Aging-Induced Microstructural Transformations and Performance Enhancement of Cr/DLC Coatings on ECAP-7075 Aluminum Alloy
Abstract
1. Introduction
2. Materials and Methods
2.1. Matrix Treatment and Coating Deposition
2.2. Performance Testing
2.3. Microstructural Characterization
3. Results
3.1. Hardness
3.2. Adhesion Analysis
3.3. Dynamic Polarization Analysis
3.4. Microstructure and Morphology
3.5. XRD Analysis
3.6. XPS Analysis
4. Discussion
5. Conclusions
- (1)
- ECAP enhances the strength and load-bearing capacity of the 7075 aluminum alloy substrate, mitigating the mismatch in mechanical properties between the aluminum substrate and the Cr transition layer. The Cr transition layer is tightly bonded to the substrate via diffusion bonding.
- (2)
- AT promotes the precipitation of η’ phase, thereby enhancing the corrosion resistance of the aluminum substrate. However, it also leads to an increase in the pore diameter of the Cr/DLC coating, resulting in a slight reduction in the coating’s corrosion resistance. Additionally, AT promotes the transformation of the Cr7C3 hard phase from a polycrystalline orientation to a single orientation along the (060) or (242) crystal planes; increases the size of the Cr7C3 phase; elevates the sp3-C/sp2-C ratio; and improves the compactness of the DLC layer. These microstructural evolutions are beneficial for enhancing the mechanical properties of the Cr/DLC coating.
- (3)
- The combination of ECAP and AT processes enables the Cr/DLC coating deposited on 7075 aluminum alloy to achieve a hardness of 5.2 GPa, an adhesion strength of 15.1 N, and a corrosion potential of −0.698 V. However, this process cannot improve the adhesion state between the Cr layer and the DLC layer, and there are obvious plastic deformation regions near the interface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashby, M.; Brechet, Y.; Cebon, D.; Salvo, L. Selection strategies for materials and processes. Mater. Des. 2004, 25, 51–67. [Google Scholar] [CrossRef]
- Jia, Z.-Y.; Ye, T.; Ma, J.-W.; Cao, X.-L.; Liu, W.; Yu, W.-J.; Gao, J. Effect of process parameters on the hardness of laser surface textured 5A06 aluminum alloy. J. Mater. Eng. Perform. 2021, 30, 5858–5867. [Google Scholar] [CrossRef]
- Szklarska-Smialowska, Z. Pitting corrosion of aluminum. Corros. Sci. 1999, 41, 1743–1767. [Google Scholar] [CrossRef]
- Liew, Y.; Örnek, C.; Pan, J.; Thierry, D.; Wijesinghe, S.; Blackwood, D.J. Towards understanding micro-galvanic activities in localised corrosion of AA2099 aluminium alloy. Electrochim. Acta 2021, 392, 139005. [Google Scholar] [CrossRef]
- Panagopoulos, C.; Georgiou, E.; Gavras, A. Corrosion and wear of 6082 aluminum alloy. Tribol. Int. 2009, 42, 886–889. [Google Scholar] [CrossRef]
- Meyer-Rodenbeck, G.; Hurd, T.; Ball, A. On the abrasive-corrosive wear of aluminium alloys. Wear 1992, 154, 305–317. [Google Scholar] [CrossRef]
- Wang, Y.; He, T.; Du, X.; Vereschaka, A.; Sotova, C.; Ding, Y.; Chen, K.; Li, J.; He, P. Influence of Aluminum Alloy Substrate Temperature on Microstructure and Corrosion Resistance of Cr/Ti Bilayer Coatings. Coatings 2025, 15, 891. [Google Scholar] [CrossRef]
- Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 2002, 37, 129–281. [Google Scholar] [CrossRef]
