Characterization of Submicron Ni-, Co-, and Fe-Doped ZnO Fibers Fabricated by Electrospinning and Atomic Layer Deposition
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation Method
2.1.1. Electrospinning
2.1.2. Low-Temperature ALD
2.1.3. High-Temperature Annealing
2.1.4. Thermal ALD
2.2. Sample Characterization Techniques
2.2.1. SEM and EDX
2.2.2. XRD
2.2.3. XPS
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sahoo, S.; Wickramathilaka, K.Y.; Njeri, E.; Silva, D.; Suib, S.L. A review on transition metal oxides in catalysis. Front. Chem. 2024, 12, 1374878. [Google Scholar] [CrossRef]
- Goodenough, J.B. A Perspective on Engineering Transition-Metal Oxides. Chem. Mater. 2013, 26, 820–829. [Google Scholar] [CrossRef]
- Lany, S. Semiconducting transition metal oxides. J. Phys. Condens. Matter 2015, 27, 283203. [Google Scholar] [CrossRef]
- Rao, C.N.R. Transition metal oxides. Annu. Rev. Phys. Chem. 1989, 40, 291. [Google Scholar] [CrossRef]
- Tokura, Y.; Nagaosa, N. Orbital physics in transition-metal oxide. Science 2000, 288, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liao, T.; Dou, Y.; Hwang, S.M.; Park, M.-S.; Jiang, L.; Kim, J.H.; Dou, S.X. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 2014, 5, 3813. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Byakodi, M.; Shrikrishna, N.S.; Sharma, R.; Bhansali, S.; Mishra, Y.; Kaushik, A.; Gandhi, S. Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. Biosens. Bioelectron. 2022, 12, 100284. [Google Scholar] [CrossRef]
- Mekuye, B.; Abera, B. Nanomaterials: An overview of synthesis, classification, characterization, and applications. Nano Select 2023, 4, 486–501. [Google Scholar] [CrossRef]
- Xia, X.; Dong, X.J.; Wei, Q.F.; Cai, Y.B.; Lu, K.Y. Formation mechanism of porous hollow SnO2 nanofibers prepared by one-step electrospinning. Express Polym. Lett. 2012, 6, 169–176. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, Q.; Wei, Z.; Xu, L.; Peng, S.; Zeng, W. Synthesis of Hollow Nanofibers and Application on Detecting SF6 Decomposing Products. Front. Mater. 2019, 6, 183. [Google Scholar] [CrossRef]
- Kim, W.-S.; Lee, B.-S.; Kim, D.-H.; Kim, H.-C.; Yu, W.-R.; Hong, S.-H. SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology 2010, 21, 245605. [Google Scholar]
- Li, L.; Peng, S.; Lee, J.K.Y.; Ji, D.; Srinivasan, M.; Ramakrishna, S. Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 2017, 39, 111–139. [Google Scholar] [CrossRef]
- Homaeigohar, S.; Davoudpour, Y.; Habibi, Y.; Elbahri, M. The Electrospun Ceramic Hollow Nanofibers. Nanomaterials 2017, 7, 383. [Google Scholar] [CrossRef]
- Blagoev, B.S.; Georgieva, B.; Starbova, K.; Starbov, N.; Avramova, I.; Buchkov, K.; Tzvetkov, P.; Stoykov, R.; Terziyska, P.; Delibaltov, D.; et al. A Novel Approach to Obtaining Metal Oxide HAR Nanostructures by Electrospinning and ALD. Materials 2023, 16, 7489. [Google Scholar] [CrossRef] [PubMed]
