Preparation and Performance of Thermal Insulation Waterborne Polyurethane Coatings Containing 3-Aminopropyltriethoxysilane Modified Organo-Bridged Silica Aerogel
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of WPU Coatings
2.2.1. Synthesis and Preparation of OBSA
2.2.2. Preparation of APTES-OBSA
2.2.3. Preparation of WPU Composite Coatings
2.3. Characterization
2.3.1. Thermal Insulation Test [32]
2.3.2. Adhesion Test
2.3.3. Water Absorption Test
3. Results and Discussion
3.1. Chemical Structure Analysis of APTES-OBSA
3.2. Microstructure of WPU Coatings
3.3. Thermal Insulation Performance of WPU Coatings
3.4. Thermal Stability of WPU Coatings
3.5. Adhesion of WPU Coatings
3.6. Water Resistance of WPU Coatings
4. Conclusions
- (1)
- APTES-OBSA was obtained through surface functionalization of OBSA using silane coupling agent APTES as modifying agent. FTIR and TGA confirmed the successful grafting of APTES onto OBSA surfaces. Contact angle measurements demonstrated good interfacial compatibility between APTES-OBSA and WPU emulsion. SEM investigation of WPU coatings incorporating APTES-OBSA revealed superior dispersion of the modified particles in the aqueous polyurethane matrix.
- (2)
- Performance evaluation indicated that both OBSA and APTES-OBSA could reduce thermal conductivity and enhance thermal insulation performance of WPU coatings, with APTES-OBSA exhibiting superior performance enhancement. Compare to neat WPU coatings, APTES-OBSA/WPU composite coating achieved up to 21.6% reduction in thermal conductivity. Glass substrate coated with 0.3 mm -thick APTES-OBSA/WPU coating exhibited 10 °C lower back-surface temperatures than neat WPU coating after 40 min irradiation at 70 °C.
- (3)
- APTES-OBSA also endowed WPU coatings with higher thermal stability, manifested by an 11% increase in char residue at 800 °C and a 5 °C increase in maximum thermal decomposition temperature. Moreover, APTES-OBSA increased coating adhesion by up to 26.6%, whereas OBSA resulted in a slight decrease in adhesion. All silica aerogel/WPU composites exhibited satisfactory water resistance, and the incorporation of APTES-OBSA (5–20 wt%) resulted in a marginal increase (0.39–2.34%) in water absorption rate after 72 h immersion.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, Y.; Fan, L.; Jin, W.; Ye, Y.; Huang, Z.; Zhai, S.; Luo, X.; Ma, Y.; Tang, J.; Zhou, J. Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain. 2022, 5, 339–347. [Google Scholar] [CrossRef]
- Ye, X.; Chen, D. Thermal insulation coatings in energy saving. In Energy-Efficient Approaches in Industrial Applications, 1st ed.; IntechOpen: London, UK, 2019; Volume 1, pp. 8–15. [Google Scholar] [CrossRef]
- Simpson, A.; Fitton, R.; Rattigan, I.G.; Marshall, A.; Parr, G.; Swan, W. Thermal performance of thermal paint and surface coatings in buildings in heating dominated climates. Energ. Build. 2019, 197, 196–213. [Google Scholar] [CrossRef]
- Saienko, N.; Bikov, R.; Skripinets, A.; Demidov, D.; Dukarov, S. Effectiveness evaluation of silicate fillers for the creation of thin-layer thermal insulation coatings. AIP Conf. Proc. 2023, 2490, 050021. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, X.; Xu, X.; Liu, L.; Yu, B.; Maluk, C.; Huang, G.; Wang, H.; Song, P. Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano 2021, 15, 11667–11680. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, X.; Jia, L.; Yu, W.; Zheng, Q. Highly water-resistant transparent waterborne polyurethane thermal-insulation coating material with multiple self-crosslinking network based on controllably activated end-capping reagent. Prog. Org. Coat. 2024, 187, 108104. [Google Scholar] [CrossRef]
- Dong, W.; Ma, M. Recent developments and advanced applications of promising functional nanocomposites for green buildings: A review. J. Build. Eng. 2025, 102, 111905. [Google Scholar] [CrossRef]
- Yan, X.; Wang, L.; Qian, X. Influence of the PVC of glass fiber powder on the properties of a thermochromic waterborne coating for Chinese fir boards. Coatings 2020, 10, 588. [Google Scholar] [CrossRef]