- Lee, W.Y.; Tokoroyama, T.; Murashima, M.; Umehara, N. Investigating running-in behavior to understand wear behavior of ta-C coating with filtered cathodic vacuum arc deposition. J. Tribol 2019, 23, 38–47. [Google Scholar]
- Khan, S.A.; Ferreira, F.; Oliveira, J.; Emami, N.; Ramalho, A. A comparative study in the tribological behaviour of different DLC coatings sliding against titanium alloys. Wear 2024, 554, 205468. [Google Scholar] [CrossRef]
- Jellesen, M.S.; Christiansen, T.L.; Hilbert, L.R.; Møller, P. Erosion–corrosion and corrosion properties of DLC coated low temperature gas-nitrided austenitic stainless steel. Wear 2009, 267, 1709–1714. [Google Scholar] [CrossRef]
- Azadi, M.; Ahangarani, S. A review on titanium nitride and titanium carbide single and multilayer coatings deposited by plasma assisted chemical vapor deposition. Int. J. Eng. 2016, 29, 677–687. [Google Scholar] [CrossRef]
- Snyders, R.; Bousser, E.; Amireault, P.; Klemberg-Sapieha, J.E.; Park, E.; Taylor, K.; Casey, K.; Martinu, L. Tribo-mechanical properties of DLC coatings deposited on nitrided biomedical stainless steel. Plasma Process. Polym. 2007, 4, S640–S646. [Google Scholar] [CrossRef]
- Banerji, A.; Bhowmick, S.; Alpas, A. High temperature tribological behavior of W containing diamond-like carbon (DLC) coating against titanium alloys. Surf. Coat. Technol. 2014, 241, 93–104. [Google Scholar] [CrossRef]
- Holmberg, K.; Matthews, A.; Ronkainen, H. Coatings tribology—Contact mechanisms and surface design. Tribol. Int. 1998, 31, 107–120. [Google Scholar] [CrossRef]
- Oliveira, S.A.; Bower, A.F. An analysis of fracture and delamination in thin coatings subjected to contact loading. Wear 1996, 198, 15–32. [Google Scholar] [CrossRef]
- Jo, Y.J.; Zhang, T.F.; Son, M.J.; Kim, K.H. Synthesis and electrochemical properties of Ti-doped DLC films by a hybrid PVD/PECVD process. Appl. Surf. Sci. 2018, 433, 1184–1191. [Google Scholar] [CrossRef]
- Cao, L.; Liu, J.; Wan, Y.; Pu, J. Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater. Diam. Relat. Mater. 2020, 109, 108019. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhou, S.; Wang, Y.; Wang, C.; Guo, W.; Lu, X.; Wang, L. Tailoring self-lubricating, wear-resistance, anticorrosion and antifouling properties of Ti/(Cu, MoS2)-DLC coating in marine environment by controlling the content of Cu dopant. Tribol. Int. 2020, 143, 106029. [Google Scholar] [CrossRef]
- Jing, P.; Feng, Q.; Lan, Q.; Ma, D.; Wang, H.; Jiang, X.; Leng, Y. Migration and agglomeration behaviors of Ag nanocrystals in the Ag-doped diamond-like carbon film during its long-time service. Carbon 2023, 201, 648–658. [Google Scholar] [CrossRef]
- Cao, H.; Ye, X.; Li, H.; Qi, F.; Wang, Q.; Ouyang, X.; Zhao, N.; Liao, B. Microstructure, mechanical and tribological properties of multilayer Ti-DLC thick films on Al alloys by filtered cathodic vacuum arc technology. Mater. Des. 2021, 198, 109320. [Google Scholar] [CrossRef]
- Luo, H.; Lü, Y.; Zhao, X.; Zhang, Y. Modulation of bonding structure and mechanical properties of DLC coatings by binary doping: Molecular dynamics simulation. Diam. Relat. Mater. 2025, 157, 112465. [Google Scholar] [CrossRef]
- Viswanathan, S.; Mohan, L.; Bera, P.; Kumar, V.P.; Barshilia, H.C.; Anandan, C. Corrosion and wear behaviors of Cr-doped diamond-like carbon coatings. J. Mater. Eng. Perform. 2017, 26, 3633–3647. [Google Scholar] [CrossRef]
