Review on Tribological and Corrosion Properties of Amorphous Silicon-Based Coatings Fabricated by Chemical Vapor Deposition
Abstract
1. Introduction
- Atomic-level doping: Precursor molecular design enables atomic-level incorporation of Si-C-N-O multi-component systems.
- Nanoscale structural control: Synergistic regulation of flow–temperature fields within reaction chambers allows precise construction of gradient composite structures at the nanoscale.
2. Chemical Vapor Deposition for the Preparation of Amorphous Silicon Coatings
2.1. Material Systems for Chemical Vapor Deposition (CVD) of Amorphous Silicon
2.2. Energy-Field Modulated CVD: HWCVD, PECVD, and CCVD
2.2.1. Hot-Wire Chemical Vapor Deposition
2.2.2. Plasma-Enhanced Chemical Vapor Deposition
2.2.3. Catalytic Chemical Vapor Deposition
2.3. Comparative Analysis of Deposition Techniques
2.3.1. Comparative Analysis of CVD Techniques
2.3.2. Comparison with Non-CVD Techniques
3. Tribological Properties of Amorphous Silicon Coatings
3.1. Process–Structure Synergy in Governing Amorphous Silicon Tribology
3.2. Tribochemical Response Modulation Under Operational Stress States
3.3. Friction-Wear Synergy Mediated by Dopant-Induced Bond Reconstruction
3.4. Synthesis of Process–Structure–Property Relationships
4. Passivation Network Reconstruction: Corrosion Protection Mechanisms in Amorphous Architectures
- Elimination of Anisotropic Defects
- ii.
- Robust Covalent Bond Network and Dense Passivation Film Formation
- iii.
- Optimization of Passivation Film Properties via Elemental Doping
5. Conclusions and Future Research Directions
5.1. Conclusions
5.2. The Current Resources Are Insufficient
- Inadequate Deepening of Process Optimization Mechanisms: Current research predominantly employs a “trial-and-error” approach for parameter optimization, lacking systematic theoretical models based on reaction kinetics and mass transfer processes.
- Insufficient Adaptability to Complex Operating Conditions: Existing performance tests are often limited to standard laboratory conditions, with inadequate assessment of the effects of extreme temperatures, high pressures, and corrosive media acting in concert.
- Lack of Long-term Stability Studies: There is a deficiency in the quantitative characterization of the structural evolution of coatings under cyclic thermal and mechanical loads.
- Prominent Contradictions in Environmental Friendliness: Some precursors (such as SiH4) pose risks of flammability and explosion, and high-temperature processes consume significant amounts of energy.
- Inadequate Analysis of Failure Mechanisms: The cross-scale correlation research on interface failure and tribological chemical reactions has yet to form a complete theoretical system.
5.3. Future Outlook
- Intelligent Process Development: The transition from empirical optimization to machine learning (ML)-driven intelligent process design represents a critical frontier for advancing CVD-fabricated amorphous silicon coatings. Future research should establish comprehensive ML frameworks—leveraging Bayesian optimization, convolutional neural networks, and generative adversarial networks—to decode complex relationships between deposition parameters, microstructural characteristics, and functional performance. By curating multi-source datasets from in situ diagnostics and post-deposition characterization, these models can predict outcomes like Si-N bond formation efficiency or sp3 carbon content with high fidelity. Crucially, this enables inverse design: specifying target properties to autonomously generate optimal process recipes. Implementing such systems requires embedding ML controllers within CVD reactors for real-time adjustment of RF power modulation or precursor pulse sequences during deposition. To overcome data scarcity, transfer learning and synthetic data generation will accelerate training. Validating these AI workflows via combinatorial experiments will replace costly trial-and-error, establishing predictive synthesis for HWCVD, PECVD, and CCVD platforms. This enables bespoke coatings for extreme environments while significantly reducing development cycles.
- The thermal–mechanical–chemical multi-field coupling effect on amorphous silicon-based coatings is not a simple superposition of individual field actions but a complex dynamic interplay that accelerates failure mechanisms. To address this, in situ testing platforms should be tailored to simulate extreme service scenarios, integrating dynamic temperature control, precision mechanical loading systems, and corrosive medium circulation modules. Such platforms will capture real-time changes in critical parameters, for instance, tracking how thermal stress-induced microcracks facilitate corrosive ion penetration, while chemical etching weakens the coating’s load-bearing capacity, ultimately accelerating wear. This research will establish a mapping relationship between multi-field parameters and failure modes, identifying critical thresholds such as the temperature at which thermal softening exacerbates mechanical fatigue or the stress intensity factor governing corrosion-induced crack propagation. These insights are pivotal for optimizing coating designs. For instance, introducing gradient compositions can mitigate thermal stress gradients, while doping specific elements enhances the passivation film’s resistance to tribochemical damage. Such optimizations are essential for improving component reliability within complex service environments.