- Bifulco, A.; Climaco, I.; Casciello, A.; Passaro, J.; Battegazzore, D.; Nebbioso, V.; Russo, P.; Imparato, C.; Aronne, A.; Malucelli, J. Prediction and validation of fire parameters for a self-extinguishing and smoke suppressant electrospun PVP-based multilayer material through machine learning models. J. Mater. Sci. 2025, 60, 1019–1040. [Google Scholar] [CrossRef]
- Li, Y.; Song, G.-L.; Lian, X.-X. Co-doped ZnO nanofibers fabricated via electrospinning for rapid and ppb-level detection of listeria biomarker 3-hydroxy-2-butanone. Ceram. Int. 2024, 50, 50418–50426. [Google Scholar] [CrossRef]
- Vieii, F.H.; Roya Shokrani Havigh, R.S.; Chenari, H.M. Electrospun preparation of nickel and Cobalt-doped ZnO fibers: Study on the physical properties. Sci. Rep. 2025, 15, 10898. [Google Scholar] [CrossRef]
- Vempati, S.; Ranjith, K.S.; Topuz, F.; Biyikli, N.; Uyar, T. Electrospinning combined with atomic layer deposition to generate applied nanomaterials: A review. ACS Appl. Nano Mater. 2020, 3, 6186–6209. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Santala, E.; Heikkila, M.; Pore, V.; Kemell, M.; Nikitin, T.; Teucher, G.; Firkala, T.; Khriachtchev, L.; Räsänen, M.; et al. Photocatalytic properties of WO3/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition. Chem. Vap. Depos. 2013, 19, 149–155. [Google Scholar] [CrossRef]
- Kéri, O.; Kocsis, E.; Karajz, D.A.; Nagy, Z.K.; Parditka, B.; Erdélyi, Z.; Szabó, A.; Hernádi, K.; Szilágyi, I.M. Photocatalytic crystalline and amorphous TiO2 nanotubes prepared by electrospinning and atomic layer deposition. Molecules 2021, 26, 5917. [Google Scholar] [CrossRef]
- Kayaci, F.; Ozgit-Akgun, C.; Biyikli, N.; Uyar, T. Surface-decorated ZnO nanoparticles and ZnO nanocoating on electrospun polymeric nanofibers by atomic layer deposition for flexible photocatalytic nanofibrous membranes. RSC Adv. 2013, 3, 6817–6820. [Google Scholar] [CrossRef]
- Peng, Q.; Sun, X.-Y.; Spagnola, J.C.; Saquing, C.; Khan, S.A.; Spontak, R.J.; Parsons, G.N. Bi-directional Kirkendall effect in coaxial microtube nanolaminate assemblies fabricated by atomic layer deposition. ACS Nano 2009, 3, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Guziewicz, E.; Godlewski, M.; Wachnicki, L.; Krajewski, T.A.; Luka, G.; Gieraltowska, S.; Jakiela, R.; Stonert, A.; Lisowski, W.; Krawczyk, M.; et al. ALD grown zinc oxide with controllable electrical properties. Semicond. Sci. Technol. 2012, 27, 074011. [Google Scholar] [CrossRef]
- Tapily, K.; Gu, D.; Baumgart, H.; Namkoong, G.; Stegall, D.; Elmustafa, A.A. Mechanical and structural characterization of atomic layer deposition-based ZnO films. Semicond. Sci. Technol. 2011, 26, 115005. [Google Scholar] [CrossRef]
- Janocha, E.; Pettenkofer, C. ALD of ZnO using diethylzinc as metal-precursor and oxygen as oxidizing agent. Appl. Surf. Sci. 2011, 257, 10031–10035. [Google Scholar] [CrossRef]