- Shahsavari, F.; Ehteshamzadeh, M.; Naimi-Jamal, M.R.; Irannejad, A. Nanoindentation and nanoscratch behaviors of DLC films growth on different thickness of Cr nanolayers. Diam. Relat. Mater. 2016, 70, 76–82. [Google Scholar] [CrossRef]
- Patnaik, L.; Maity, S.R.; Kumar, S. Comprehensive structural, nanomechanical and tribological evaluation of silver doped DLC thin film coating with chromium interlayer (Ag-DLC/Cr) for biomedical application. Ceram. Int. 2020, 46, 22805–22818. [Google Scholar] [CrossRef]
- Berndt, N.; Reiser, N.A.; Wagner, M.F.-X. Evolution of plastic deformation during multi-pass ECAP of an AA6060 aluminum alloy–An experimental flow line analysis. J. Mater. Res. Technol. 2025, 34, 359–371. [Google Scholar] [CrossRef]
- Zhang, J.-J.; He, T.; Du, X.-Y.; Alexer, V.; Song, M.; Chen, X.-L.; Li, J. Effect of pre-heat treatment and subsequent ECAP-CU on microstructure and corrosion behavior of 7075 Al alloy fasteners. J. Cent. South Univ. 2025, 32, 2383–2403. [Google Scholar] [CrossRef]
- Xu, C.; Langdon, T.G. The development of hardness homogeneity in aluminum and an aluminum alloy processed by ECAP. J. Mater. Sci. 2007, 42, 1542–1550. [Google Scholar] [CrossRef]
- Li, J.; He, T.; Du, X.-y.; Vereschaka, A. Enhancing the corrosion resistance of high-strength Al-Zn-Mg-Cu alloys after equal channel angular pressing by developing retrogression and re-aging strategies. Corros. Sci. 2025, 246, 112736. [Google Scholar] [CrossRef]
- Wan, W.; Zhan, Z.; Huang, C.; Yang, J.; Li, W. Microstructural evolution and deposition mechanism of cold-sprayed Cr coatings on the Al and Ti substrates. Surf. Coat. Technol. 2025, 510, 132251. [Google Scholar] [CrossRef]
- Yang, S.; He, D.; Ma, F.; Cui, L.; Ma, L.; Cao, Q.; Bu, F.; Xu, Y.; Yu, J. Optimizing HVOF-sprayed inconel 718 coatings via direct single-aging treatment: Influence of aging temperature on microstructure, mechanical and tribological properties. Surf. Coat. Technol. 2025, 511, 132263. [Google Scholar] [CrossRef]
- Chen, H.; Du, Y.; Liang, Q.; Ma, W.; Tu, J. Effect of double aging treatment on the tribological properties of 15-5PH coating on 17-4PH stainless steel by laser cladding. J. Mater. Res. Technol. 2025, 35, 4378–4389. [Google Scholar] [CrossRef]
- Ji, H.; Zhang, L.; Hong, L.; Zhang, H.-F. Effects of aging on microstructure and wear resistance of laser cladding Mo0.5NbTiVCr0.25 high-entropy alloy coating. Trans. Nonferrous Met. Soc. China 2024, 34, 2219–2230. [Google Scholar]
- Zhang, J.; He, T.; Du, X.; Alexey, V.; Song, M.; Chen, X. Enhanced mechanical properties in 7075 Al alloy fasteners processed by post ECAP-CU aging. Mater. Today Commun. 2025, 45, 112274. [Google Scholar] [CrossRef]
- Jia, D.-S.; He, T.; Song, M.; Huo, Y.-M.; Hu, H.-Y. Effects of equal channel angular pressing and further cold upsetting process to the kinetics of precipitation during aging of 7050 aluminum alloy. J. Mater. Res. Technol. 2023, 26, 5126–5140. [Google Scholar] [CrossRef]
- Qin, H.; Bi, Z.; Yu, H.; Feng, G.; Zhang, R.; Guo, X.; Chi, H.; Du, J.; Zhang, J. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy. Mater. Sci. Eng. A 2018, 728, 183–195. [Google Scholar] [CrossRef]
- Wu, L.; Ding, X.; Zheng, Z.; Tang, A.; Zhang, G.; Atrens, A.; Pan, F. Doublely-doped Mg-Al-Ce-V2O74-LDH composite film on magnesium alloy AZ31 for anticorrosion. J. Mater. Sci. Technol. 2021, 64, 66–72. [Google Scholar] [CrossRef]