- The construction of novel composite systems, such as MXene/amorphous silicon heterostructures and gradient doping, represents a pivotal direction to overcome the inherent limitations of single-phase amorphous silicon coatings and synergistically enhance their tribological and corrosion-resistant performances. MXenes, as a class of two-dimensional transition metal carbides/nitrides with excellent electrical conductivity, mechanical flexibility, and chemical stability, can form unique heterointerfaces with amorphous silicon coatings. This heterostructure is expected to leverage the high strength and corrosion barrier properties of amorphous silicon while utilizing MXene’s surface functional groups to strengthen interfacial bonding, thereby mitigating coating delamination under mechanical loading. Additionally, MXene’s lamellar structure can act as a “lubricating interlayer” to reduce friction coefficients, while its electrochemical activity may promote the formation of a more stable passivation film in corrosive environments, inhibiting localized corrosion.
- iv.
- Enhancing the environmental adaptability of amorphous silicon-based coatings fabricated via CVD necessitates a dual focus on low-temperature process development and the adoption of green precursors, addressing both substrate compatibility and sustainability challenges. Traditional CVD processes often require elevated temperatures (>300 °C) to achieve dense, high-quality coatings, limiting their application to thermally robust substrates and consuming excessive energy. Developing low-temperature processes (<200 °C), such as plasma-enhanced atomic layer deposition (PE-ALD), can overcome this constraint: plasma activation lowers the activation energy of precursor reactions, enabling the formation of dense amorphous networks at mild temperatures while maintaining precise thickness control and conformal coverage—critical for heat-sensitive substrates like polymers, flexible electronics, and biomaterials. This temperature reduction not only expands the coating’s applicability across diverse environments but also reduces energy consumption, aligning with global carbon neutrality initiatives.
- v.
- Establishing a multi-scale lifespan prediction model for amorphous silicon-based coatings, integrating molecular dynamics (MD) simulations and finite element analysis (FEA), is critical for bridging the gap between fundamental material properties and practical service durability. MD simulations, operating at the atomic scale, can capture intrinsic processes such as the diffusion of corrosive ions through amorphous networks, the breaking and reconstruction of Si-Si/Si-O bonds under thermal stress, and the evolution of interfacial defects that initiate failure. These atomic-level insights—including activation energies for defect formation and diffusion coefficients—provide essential parameters for understanding microscale degradation mechanisms, such as passivation film breakdown or interfacial delamination.
Funding
Conflicts of Interest
References
- Ma, M.; Qi, Y.; Zhang, C.; Chen, Q.; Gu, C.; Zhang, Z. Highly efficient antifouling and toughening hydrogel for ship coatings. Appl. Surf. Sci. 2024, 662, 160102. [Google Scholar] [CrossRef]
- Thomas, P.; Sahoo, B.N.; Thomas, P.J.; Greve, M.M. Recent advances in emerging integrated anticorrosion and antifouling nanomaterial-based coating solutions. Environ. Sci. Pollut. Res. 2024, 31, 67550–67576. [Google Scholar] [CrossRef]
- Pei, W.; Pei, X.; Xie, Z.; Wang, J. Research progress of marine anti-corrosion and wear-resistant coating. Tribol. Int. 2024, 198, 109864. [Google Scholar] [CrossRef]
- Liang, H.; Shi, X.; Li, Y. Technologies in Marine Antifouling and Anti-Corrosion Coatings: A Comprehensive Review. Coatings 2024, 14, 1487. [Google Scholar] [CrossRef]
- Choi, M.; Novak, T.G.; Byen, J.; Lee, H.; Baek, J.; Hong, S.; Kim, K.; Song, J.; Shin, H.; Jeon, S. Significantly Enhanced Thermoelectric Performance of Graphene through Atomic-Scale Defect Engineering via Mobile Hot-Wire Chemical Vapor Deposition Systems. ACS Appl. Mater. Interfaces 2021, 13, 24304–24313. [Google Scholar] [CrossRef]
