html (accessed on 26 August 2025).
- HRN EN ISO 13934-1:2013; Textiles—Tensile Properties of Fabrics—Part 1: Determination of Maximum Force and Elongation at Maximum Force Using the Strip Method. International Organization for Standardization: Geneva, Switzerland, 2013. Available online: https://www.iso.org/standard/60676.html (accessed on 26 August 2025).
- HRN EN ISO 139:2005; Textiles—Standard Atmospheres for Conditioning and Testing. International Organization for Standardization: Geneva, Switzerland, 2005. Available online: https://www.iso.org/standard/35179.html (accessed on 26 August 2025).
- HRN ISO 3801:1977; Textil—Woven Fabrics—Determination of Mass per Unit Length and Mass per Unit Area. International Organization for Standardization: Geneva, Switzerland, 1977. Available online: https://www.iso.org/standard/9335.html (accessed on 26 August 2025).
- HRN EN ISO 3071:2020; Textiles—Determination of pH of Aqueous Extract. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/74203.html (accessed on 26 August 2025).
- Pušić, T.; Kaurin, T.; Liplin, M.; Budimir, A.; Čurlin, M.; Grgić, K.; Valh, J.V. The Stability of the Chitosan Coating on Polyester Fabric in the Washing Process. Tekstilec 2023, 66, 85–104. [Google Scholar] [CrossRef]
- Pušić, T.; Bušac, T.; Šimić, K.; Čurlin, M.; Šaravanja, A.; Grgić, K.; Volmajer Valh, J. Sustainability-Oriented Surface Modification of Polyester Knitted Fabrics with Chitosan. Sustainability 2024, 16, 1121. [Google Scholar] [CrossRef]
- Bhavsar, P.S.; Dalla Fontana, G.; Zoccola, M. Sustainable superheated water hydrolysis of black soldier fly exuviae for chitin extraction and use of the obtained chitosan in the textile field. ACS Omega 2021, 6, 8884–8893. [Google Scholar] [CrossRef] [PubMed]
- HRN EN ISO 105-J01:1997; Textiles—Tests for Colour Fastness—Part J01: General Principles for Measurement of Surface Colour. International Organization for Standardization: Geneva, Switzerland, 1997. Available online: https://www.iso.org/standard/3862.html (accessed on 26 August 2025).
- HRN EN ISO 12945-2:2020; Textiles—Determination of Fabric Propensity to Surface Pilling, Fuzzing or Matting—Part 2: Modified Martindale Method. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/75375.html (accessed on 26 August 2025).
- Ngo, H.T.; Vu Thi Hong, K.; Nguyen, T.B. Surface Modification by the DBD Plasma to Improve the Flame-Retardant Treatment for Dyed Polyester Fabric. Polymers 2021, 13, 3011. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vesel, A.; Recek, N.; Zaplotnik, R.; Kurinčič, A.; Kuzmič, K.; Zemljič, L.F. A method for the immobilization of chitosan onto urinary catheters. Int. J. Mol. Sci. 2022, 23, 15075. [Google Scholar] [CrossRef]
- Vesel, A. Deposition of Chitosan on Plasma-Treated Polymers—A Review. Polymers 2023, 15, 1109. [Google Scholar] [CrossRef] [PubMed]
- Hilal, N.M.; Gomaa, S.H.; ELsisi, A.A. Improving dyeing parameters of polyester/cotton blended fabrics by caustic soda, chitosan, and their hybrid. Egypt. J. Chem. 2020, 63, 2379–2393. [Google Scholar] [CrossRef]
- Walawska, A.; Filipowska, B.; Rybicki, E. Dyeing polyester and cotton-polyester fabrics by means of direct dyestuffs after chitosan treatment. Fibres Text. East. Eur. 2003, 11, 71–74. [Google Scholar]
- Volmajer Valh, J.; Stopar, D.; Selaya Berodia, I.; Erjavec, A.; Šauperl, O.; Fras Zemljič, L. Economical Chemical Recycling of Complex PET Waste in the Form of Active Packaging Material. Polymers 2022, 14, 3244. [Google Scholar] [CrossRef]
- Ristić, N.; Jovančić, P.; Ristić, I.; Jocić, D. One-bath dyeing of polyester/cotton blend with reactive dye after alkali and chitosan treatment. Ind. Textila 2012, 63, 190–197. [Google Scholar]
- Kabir, M.P.; Islam, M.M.; Masum, S.M.; Hossain, M.M. Adsorption of remazol red RR onto chitosan from aqueous solution. Bangladesh J. Sci. Ind. Res. 2014, 49, 111–118. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L. A sustainable solution for environmental purification: A review of high-performance hydrogels based on chitosan. Int. J. Biol. Macromol. 2025, 309, 142834. [Google Scholar] [CrossRef]