- He, T.; Valery, Z.; Vereschaka, A.; Keshin, A.; Huo, Y.; Milovich, F.; Sotova, C.; Seleznev, A. Influence of niobium and hafnium doping on the wear and corrosion resistance of coatings based on ZrN. J. Mater. Res. Technol. 2023, 27, 6386–6399. [Google Scholar] [CrossRef]
- Li, J.; He, T.; Du, X.-Y.; Vereschaka, A.; Zhang, J.-J. Regulating hardness homogeneity and corrosion resistance of Al-Zn-Mg-Cu alloy via ECAP combined with inter-pass aging. Mater. Charact. 2024, 218, 114489. [Google Scholar] [CrossRef]
- Fayed, S.M.; Chen, D.; Li, S.; Sadawy, M.; Eid, E. Microstructure, mechanical, and electrochemical properties of Si/DLC coating deposited on 2024-T3 Al alloy. J. Alloys Compd. 2023, 966, 171452. [Google Scholar] [CrossRef]
- Flehan, A.; Yang, W.; Li, H.; Guo, P.; Chen, R.; Zhang, Y.; Wang, K.; Wang, Y.; Wang, A. Enhanced mechanical and tribological properties of hydrogen-free DLC coating by introducing SiAl interlayer. Surf. Coat. Technol. 2025, 498, 131810. [Google Scholar] [CrossRef]
- Freund, L.B.; Suresh, S. Thin Film Materials: Stress, Defect Formation and Surface Evolution; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Zou, C.; Wang, H.; Feng, L.; Xue, S. Effects of Cr concentrations on the microstructure, hardness, and temperature-dependent tribological properties of Cr-DLC coatings. Appl. Surf. Sci. 2013, 286, 137–141. [Google Scholar] [CrossRef]
- Khodayari, A.; Elmkhah, H.; Alizadeh, M.; Maghsoudipour, A. Modified diamond-like carbon (Cr-DLC) coating applied by PACVD-CAPVD hybrid method: Characterization and evaluation of tribological and corrosion behavior. Diam. Relat. Mater. 2023, 136, 109968. [Google Scholar] [CrossRef]
- Gu, J.; Ding, J.; Williams, S.W.; Gu, H.; Ma, P.; Zhai, Y. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys. J. Mater. Process. Technol. 2016, 230, 26–34. [Google Scholar] [CrossRef]
- Toda, H.; Hidaka, T.; Kobayashi, M.; Uesugi, K.; Takeuchi, A.; Horikawa, K. Growth behavior of hydrogen micropores in aluminum alloys during high-temperature exposure. Acta Mater. 2009, 57, 2277–2290. [Google Scholar] [CrossRef]
- Zhu, C.; Tang, X.; He, Y.; Lu, F.; Cui, H. Characteristics and formation mechanism of sidewall pores in NG-GMAW of 5083 Al-alloy. J. Mater. Process. Technol. 2016, 238, 274–283. [Google Scholar] [CrossRef]
- Bonu, V.; Srinivas, G.; Kumar, V.P.; Joseph, A.; Narayana, C.; Barshilia, H.C. Temperature dependent erosion and Raman analyses of arc-deposited H free thick DLC coating on Cr/CrN coated plasma nitrided steel. Surf. Coat. Technol. 2022, 436, 128308. [Google Scholar] [CrossRef]
- Wu, M.; Xiao, D.; Yuan, S.; Huang, Y.; Li, Z.; Yin, X.; Wang, J.; Huang, L.; Liu, W. Healing the high-temperature-retrogression-caused wide precipitation-free zones in Al-Zn-Mg-Cu alloy via strain-aging induced precipitates. Mater. Sci. Eng. A 2024, 917, 147398. [Google Scholar] [CrossRef]
- Mallika, K.; Ramamohan, T.; Jagannadham, K.; Komanduri, R. On the growth of polycrystalline diamond on transition metals by microwave-plasma-assisted chemical vapour deposition. Philos. Manag. B 1999, 79, 593–624. [Google Scholar] [CrossRef]