- Igumenov, I.K.; Lukashov, V.V. Modern Solutions for Functional Coatings in CVD Processes. Coatings 2022, 12, 1265. [Google Scholar] [CrossRef]
- Zheng, J.; Ye, L.; He, M.; He, D.; Huang, Y.; Yu, J.; Chen, T. Electrical and optical properties of amorphous silicon carbide thin films prepared by e-beam evaporation at room temperature. J. Non-Cryst. Solids 2022, 576, 121233. [Google Scholar] [CrossRef]
- Kaloyeros, A.E.; Arkles, B. Silicon Carbide Thin Film Technologies: Recent Advances in Processing, Properties, and Applications-Part I Thermal and Plasma CVD. ECS J. Solid State Sci. Technol. 2023, 12, 103001. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, J.; Gray, T. Recent progress in low-temperature CVD growth of 2D materials. Oxf. Open Mater. Sci. 2023, 3, itad010. [Google Scholar] [CrossRef]
- Wang, X.; Yushin, G. Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. Energy Environ. Sci. 2015, 8, 1889–1904. [Google Scholar] [CrossRef]
- Hoque, A.; George, A.; Ramachandra, V.; Najafidehaghani, E.; Gan, Z.; Mitra, R.; Zhao, B.; Sahoo, S.; Abrahamsson, M.; Liang, Q.; et al. All-2D CVD-grown semiconductor field-effect transistors with van der Waals graphene contacts. npj 2D Mater. Appl. 2024, 8, 55. [Google Scholar] [CrossRef]
- Choi, M.; Baek, J.; Zeng, H.; Jin, S.; Jeon, S. Toward high-quality graphene film growth by chemical vapor deposition system. Curr. Opin. Solid State Mater. Sci. 2024, 31, 101176. [Google Scholar] [CrossRef]
- Xiao, M.; Gao, H.; Sun, L.; Wang, Z.; Jiang, G.; Zhao, Q.; Guo, C.; Li, L.; Jiang, F. Microstructure and mechanical properties of Fe-based amorphous alloy coatings prepared by ultra-high speed laser cladding. Mater. Lett. 2021, 297, 130002. [Google Scholar] [CrossRef]
- Koga, G.; Travessa, D.; Zepon, G.; Coimbrão, D.; Jorge, A.; Berger, J.; Roche, V.; Lepretre, J.-C.; Bolfarini, C.; Kiminami, C.; et al. Corrosion resistance of pseudo-high entropy Fe-containing amorphous alloys in chloride-rich media. J. Alloys Compd. 2021, 884, 161090. [Google Scholar] [CrossRef]
- Sabzi, M.; Anijdan, S.H.M.; Shamsodin, M.; Farzam, M.; Hojjati-Najafabadi, A.; Feng, P.; Park, N.; Lee, U. A Review on Sustainable Manufacturing of Ceramic-Based Thin Films by Chemical Vapor Deposition (CVD): Reactions Kinetics and the Deposition Mechanisms. Coatings 2023, 13, 188. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, F.; Zhang, N. Advance in additive manufacturing of 2D materials at the atomic and close-to-atomic scale. npj 2D Mater. Appl. 2024, 8, 17. [Google Scholar] [CrossRef]
- Tian, Y.; Yan, Z.; Jiang, L.; Liu, R.; Liu, B.; Shao, Y.; Yang, X.; Liu, M. Multiscale Models of CVD Process: Review and Prospective. Materials 2024, 17, 5131. [Google Scholar] [CrossRef] [PubMed]
- Ohmagari, S. Single-crystal diamond growth by hot-filament CVD: A recent advances for doping, growth rate and defect controls. Funct. Diam. 2023, 3, 2259941. [Google Scholar] [CrossRef]
- Feng, X.; Yuan, X.; Zhou, J.; An, K.; Zhu, F.; Wei, X.; Huang, Y.; Zhang, J.; Chen, L.; Liu, J.; et al. A review: CNT/diamond composites prepared via CVD and its potential applications. Mater. Sci. Semicond. Process. 2024, 186, 109008. [Google Scholar] [CrossRef]
- Sreejith, S.; Ajayan, J.; Kollem, S.; Sivasankari, B. A Comprehensive Review on Thin Film Amorphous Silicon Solar Cells. Silicon 2022, 14, 8277–8293. [Google Scholar] [CrossRef]
- Greenhorn, S.; Bano, E.; Stambouli, V.; Zekentes, K. Amorphous SiC Thin Films Deposited by Plasma-Enhanced Chemical Vapor Deposition for Passivation in Biomedical Devices. Materials 2024, 17, 1135. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.; Lambertz, A.; Duan, W.; Mazzarella, L.; Wagner, P.; Morales-Vilches, A.B.; Yang, G.; Procel, P.; Isabella, O.; Stannowski, B.; et al. A Review: Application of Doped Hydrogenated Nanocrystalline Silicon Oxide in High Efficiency Solar Cell Devices. Adv. Sci. 2024, 11, e2403728. [Google Scholar] [CrossRef]
- Lu, B.; Zhuge, F.; Zhao, Y.; Zeng, Y.-J.; Zhang, L.; Huang, J.; Ye, Z.; Lu, J. Amorphous oxide semiconductors: From fundamental properties to practical applications. Curr. Opin. Solid State Mater. Sci. 2023, 27, 101092. [Google Scholar] [CrossRef]