- Chen, C.; Yu, D.; Yuan, Q.; Wu, M. Anisotropic, elastic cellulose nanofibril cryogel cross-linked by waterborne polyurethane with excellent thermal insulation performance. Cellulose 2022, 29, 6219–6229. [Google Scholar] [CrossRef]
- Calovi, M.; Rossi, S. Durability and thermal behavior of functional paints formulated with recycled-glass hollow microspheres of different size. Materials 2023, 16, 2678. [Google Scholar] [CrossRef]
- Xiang, Y.; Yan, M.; Li, L.; Xiao, Y.; Sun, H.; Zhang, Z.; Yang, H.; Cheng, X.; Pan, Y. Low thermal conductivity and self-cleaning silica aerogel coating based on a secondary coating encapsulation strategy. Constr. Build. Mater. 2025, 472, 140878. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, X.; Kong, Y.; Shen, X. Fatigue resistant flexible silica aerogel for thermal sealing under force-heat coupling conditions. J. Non-Cryst Solids 2025, 665, 123618. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Duan, Y.; Chen, J.; Yao, S.; Peng, L.; Chen, W.; Menshutina, N.; Liu, M. A review of silica aerogel based thermal insulation coatings: Preparation, properties and applications. Prog. Org. Coat 2025, 208, 109449. [Google Scholar] [CrossRef]
- de Sousa, F.V.; Fortunato, D.D.S.; Grosso, M.; Barcia, O.E.; Quintela, J.P.; Margarit-Mattos, I.C. Thermal insulation paintings: Viscoelastic and corrosion-related properties. Prog. Org. Coat 2025, 200, 109084. [Google Scholar] [CrossRef]
- Ran, Q. Foamy melamine resin-silica aerogel composite-derived thermal insulation coating. Nanomaterials 2025, 15, 135. [Google Scholar] [CrossRef]
- Riahipour, R.; Nemati, M.S.; Zadehmohamad, M.; Baniassadi, M. Mechanical properties of an epoxy-based coating reinforced with silica aerogel and ammonium polyphosphate additives. Polym. Polym. Compos. 2022, 30, 1–10. [Google Scholar] [CrossRef]
- Goryunova, K.I.; Gahramanli, Y.N. Insulating materials based on silica aerogel composites: Synthesis, properties and application. RSC Adv. 2024, 14, 34690–34707. [Google Scholar] [CrossRef]
- Kim, Y.J. Ambient drying silica aerogel coatings modified with polyethylene glycol. J. Ceram. Process. Res. 2017, 18, 55–58. [Google Scholar]
- Halim, Z.A.A.; Yajid, M.A.M. Comparison of dynamic mechanical properties and thermal conductivity of unsaturated polyester composites filled with plain SiO2 aerogel and core-shell SiO2 aerogel. Mater. Today Proc. 2019, 17, 686–693. [Google Scholar] [CrossRef]
- Wang, W.; Yu, X.; Lai, C.; Li, G.; Zhu, P.; Sun, R. Systematic study of the effect of silane coupling agent on the hydrothermal aging resistance of the underfill epoxy resin and silica interface via molecular dynamics simulation. Appl. Surf. Sci. 2025, 688, 162313. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Yang, L.K. Silane modification of nanofibrillated cellulose and its effect on the properties of waterborne acrylic resin. J. Appl. Polym. Sci. 2023, 140, e54543. [Google Scholar] [CrossRef]
- Zou, H.; Wu, S.; Shen, J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef]
- Lee, D.I.; Ha, Y.; Jeon, H.; Kim, S.H. Preparation and properties of polyurethane composite foams with silica-based fillers. Appl. Sci. 2022, 12, 7418. [Google Scholar] [CrossRef]
- Marof, K.; Iller, L. Enhancing thermal insulation in cement mortar with silica aerogel and recycled PET plastic. Constr. Build. Mater. 2025, 467, 140320. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Y.; Xin, B.; Zhou, Y. Preparation and properties of functional fabric coating based on SiO2-aerogel/polyurethane. Fiber. Polym. 2022, 23, 1870–1880. [Google Scholar] [CrossRef]
- Al-Kandary, S.; Ali, A.A.M.; Ahmad, Z. Morphology and thermo-mechanical properties of compatibilized polyimide-silica nanocomposites. J. Appl. Polym. Sci. 2005, 98, 2521–2531. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Dong, H.; Niu, H.; Wang, Q.; Cheng, Q. Synthesis and characterization of silicone polyurea and mechanical properties improvement through interfacial reaction. RSC Adv. 2025, 15, 11835–11844. [Google Scholar] [CrossRef]
- Li, H.; Li, R.; Liu, H.; Li, J.; Yang, A. Heat transport across phase interface in silica aerogel/polymethyl methacrylate composites. Polym. Test. 2019, 76, 326–332. [Google Scholar] [CrossRef]