- Sun, H.; Ding, H.; Liu, T. Unveiling the effect of vacuum heat treatment on HVOF-sprayed high entropy cantor alloy coatings: Microstructure, diffusion behavior and mechanical property. J. Mater. Res. Technol. 2024, 33, 9033–9043. [Google Scholar] [CrossRef]
- Shao, L.; Li, W.; Lu, Q.; Xue, N.; Chen, Y.; Wu, Y.; Liu, C.; Liu, Y.; Sajjad, K.; Shi, Q. Bonding mechanism in Cu coating deposited on Al alloy substrate: Combining molecular dynamics simulation and experiment. Mater. Sci. Eng. A 2025, 942, 148703. [Google Scholar] [CrossRef]
- Fu, T.-C.; Li, G.-W. Effect of Al content on the properties of Cr1−xAlxC films prepared by RF reactive magnetron sputtering. Appl. Surf. Sci. 2006, 253, 1260–1264. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Y.; Xiao, B.; Min, T.; Yang, Y.; Ma, S.; Yi, D. The electronic, mechanical properties and theoretical hardness of chromium carbides by first-principles calculations. J. Alloys Compd. 2011, 509, 5242–5249. [Google Scholar] [CrossRef]
- Sun, Z.M. Progress in research and development on MAX phases: A family of layered ternary compounds. Int. Mater. Rev. 2011, 56, 143–166. [Google Scholar] [CrossRef]
- Walter, C.; Sigumonrong, D.; El-Raghy, T.; Schneider, J. Towards large area deposition of Cr2AlC on steel. Thin Solid Film. 2006, 515, 389–393. [Google Scholar] [CrossRef]
- Aryanto, D.; Sudiro, T. Preparation of ferrosilicon-aluminium coating using a mechanical alloying technique: Study of thermal annealing on their structural characteristics. Surf. Coat. Technol. 2018, 337, 35–43. [Google Scholar] [CrossRef]
- Su, R.; Zhang, H.; Meng, X.; Shi, L.; Liu, C. Synthesis of Cr2AlC thin films by reactive magnetron sputtering. Fusion Eng. Des. 2017, 125, 562–566. [Google Scholar] [CrossRef]
- Rubshtein, A.; Gao, K.; Vladimirov, A.; Plotnikov, S.; Zhang, B.; Zhang, J. Structure, wear and corrosion behaviours of Cr–Al–C and multilayer [Cr–Al–C/a-C]n coatings fabricated by physical vapour deposition and plasma-assisted chemical vapour deposition techniques. Surf. Coat. Technol. 2019, 377, 124912. [Google Scholar] [CrossRef]
- Makówka, M.; Pawlak, W.; Konarski, P.; Wendler, B.; Szymanowski, H. Modification of magnetron sputter deposition of nc-WC/aC (: H) coatings with an additional RF discharge. Diam. Relat. Mater. 2019, 98, 107509. [Google Scholar] [CrossRef]
- Yoshinaka, H.; Inubushi, S.; Wakita, T.; Yokoya, T.; Muraoka, Y. Formation of Q-carbon by adjusting sp3 content in diamond-like carbon films and laser energy density of pulsed laser annealing. Carbon 2020, 167, 504–511. [Google Scholar] [CrossRef]
- Tang, J.; Chen, S.; Jia, Y.; Ma, Y.; Xie, H.; Quan, X.; Ding, Q. Carbon dots as an additive for improving performance in water-based lubricants for amorphous carbon (aC) coatings. Carbon 2020, 156, 272–281. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, J.; Luo, T.; Cao, B.; Xu, J.; Chen, X.; Luo, J. Tribochemical mechanism of superlubricity in graphene quantum dots modified DLC films under high contact pressure. Carbon 2021, 173, 329–338. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Fang, D. A review on C1s XPS-spectra for some kinds of carbon materials. Fuller. Nanotub. Carbon Nanostructures 2020, 28, 1048–1058. [Google Scholar] [CrossRef]
- Santiago, J.; Fernández-Martínez, I.; Sánchez-López, J.; Rojas, T.C.; Wennberg, A.; Bellido-González, V.; Molina-Aldareguia, J.; Monclús, M.; González-Arrabal, R. Tribomechanical properties of hard Cr-doped DLC coatings deposited by low-frequency HiPIMS. Surf. Coat. Technol. 2020, 382, 124899. [Google Scholar] [CrossRef]