- Ohring, M. Materials Science of Thin Films: Depositon and Structure; Academic Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Pierson, H.O. Handbook of Chemical Vapor Deposition: Principles, Technology and Applications; William Andrew: Norwich, NY, USA, 1999. [Google Scholar]
- Wrobel, A.M.; Uznanski, P. Hard silicon carbonitride thin-film coatings produced by remote hydrogen plasma chemical vapor deposition using aminosilane and silazane precursors. 1: Deposition mechanism, chemical structure, and surface morphology. Plasma Process. Polym. 2021, 18, e2000240. [Google Scholar] [CrossRef]
- Ivashchenko, V.; Kozak, A.; Porada, O.; Ivashchenko, L.; Sinelnichenko, O.; Lytvyn, O.; Tomila, T.; Malakhov, V. Characterization of SiCN thin films: Experimental and theoretical investigations. Thin Solid Films 2014, 569, 57–63. [Google Scholar] [CrossRef]
- Wrobel, A.M.; Uznanski, P. Amorphous silicon carbonitride (a-SiCN) thin film coatings by remote plasma chemical vapor deposition using organosilicon precursor: Effect of substrate temperature. Plasma Process. Polym. 2022, 20, 2200190. [Google Scholar] [CrossRef]
- Xing, P.; Ma, D.; Ooi, K.J.A.; Choi, J.W.; Agarwal, A.M.; Tan, D. CMOS-Compatible PECVD Silicon Carbide Platform for Linear and Nonlinear Optics. ACS Photonics 2019, 6, 1162–1167. [Google Scholar] [CrossRef]
- Sha, B.; Lukianov, A.N.; Dusheiko, M.G.; Lozinskii, V.B.; Klyui, A.N.; Korbutyak, D.V.; Pritchin, S.E.; Klyui, N. Carbon-rich amorphous silicon carbide and silicon carbonitride films for silicon-based photoelectric devices and optical elements: Application from UV to mid-IR spectral range. Opt. Mater. 2020, 106, 109959. [Google Scholar] [CrossRef]
- Ma, X.; Xu, D.; Ji, P.; Jin, C.; Lin, J.; Ding, Y.; Xu, C. High-rate, room-temperature synthesis of amorphous silicon carbide films from organo-silicon in high-density helicon wave plasma. Vacuum 2019, 164, 355–360. [Google Scholar] [CrossRef]
- Kaloyeros, A.E.; Arkles, B. Review—Silicon Carbide Thin Film Technologies: Recent Advances in Processing, Properties, and Applications: Part II. PVD and Alternative (Non-PVD and Non-CVD) Deposition Techniques. ECS J. Solid State Sci. Technol. 2024, 13, 043001. [Google Scholar] [CrossRef]
- Zeng, Q.; Chen, T. Superlow friction and oxidation analysis of hydrogenated amorphous silicon films under high temperature. J. Non-Cryst. Solids 2018, 493, 73–81. [Google Scholar] [CrossRef]
- Müller, M.; Bouša, M.; Hájková, Z.; Ledinský, M.; Fejfar, A.; Drogowska-Horná, K.; Kalbáč, M.; Frank, O. Transferless Inverted Graphene/Silicon Heterostructures Prepared by Plasma-Enhanced Chemical Vapor Deposition of Amorphous Silicon on CVD Graphene. Nanomaterials 2020, 10, 589. [Google Scholar] [CrossRef]
- Ueda, Y.; Inoue, Y.; Shinohara, S.; Kawai, Y. Deposition of large area amorphous silicon films by ECR plasma CVD. Vacuum 1997, 48, 119–122. [Google Scholar] [CrossRef]
- Karar, P.; Kumar, G.; Wadibhasme, N.; Patil, D.S.; Dusane, R.O. Effect of Antenna-Substrate Distance on Quality of a-Si:H During ICP CVD Using a Flat Spiral Antenna. IEEE Trans. Plasma Sci. 2020, 49, 624–631. [Google Scholar] [CrossRef]
- Fischer, B.; Nuys, M.; Astakhov, O.; Haas, S.; Schaaf, M.; Besmehn, A.; Jakes, P.; Eichel, R.-A.; Rau, U. Advanced atmospheric pressure CVD of a-Si:H using pure and cyclooctane-diluted trisilane as precursors. Sustain. Energy Fuels 2024, 8, 5568–5580. [Google Scholar] [CrossRef]
- Uznanski, P.; Walkiewicz-Pietrzykowska, A.; Jankowski, K.; Zakrzewska, J.; Wrobel, A.M.; Balcerzak, J.; Tyczkowski, J. Atomic Hydrogen Induced Chemical Vapor Deposition of Silicon Oxycarbide Thin Films Derived from Diethoxymethylsilane Precursor. Appl. Organomet. Chem. 2020, 34, e5674. [Google Scholar] [CrossRef]
- Meng, H.; Wu, X.; Ma, F.; Zeng, Q.; Zhou, L. Structural optimization and growth of intrinsic hydrogenated amorphous silicon films by HWCVD. Sol. Energy Mater. Sol. Cells 2024, 271, 112835. [Google Scholar] [CrossRef]