- Meti, P.; Wang, Q.; Mahadik, D.B.; Lee, K.Y.; Gong, Y.D.; Park, H.H. Evolutionary progress of silica aerogels and their classification based on composition: An overview. Nanomaterials 2023, 13, 1498. [Google Scholar] [CrossRef] [PubMed]
- Abebe, A.M.; Biesuz, M.; Vakifahmetoglu, C.; Cassetta, M.; Sorarù, G.D. Hybrid silica aerogels from bridged silicon alkoxides: Ultralow thermal conductivity for low-temperature applications. J. Sol-Gel Sci. Tech. 2025, 114, 1117–1126. [Google Scholar] [CrossRef]
- Zhao, J.; Zeng, G.; Zou, F.; Jiang, S.; Chen, Y.; Wang, H.; Mu, C.; Tang, X.-Z. Bismaleimide bridged silsesquioxane aerogels with excellent heat resistance: Effect of sol–gel solvent polarity. Soft Matter 2020, 16, 3548–3554. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gong, G.; Gao, L.; Cui, W.; Wang, Y. Preparation and performance of intumescent water-based coatings with both thermal insulation and flame retardant functions. Chem. Eng. J. 2024, 480, 148165. [Google Scholar] [CrossRef]
- Yang, H.; Ye, L.; Gong, J.; Li, M.; Jiang, Z.; Wen, X.; Chen, H.; Tian, N.; Tang, T. Simultaneously improving the mechanical properties and flame retardancy of polypropylene using functionalized carbon nanotubes by covalently wrapping flame retardants followed by linking polypropylene. Mater. Chem. Front. 2017, 1, 716–726. [Google Scholar] [CrossRef]
- Gonçalves, I.A.; Barauna, J.; Pinheiro, I.F.; Calderaro, M.P.; Morales, A.R. Nanocomposites of poly(butylene adipate-co-terephthalate) containing sepiolite modified with 3-aminopropyltriethoxysilane and octadecyl isocyanate. J. Appl. Polym. Sci. 2023, 140, e54642. [Google Scholar] [CrossRef]
- He, S.; Wu, X.; Zhang, X.; Sun, J.; Tian, F.; Guo, S.; Du, H.; Li, P.; Huang, Y. Preparation and properties of thermal insulation coating based on silica aerogel. Energ. Build. 2023, 298, 113556. [Google Scholar] [CrossRef]
- Hudak, N.S.; Manas-Zloczower, I.; Feke, D.L. Methodology and analysis of the effect of liquid infiltration on the hydrodynamic dispersion of silica aerogel agglomerates. Kona 2004, 22, 134–142. [Google Scholar] [CrossRef]
- Di, Z.; Ma, S.; Wang, H.; Guan, Z.; Lian, B.; Qiu, Y.; Jiang, Y. Modulation of thermal insulation and mechanical property of silica aerogel thermal insulation coatings. Coatings 2022, 12, 1421. [Google Scholar] [CrossRef]
- Gu, J.; Fu, R.; Kang, S.; Yang, X.; Song, Q.; Miao, C.; Ma, M.; Wang, Y.; Sai, H. Robust composite aerogel beads with pomegranate-like structure for water-based thermal insulation coating. Constr. Build. Mater. 2022, 341, 127722. [Google Scholar] [CrossRef]
Sample ID | WPU (Mass Ratio, %) | OBSA (Mass Ratio, %) | APTES-OBSA (Mass Ratio, %) |
---|---|---|---|
WPU | 100 | 0 | 0 |
WPU-OBSA-5 | 95 | 5 | 0 |
WPU-APTES-OBSA-5 | 95 | 0 | 5 |
WPU-APTES-OBSA-10 | 90 | 0 | 10 |
WPU-APTES-OBSA-15 | 85 | 0 | 15 |
WPU-APTES-OBSA-20 | 80 | 0 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Yang, B.; Chen, Z.; Zeng, Y. Preparation and Performance of Thermal Insulation Waterborne Polyurethane Coatings Containing 3-Aminopropyltriethoxysilane Modified Organo-Bridged Silica Aerogel. Coatings 2025, 15, 1021. https://doi.org/10.3390/coatings15091021
Zhao J, Yang B, Chen Z, Zeng Y. Preparation and Performance of Thermal Insulation Waterborne Polyurethane Coatings Containing 3-Aminopropyltriethoxysilane Modified Organo-Bridged Silica Aerogel. Coatings. 2025; 15(9):1021. https://doi.org/10.3390/coatings15091021
Chicago/Turabian StyleZhao, Juan, Bohao Yang, Zongren Chen, and Yufan Zeng. 2025. "Preparation and Performance of Thermal Insulation Waterborne Polyurethane Coatings Containing 3-Aminopropyltriethoxysilane Modified Organo-Bridged Silica Aerogel" Coatings 15, no. 9: 1021. https://doi.org/10.3390/coatings15091021
APA StyleZhao, J., Yang, B., Chen, Z., & Zeng, Y. (2025). Preparation and Performance of Thermal Insulation Waterborne Polyurethane Coatings Containing 3-Aminopropyltriethoxysilane Modified Organo-Bridged Silica Aerogel. Coatings, 15(9), 1021. https://doi.org/10.3390/coatings15091021