- Xia, B.; Ganem, J.J.; Briand, E.; Steydli, S.; Tancrez, H.; Vickridge, I. The carbon and hydrogen contents in ALD-grown ZnO films define a narrow ALD temperature window. Vacuum 2021, 190, 110289. [Google Scholar] [CrossRef]
- Park, S.-M.; Ikegami, T.; Ebihara, K. Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Film. 2006, 513, 90–94. [Google Scholar] [CrossRef]
- Chen, J.; Dai, R.; Ma, H.; Lin, Z.; Li, Y.; Xi, B. Atomic Layer Deposition of Nickel Oxides as Electrocatalyst for Oxygen Evolution Reaction. Nanomaterials 2025, 15, 474. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
Series | Number of Cycles | Temperatures, °C | Hollow Fiber Structures | |||
---|---|---|---|---|---|---|
ZnO | TMO 1 | supercycle | Reactor | HS 2 | ||
1 | 16 150 | 5 0 | 8 0 | 200 | 80 0 | ZnO:TM/ALO-1s ZnO/ALO-1s |
2 | 6 150 | 20 0 | 25 0 | 230 | 90 0 | ZnO:TM/ALO-2s ZnO/ALO-2s |
Fiber Structure | D, nm | N | St. Dev., nm | wall, nm |
---|---|---|---|---|
PVA | 338 | 200 | 46 | - |
ZnO:Co/ALO-1s | 362 | 110 | 35 | 59 |
ZnO:Fe/ALO-1s | 364 | 346 | 32 | 58 |
ZnO:Ni/ALO-1s | 551 | 200 | 70 | 72 |
ZnO/ALO-1s | 500 | 200 | 75 | 73 |
ZnO:Co/ALO-2s | 370 | 150 | 64 | 96 |
ZnO:Fe/ALO-2s | 380 | 150 | 45 | 89 |
ZnO:Ni/ALO-2s | 440 | 150 | 38 | 137 |
ZnO/ALO-2s | 370 | 150 | 39 | 81 |
Fiber Structure | D, nm |
---|---|
ZnO:Co/ALO-1s | 7.5 (3) |
ZnO:Fe/ALO-1s | 7.3 (3) |
ZnO:Ni/ALO-1s | 14.6 (6) |
ZnO/ALO-1s | 12.7 (5) |
ZnO:Co/ALO-2s | 9.7 (8) |
ZnO:Fe/ALO-2s | 11.8 (2) |
ZnO:Ni/ALO-2s | 8.3 (3) |
ZnO/ALO-2s | 7.1 (5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blagoev, B.S.; Georgieva, B.; Paskaleva, A.; Avramova, I.; Tzvetkov, P.; Starbova, K.; Starbov, N.; Buchkov, K.; Mehandzhiev, V.; Slavov, L.; et al. Characterization of Submicron Ni-, Co-, and Fe-Doped ZnO Fibers Fabricated by Electrospinning and Atomic Layer Deposition. Coatings 2025, 15, 1022. https://doi.org/10.3390/coatings15091022
Blagoev BS, Georgieva B, Paskaleva A, Avramova I, Tzvetkov P, Starbova K, Starbov N, Buchkov K, Mehandzhiev V, Slavov L, et al. Characterization of Submicron Ni-, Co-, and Fe-Doped ZnO Fibers Fabricated by Electrospinning and Atomic Layer Deposition. Coatings. 2025; 15(9):1022. https://doi.org/10.3390/coatings15091022
Chicago/Turabian StyleBlagoev, Blagoy Spasov, Borislava Georgieva, Albena Paskaleva, Ivalina Avramova, Peter Tzvetkov, Kirilka Starbova, Nikolay Starbov, Krastyo Buchkov, Vladimir Mehandzhiev, Lyubomir Slavov, and et al. 2025. "Characterization of Submicron Ni-, Co-, and Fe-Doped ZnO Fibers Fabricated by Electrospinning and Atomic Layer Deposition" Coatings 15, no. 9: 1022. https://doi.org/10.3390/coatings15091022
APA StyleBlagoev, B. S., Georgieva, B., Paskaleva, A., Avramova, I., Tzvetkov, P., Starbova, K., Starbov, N., Buchkov, K., Mehandzhiev, V., Slavov, L., Terziyska, P., & Spasov, D. (2025). Characterization of Submicron Ni-, Co-, and Fe-Doped ZnO Fibers Fabricated by Electrospinning and Atomic Layer Deposition. Coatings, 15(9), 1022. https://doi.org/10.3390/coatings15091022