- Oo, S.Z.; Tarazona, A.; Khokhar, A.Z.; Petra, R.; Franz, Y.; Mashanovich, G.Z.; Reed, G.T.; Peacock, A.C.; Chong, H.M.H. Hot-wire chemical vapor deposition low-loss hydrogenated amorphous silicon waveguides for silicon photonic devices. Photonics Res. 2019, 7, 193–200. [Google Scholar] [CrossRef]
- Wang, X.; Shen, X.; Gao, J.; Sun, F. Consecutive deposition of amorphous SiO2 interlayer and diamond film on graphite by chemical vapor deposition. Carbon 2017, 117, 126–136. [Google Scholar] [CrossRef]
- Xu, W.; Tang, H.; Zhang, Q.-Y.; Zhou, N.; Shen, Y. Room-temperature deposition of low H-content SiNx/SiNxOy thin films using a specially designed PECVD system. Surf. Coat. Technol. 2020, 402, 126506. [Google Scholar] [CrossRef]
- Jafari, S.; Linke, J.; Wendt, M.; Terheiden, B.; Meyer, S.; Lausch, D.; Steffens, J. Occurrence of Sharp Hydrogen Effusion Peaks of Hydrogenated Amorphous Silicon Film and Its Connection to Void Structures. Phys. Status Solidi (B) 2020, 257, 2000097. [Google Scholar] [CrossRef]
- Lukianov, A.N.; Klyui, N.I.; Sha, B.; Lozinskii, V.B.; Temchenko, V.P.; Avksentyeva, L.V.; Staschuk, V.S. Effect of discharge power and silicon content on optical and mechanical properties of carbon-rich amorphous silicon carbide films obtained by PECVD. J. Alloys Compd. 2019, 801, 285–294. [Google Scholar] [CrossRef]
- Lin, Y.; Feng, M.; Wang, Z.; Zeng, Y.; Liao, M.; Gong, L.; Yan, B.; Yuan, Z.; Ye, J. Excellent passivation with implied open-circuit voltage of 710 mV for p-type multi-crystalline black silicon using PECVD grown a-Si:H passivation layer. Sol. Energy 2020, 211, 753–758. [Google Scholar] [CrossRef]
- Li, M.; Jiang, L.; Sun, Y.; Xiao, T.; Xiang, P.; Tan, X. Synthesis and structural evolution of hydrogenated amorphous silicon carbide thin film with carbon nanostructures. J. Non-Cryst. Solids 2019, 503–504, 252–259. [Google Scholar] [CrossRef]
- Sun, K.; Wang, T.; Gong, W.; Lu, W.; He, X.; Eddings, E.G.; Fan, M. Synthesis and potential applications of silicon carbide nanomaterials / nanocomposites. Ceram. Int. 2022, 48, 32571–32587. [Google Scholar] [CrossRef]
- Shariah, A. Crystallization of Hydrogenated Amorphous Silicon Thin Films Using Combined Continuous Wave Laser and Thermal Annealing. Silicon 2024, 16, 4461–4470. [Google Scholar] [CrossRef]
- Özkol, E.; Procel, P.; Zhao, Y.; Mazzarella, L.; Medlin, R.; Šutta, P.; Isabella, O.; Zeman, M. Effective Passivation of Black Silicon Surfaces via Plasma-Enhanced Chemical Vapor Deposition Grown Conformal Hydrogenated Amorphous Silicon Layer. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2019, 14, 1900087. [Google Scholar] [CrossRef]
- Kezzoula, F.; Kechouane, M.; Mohammed-Brahim, T.; Menari, H. Crystallization of P Type Amorphous Silicon (a-Si: H) by AIC Method: Effect of Aluminum Thickness. Silicon 2020, 12, 405–411. [Google Scholar] [CrossRef]
- Jarząbek, D.M.; Milczarek, M.; Nosewicz, S.; Bazarnik, P.; Schift, H. Size Effects of Hardness and Strain Rate Sensitivity in Amorphous Silicon Measured by Nanoindentation. Met. Mater. Trans. A 2020, 51, 1625–1633. [Google Scholar] [CrossRef]
- González, N.; García, T.; Morant, C.; Barrio, R. Fine-Tuning Intrinsic and Doped Hydrogenated Amorphous Silicon Thin-Film Anodes Deposited by PECVD to Enhance Capacity and Stability in Lithium-Ion Batteries. Nanomaterials 2024, 14, 204. [Google Scholar] [CrossRef]
- Du, T.; Li, W.; Li, W.; Li, J.; Xie, X. The Effect of the Dielectric Layer with Surface Plasma Treatment on Characteristics of Amorphous Silicon Antifuse. Electronics 2022, 11, 3522. [Google Scholar] [CrossRef]
- Mandal, S.; Dhar, S.; Das, G.; Mukhopadhyay, S.; Barua, A. Development of optimized n-μc-Si:H/n-a-Si:H bilayer and its application for improving the performance of single junction a-Si solar cells. Sol. Energy 2016, 124, 278–286. [Google Scholar] [CrossRef]
- Wu, C.-H.; Chang, K.-M.; Chen, Y.-M.; Zhang, Y.-X.; Tan, Y.-H. Investigation of Electrical Characteristics on AP-PECVD Fabricated Amorphous IGZO TFTs with Hydrogen Plasma Treatment. J. Nanosci. Nanotechnol. 2019, 19, 2306–2309. [Google Scholar] [CrossRef]