- Adelhelm, C.; Balden, M.; Rinke, M.; Stueber, M. Influence of doping (Ti, V, Zr, W) and annealing on the sp2 carbon structure of amorphous carbon films. J. Appl. Phys. 2009, 105, 033522. [Google Scholar] [CrossRef]
- Mabuchi, Y.; Higuchi, T.; Weihnacht, V. Effect of sp2/sp3 bonding ratio and nitrogen content on friction properties of hydrogen-free DLC coatings. Tribol. Int. 2013, 62, 130–140. [Google Scholar] [CrossRef]
- Ding, J.C.; Mei, H.; Jeong, S.; Zheng, J.; Wang, Q.M.; Kim, K.H. Effect of bias voltage on the microstructure and properties of Nb-DLC films prepared by a hybrid sputtering system. J. Alloys Compd. 2021, 861, 158505. [Google Scholar] [CrossRef]
- Zhou, S.; Yuan, J.; Wu, H.; Wang, K.; Ma, G.; Zhang, L.; Wang, Z.; Wang, A. Size-dependent uniform deformation transitions enabling hardness and toughness enhancement of nanocrystalline Cr2AlC MAX phase. J. Mater. Sci. Technol. 2025, 232, 170–180. [Google Scholar] [CrossRef]
- Li, H.; Sun, P.; Cheng, D.; Liu, Z. Effects of deposition temperature on structure, residual stress and corrosion behavior of Cr/TiN/Ti/TiN films. Ceram. Int. 2021, 47, 34909–34917. [Google Scholar] [CrossRef]
- King, F.; Litke, C.; Quinn, M.; LeNeveu, D. The measurement and prediction of the corrosion potential of copper in chloride solutions as a function of oxygen concentration and mass-transfer coefficient. Corros. Sci. 1995, 37, 833–851. [Google Scholar] [CrossRef]
- Doi, K.; Hiromoto, S.; Katayama, H.; Akiyama, E. Effects of oxygen pressure and chloride ion concentration on corrosion of Iron in mortar exposed to pressurized humid oxygen gas. J. Electrochem. Soc. 2018, 165, C582. [Google Scholar] [CrossRef]
Samples | Ecorr (V vs SCE) | Icorr (A·cm−2) | βa (mV·dec−1) | −βc (mV·dec−1) |
---|---|---|---|---|
Substrate | −1.287 | 6.5 × 10−5 | 181.77 | 86.42 |
EC | −0.723 | 2.0 × 10−6 | 11 | 596 |
ECA | −0.698 | 4.2 × 10−6 | 30 | 270 |
Samples | C | O | Al | Cr |
---|---|---|---|---|
EC | 63.31 | 3.17 | 25.59 | 7.93 |
ECA | 68.47 | 1.22 | 23.09 | 7.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; He, T.; Du, X.; Okulov, A.; Vereschaka, A.; Li, J.; Ding, Y.; Chen, K.; He, P. Aging-Induced Microstructural Transformations and Performance Enhancement of Cr/DLC Coatings on ECAP-7075 Aluminum Alloy. Coatings 2025, 15, 1017. https://doi.org/10.3390/coatings15091017
Wang Y, He T, Du X, Okulov A, Vereschaka A, Li J, Ding Y, Chen K, He P. Aging-Induced Microstructural Transformations and Performance Enhancement of Cr/DLC Coatings on ECAP-7075 Aluminum Alloy. Coatings. 2025; 15(9):1017. https://doi.org/10.3390/coatings15091017
Chicago/Turabian StyleWang, Yuqi, Tao He, Xiangyang Du, Artem Okulov, Alexey Vereschaka, Jian Li, Yang Ding, Kang Chen, and Peiyu He. 2025. "Aging-Induced Microstructural Transformations and Performance Enhancement of Cr/DLC Coatings on ECAP-7075 Aluminum Alloy" Coatings 15, no. 9: 1017. https://doi.org/10.3390/coatings15091017
APA StyleWang, Y., He, T., Du, X., Okulov, A., Vereschaka, A., Li, J., Ding, Y., Chen, K., & He, P. (2025). Aging-Induced Microstructural Transformations and Performance Enhancement of Cr/DLC Coatings on ECAP-7075 Aluminum Alloy. Coatings, 15(9), 1017. https://doi.org/10.3390/coatings15091017