Supplier (CFT) | Mark (PN-01) | |
---|---|---|
Mass per unit area (g/m2) | 156.0 | |
Number of threads (wwa,wwe/cm) | warp | 27.7 |
weft | 20.0 | |
Thickness (mm) | 0.35 | |
Yarn fineness (tex) | warp | 30.4 |
weft | 31.9 | |
Weave | plain |
Abbreviation | Polyester Fabric Designation | Wash Cycles (WC) |
PES | untreated | WC-5/WC-10 |
PES/CH | modified with chitosan | WC-5/WC-10 |
PES_P-Ar/CH | pretreated with Ar plasma and modified with chitosan | WC-5/WC-10 |
PES_P-O2/CH | pretreated with O2 plasma and modified with chitosan | WC-5/WC-10 |
PES_O3-30/CH | pretreated with ozone 30 min and modified with chitosan | WC-5/WC-10 |
PES_O3-60/CH | pretreated with ozone 60 min and modified with chitosan | WC-5/WC-10 |
Sample | T (mm) | ∆m (%) | Fp (N) | MSC (%) | ε (%) | pH |
PES | 0.35 | / | 1015.00 | / | 18.66 | 7.0 |
PES/CH | 0.37 | 0.85 | 1031.00 | / | 19.32 | 6.0 |
PES_P-Ar | n/a | −0.08 | 945.00 | −6.8 | 20.18 | / |
PES_P-Ar/CH | 0.37 | 0.87 | 964.33 | −6.5 | 19.83 | 5.5 |
PES_P-O2 | n/a | 0.06 | 945.65 | −6.8 | 17.90 | / |
PES_P-O2/CH | 0.38 | 0.98 | 906.00 | −12.1 | 18.68 | 5.6 |
PES_O3-30 | n/a | −0.66 | 668.46 | −34.2 | 33.88 | / |
PES_O3-30/CH | 0.36 | 0.55 | 684.67 | −33.7 | 31.60 | 5.5 |
PES_O3-60 | n/a | −0.33 | 672.85 | −33.8 | 33.48 | / |
PES_O3-60/CH | 0.37 | 2.69 | 670.34 | −35.0 | 31.08 | 5.5 |
Sample | WCs | T (mm) | ∆m (%) | Fp (N) | MSC (%) | ε (%) | pH |
PES | WC-5 | 0.38 | 0.79 | 975.00 | −3.9 | 20.80 | 6.8 |
WC-10 | 0.40 | 1.13 | 956.67 | −5.7 | 21.68 | 6.6 | |
PES/CH | WC-5 | 0.39 | 1.55 | 959.00 | −6.9 | 21.38 | 6.9 |
WC-10 | 0.40 | 1.62 | 946.33 | −8.2 | 21.47 | 6.7 | |
PES_P-Ar/CH | WC-5 | 0.42 | 1.50 | 959.00 | −6.9 | 21.60 | 7.0 |
WC-10 | 0.43 | 1.75 | 968.67 | −6.0 | 21.84 | 6.7 | |
PES_P-O2/CH | WC-5 | 0.42 | 1.77 | 928.00 | −9.9 | 20.25 | 6.8 |
WC-10 | 0.43 | 1.78 | 972.67 | −5.6 | 21.64 | 6.6 | |
PES_O3-30/CH | WC-5 | 0.41 | 1.03 | 701.00 | −32.0 | 29.31 | 6.9 |
WC-10 | 0.52 | 1.51 | 936.33 | −9.2 | 24.28 | 6.6 | |
PES_O3-60/CH | WC-5 | 0.44 | 3.14 | 673.00 | −34.7 | 28.71 | 7.0 |
WC-10 | 0.45 | 1.01 | 936.67 | −9.2 | 23.60 | 6.7 |
Sample | Cycles | |||||
125 | 500 | 1000 | 2000 | 5000 | 7000 | |
Grade | ||||||
PES | 5 | 5 | 5 | 5 | 4/5 | 3/4 |
PES/CH | 5 | 5 | 5 | 5 | 4/5 | 3/4 |
PES_P-Ar/CH | 5 | 5 | 5 | 4/5 | 4 | 4 |
PES_P-O2/CH | 5 | 5 | 5 | 4/5 | 4 | 4 |
PES_O3-30/CH | 5 | 5 | 5 | 4/5 | 4 | 3/4 |
PES_O3-60/CH | 5 | 5 | 5 | 4/5 | 4 | 3/4 |
Sample | Cycles | |||||
125 | 500 | 1000 | 2000 | 5000 | 7000 | |
Grade | ||||||
PES_WC-10 | 5 | 4 | 3/4 | 3 | 3 | 3 |
PES/CH_WC-10 | 5 | 5 | 4/5 | 4/5 | 4 | 3/4 |
PES_P-Ar/CH_WC-10 | 5 | 5 | 4/5 | 4/5 | 4 | 4 |
PES_P-O2/CH_WC-10 | 5 | 5 | 4/5 | 4/5 | 4 | 3/4 |
PES_O3-30/CH_WC-10 | 4/5 | 4 | 4 | 3/4 | 3/4 | 3/4 |
PES_O3-60/CH_WC-10 | 4/5 | 4/5 | 4 | 3/4 | 3/4 | 3/4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bušac, T.; Čurlin, M.; Pušić, T.; Ercegović Ražić, S. The Influence of Low-Pressure Plasma and Ozone Pretreatment on the Stability of Polyester/Chitosan Structure in the Washing Process—Part 1. Coatings 2025, 15, 1030. https://doi.org/10.3390/coatings15091030
Bušac T, Čurlin M, Pušić T, Ercegović Ražić S. The Influence of Low-Pressure Plasma and Ozone Pretreatment on the Stability of Polyester/Chitosan Structure in the Washing Process—Part 1. Coatings. 2025; 15(9):1030. https://doi.org/10.3390/coatings15091030
Chicago/Turabian StyleBušac, Tea, Mirjana Čurlin, Tanja Pušić, and Sanja Ercegović Ražić. 2025. "The Influence of Low-Pressure Plasma and Ozone Pretreatment on the Stability of Polyester/Chitosan Structure in the Washing Process—Part 1" Coatings 15, no. 9: 1030. https://doi.org/10.3390/coatings15091030
APA StyleBušac, T., Čurlin, M., Pušić, T., & Ercegović Ražić, S. (2025). The Influence of Low-Pressure Plasma and Ozone Pretreatment on the Stability of Polyester/Chitosan Structure in the Washing Process—Part 1. Coatings, 15(9), 1030. https://doi.org/10.3390/coatings15091030