- Vivaldo, I.; Ambrosio, R.C.; López, R.; Flores-Méndez, J.; Sánchez-Gaspariano, L.A.; Moreno, M.; Candia, F. Enhanced Photoluminescence of Hydrogenated Amorphous Silicon Carbide Thin Films by Means of a Fast Thermal Annealing Process. Materials 2020, 13, 2643. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Jiang, L.; Sun, Y.; Wang, T.; Peng, Y.; Tian, H.; Xiao, T.; Xiang, P.; Tan, X. Correlation study of photoluminescence properties and mechanism of hydrogenated amorphous silicon carbide films. J. Lumin. 2019, 212, 38–44. [Google Scholar] [CrossRef]
- Kwon, S.; Park, Y.; Ban, W.; Youn, C.; Lee, S.; Yang, J.; Jung, D.; Choi, T. Effect of plasma power on properties of hydrogenated amorphous silicon carbide hardmask films deposited by PECVD. Vacuum 2020, 174, 109187. [Google Scholar] [CrossRef]
- Guler, I. Optical and structural characterization of silicon nitride thin films deposited by PECVD. Mater. Sci. Eng. B 2019, 246, 21–26. [Google Scholar] [CrossRef]
- Iliescu, C.; Chen, B.; Poenar, D.P.; Lee, Y.Y. PECVD amorphous silicon carbide membranes for cell culturing. Sens. Actuators B Chem. 2007, 129, 404–411. [Google Scholar] [CrossRef]
- Rashid, H.U.; Yu, K.; Umar, M.N.; Anjum, M.N.; Khan, K.; Ahmad, N.; Jan, M.T. Catalyst role in chemical vapor deposition (CVD) process: A review. Rev. Adv. Mater. Sci. 2015, 40, 235–248. [Google Scholar]
- Wang, Z.; Tu, H.T.C.; Ohdaira, K. Crystallization of catalytic CVD hydrogenated n-a-Si films on textured glass substrates by flash lamp annealing. Jpn. J. Appl. Phys. 2022, 61, SB1019. [Google Scholar] [CrossRef]
- Song, T.-H.; Hong, W.-S. Precipitation of Nanocrystallites in Amorphous Silicon Carbide Films by Low Temperature Catalytic CVD. ECS Meet. Abstr. 2013, MA2013-02, 145. [Google Scholar] [CrossRef]
- Powell, K.; Li, L.; Shams-Ansari, A.; Wang, J.; Meng, D.; Sinclair, N.; Deng, J.; Lončar, M.; Yi, X. Integrated silicon carbide electro-optic modulator. Nat. Commun. 2022, 13, 1851. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yang, Y.; Mao, Q.; Wei, Y.; Li, Y.; Ma, N.; Liu, H.; Liu, X.; Huang, Z. Influence of radio frequency magnetron sputtering parameters on the structure and performance of SiC films. Ceram. Int. 2021, 47, 24098–24105. [Google Scholar] [CrossRef]
- Manivannan, R.; Sundararaj, S.; Dheenasagar, R.; Giridharan, K.; Sivaraman, P.R.; Udhayarani, V. Influence of Al2O3, SiC and B4C covalent multilayer PVD coating on surface properties of HSS rod. Mater. Today Proc. 2020, 39, 700–707. [Google Scholar] [CrossRef]
- Langpoklakpam, C.; Liu, A.-C.; Chu, K.-H.; Hsu, L.-H.; Lee, W.-C.; Chen, S.-C.; Sun, C.-W.; Shih, M.-H.; Lee, K.-Y.; Kuo, H.-C. Review of Silicon Carbide Processing for Power MOSFET. Crystals 2022, 12, 245. [Google Scholar] [CrossRef]
- Roccaforte, F.; Fiorenza, P.; Vivona, M.; Greco, G.; Giannazzo, F. Selective Doping in Silicon Carbide Power Devices. Materials 2021, 14, 3923. [Google Scholar] [CrossRef]
- Maeda, Y.; Zen, H.; Kitada, A.; Murase, K.; Fukami, K. Enhancement of Oxidation of Silicon Carbide Originating from Stacking Faults Formed by Mode-Selective Phonon Excitation Using a Mid-Infrared Free Electron Laser. J. Phys. Chem. Lett. 2022, 13, 2956–2962. [Google Scholar] [CrossRef]
- Csóré, A.; Mukesh, N.; Károlyházy, G.; Beke, D.; Gali, A. Photoluminescence spectrum of divacancy in porous and nanocrystalline cubic silicon carbide. J. Appl. Phys. 2022, 131, 071102. [Google Scholar] [CrossRef]
- Feller, T.; Rosenfeldt, S.; Retsch, M. Carbothermal synthesis of micron-sized, uniform, spherical silicon carbide (SiC) particles. Z. Anorg. Allg. Chem. 2021, 647, 2172–2180. [Google Scholar] [CrossRef]
- Zhou, H.; Persson, C.; Xia, W.; Engqvist, H. Effects of N/Si ratio on mechanical properties of amorphous silicon nitride coating. Mater. Res. Express 2023, 10, 115403. [Google Scholar] [CrossRef]
- Wu, L.; Qiu, L.; Du, Y.; Zeng, F.; Lu, Q.; Tan, Z.; Yin, L.; Chen, L.; Zhu, J. Structure and Mechanical Properties of PVD and CVD TiAlSiN Coatings Deposited on Cemented Carbide. Crystals 2021, 11, 598. [Google Scholar] [CrossRef]
- Cutini, M.; Forghieri, G.; Ferrario, M.; Righi, M.C. Adhesion, friction and tribochemical reactions at the diamond–silica interface. Carbon 2022, 203, 601–610. [Google Scholar] [CrossRef]
- Long, Q.; Wang, L.; Yu, W.; Huang, W.; Wang, L. Structural and mechanical properties of amorphous Si–C-based thin films deposited by pulsed magnetron sputtering under different sputtering powers. Vacuum 2021, 191, 110319. [Google Scholar] [CrossRef]
- Zeng, Q.; Qin, L. High Temperature Anti-Friction Behaviors of a-Si:H Films and Counterface Material Selection. Coatings 2019, 9, 450. [Google Scholar] [CrossRef]
- Mangolini, F.; Koshigan, K.D.; Van Benthem, M.H.; Ohlhausen, J.A.; McClimon, J.B.; Hilbert, J.; Fontaine, J.; Carpick, R.W. How Hydrogen and Oxygen Vapor Affect the Tribochemistry of Silicon- and Oxygen-Containing Hydrogenated Amorphous Carbon under Low-Friction Conditions: A Study Combining X-ray Absorption Spectromicroscopy and Data Science Methods. ACS Appl. Mater. Interfaces 2021, 13, 12610–12621. [Google Scholar] [CrossRef]
- Koshigan, K.; Mangolini, F.; McClimon, J.; Vacher, B.; Bec, S.; Carpick, R.; Fontaine, J. Understanding the hydrogen and oxygen gas pressure dependence of the tribological properties of silicon oxide–doped hydrogenated amorphous carbon coatings. Carbon 2015, 93, 851–860. [Google Scholar] [CrossRef]
- Beake, B.D.; McMaster, S.J.; Liskiewicz, T.W. Contact size effects on the friction and wear of amorphous carbon films. Appl. Surf. Sci. Adv. 2022, 9, 100248. [Google Scholar] [CrossRef]
- Jiang, X.; Guo, P.; Cui, L.; Zhang, Y.; Chen, R.; Ye, Y.; Wang, A.; Ke, P. Tribological behavior of silicon and oxygen co-doped hydrogenated amorphous carbon coatings on polyether ether ketone. Diam. Relat. Mater. 2022, 132, 109650. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Q.; Zhou, F. Tribological Properties of Cr(Si)CN Coatings Sliding Against Different Mating Balls in Water. J. Mater. Eng. Perform. 2019, 28, 1491–1499. [Google Scholar] [CrossRef]
- Zeng, Q.; Ning, Z.; Pang, Z.; Wang, Z.; Zheng, C. Self-assembled multilayer WS2/GO films on amorphous silicon coating for enhancing the lubricating properties. Appl. Surf. Sci. 2023, 624, 157184. [Google Scholar] [CrossRef]
- Zeng, Q.; Ning, Z.; Zhu, J.; Wang, Z.; Pang, Z. A Comparative Study on the Anti-Friction Performance of Amorphous Silicon Films Enhanced by WS2 Nanoflakes. Silicon 2022, 15, 1291–1302. [Google Scholar] [CrossRef]
- Ju, H.; Zhou, R.; Liu, S.; Yu, L.; Xu, J.; Geng, Y. Enhancement of the tribological behavior of self-lubricating nanocomposite Mo2N/Cu films by adding the amorphous SiNx. Surf. Coat. Technol. 2021, 423, 127565. [Google Scholar] [CrossRef]
- Li, B.S.; Wang, T.G.; Ding, J.; Cai, Y.; Shi, J.; Zhang, X. Influence of N2/Ar flow ratio on microstructure and properties of the AlCrSiN coatings deposited by high-power impulse magnetron sputtering. Coatings 2017, 8, 3. [Google Scholar] [CrossRef]
- Lakhonchai, A.; Chingsungnoen, A.; Poolcharuansin, P.; Chanlek, N.; Tunmee, S.; Rittihong, U. Improvement of corrosion resistance and mechanical properties of chrome plating by diamond-like carbon coating with different silicon-based interlayers. Mater. Res. Express 2022, 9, 055604. [Google Scholar] [CrossRef]
- Ma, T.; Wang, D.; Tong, W.; Zhang, S.; Wang, J. Significantly enhanced corrosion resistance for Fe-based amorphous coatings via sealing treatment: Based on hybridisation and superhydrophobicity strategy. Appl. Surf. Sci. 2024, 680, 161435. [Google Scholar] [CrossRef]
- Li, G.; Gan, Y.; Liu, C.; Shi, Y.; Zhao, Y.; Kou, S. Corrosion and wear resistance of Fe-based amorphous coatings. Coatings 2020, 10, 73. [Google Scholar] [CrossRef]
- Bura, R.; C, V.G.; Prasad, R.M. Enhanced corrosion protection performance using polysilazane-derived amorphous SiCN ceramic coating. Surf. Coat. Technol. 2024, 494, 131402. [Google Scholar] [CrossRef]
- Wei, X.; Fu, E.; Ban, A.; Zhu, W.; Wu, D.; Li, N.; Zhang, C. Influence of nano-alumina sealing treatment on corrosion resistance of Fe-based amorphous coatings. Anti-Corros. Methods Mater. 2022, 69, 253–260. [Google Scholar] [CrossRef]
- Na Kim, R.; Kim, W.J.; Lee, D.; Seo, D.H.; Ryu, S.O.; Kim, W.-B. Effect of SiO2 passivation layer on nanoporous Si photocathode under the density of SiO2 passivation layer. Appl. Surf. Sci. 2024, 670, 160594. [Google Scholar] [CrossRef]
- Fan, Z.; Tanaka, H. Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon. Nat. Commun. 2024, 15, 368. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yuan, Y.; Wang, Y.; Ying, P.; Li, S.; Shao, C.; Ding, W.; Zhang, G.; An, M. Softening of Vibrational Modes and Anharmonicity Induced Thermal Conductivity Reduction in a-Si:H at High Temperatures. Adv. Electron. Mater. 2025. [Google Scholar] [CrossRef]
- Sahin, F. Stability Optimization of Al2O3/SiO2 Hybrid Nanofluids and a New Correlation for Thermal Conductivity: An AI-Supported Approach. Int. J. Thermophys. 2024, 46, 9. [Google Scholar] [CrossRef]
- Yao, Z.; Tian, H.; Sasaki, U.; Sun, H.; Hu, J.; Xue, G.; Jung, Y.S.; Li, R.; Li, Z.; Liao, P.; et al. Transferrable, wet-chemistry-derived high-k amorphous metal oxide dielectrics for two-dimensional electronic devices. Nat. Commun. 2025, 16, 1482. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, Y.; Song, Y.; Chen, X.; Liu, W. Preparation and properties of ultra-high hardness Co-Cr-Mo-Nb-B high-temperature amorphous alloy coating. Surf. Coat. Technol. 2024, 494, 131474. [Google Scholar] [CrossRef]
- Bi, E.; Zhang, Y.; Wang, T.; Liu, T.; Zhang, G.; Wang, Y.; Zhang, H.; Ni, H. Corrosion-resistant amorphous alloy enabled by multi-minerals smelting reduction. J. Alloys Compd. 2024, 1011, 178401. [Google Scholar] [CrossRef]
- Mu, X.; Yu, M.; Liu, X.; Liao, Y.; Chen, F.; Pan, H.; Chen, Z.; Liu, S.; Wang, D.; Mu, S. High-Entropy Ultrathin Amorphous Metal–Organic Framework-Stabilized Ru(Mo) Dual-Atom Sites for Water Oxidation. ACS Energy Lett. 2024, 9, 5763–5770. [Google Scholar] [CrossRef]
- Xie, T.; Li, Y.; Kong, F.; Cheng, C.; Wang, H.; Liu, Z.; Wang, A. Outstanding corrosion resistance of an Fe-based crystalline-amorphous nano-composite alloy. J. Alloys Compd. 2024, 1010, 178298. [Google Scholar] [CrossRef]
- Yin, P.; Liu, Z.; Cao, X.; Lu, Z.; Zhang, G. Evaluation of the corrosion protection effect of amorphous carbon coating through the corrosion behaviors on different substrates. Diam. Relat. Mater. 2023, 142, 110771. [Google Scholar] [CrossRef]
- Topka, K.C.; Diallo, B.; Puyo, M.; Papavasileiou, P.; Lebesgue, C.; Genevois, C.; Tison, Y.; Charvillat, C.; Samelor, D.; Laloo, R.; et al. Critical Level of Nitrogen Incorporation in Silicon Oxynitride Films: Transition of Structure and Properties, toward Enhanced Anticorrosion Performance. ACS Appl. Electron. Mater. 2022, 4, 1741–1755. [Google Scholar] [CrossRef]
- Manj, R.Z.A.; Zhang, F.; Rehman, W.U.; Luo, W.; Yang, J. Toward understanding the interaction within Silicon-based anodes for stable lithium storage. Chem. Eng. J. 2020, 385, 123821. [Google Scholar] [CrossRef]
- Delimi, A.; Ferkous, H.; Alam, M.; Djellali, S.; Sedik, A.; Abdesalem, K.; Boulechfar, C.; Belakhdar, A.; Yadav, K.K.; Cabral-Pinto, M.M.S.; et al. Corrosion protection performance of silicon-based coatings on carbon steel in NaCl solution: A theoretical and experimental assessment of the effect of plasma-enhanced chemical vapor deposition pretreatment. RSC Adv. 2022, 12, 15601–15612. [Google Scholar] [CrossRef] [PubMed]
- Saadi, C.; Ozanam, F.; Coffinier, Y.; Gabler, C.; Brenner, J.; Boukherroub, R.; Medjram, M.S.; Szunerits, S. Investigation of the corrosion behaviour of steel coated with amorphous silicon carbon alloys. Surf. Coat. Technol. 2012, 206, 3626–3631. [Google Scholar] [CrossRef]
- Gawęda, M.; Jeleń, P.; Bik, M.; Leśniak, M.; Sowa, M.; Simka, W.; Golda-Cepa, M.; Brzychczy-Włoch, M.; Olejniczak, Z.; Nocuń, M.; et al. Modification of SiOC-based layers with cerium ions-influence on the structure, microstructure and corrosion resistance. Appl. Surf. Sci. 2021, 543, 148871. [Google Scholar] [CrossRef]
- Mahalingam, V.; Sivaraju, M. Microwave-Assisted Sol-Gel Synthesis of Silica Nanoparticles Using Rice Husk as a Precursor for Corrosion Protection Application. Silicon 2022, 15, 1967–1975. [Google Scholar] [CrossRef]
- Zhao, W.; Kong, D. Effects of laser power on immersion corrosion and electrochemical corrosion performances of laser thermal sprayed amorphous AlFeSi coatings. Appl. Surf. Sci. 2019, 481, 161–173. [Google Scholar] [CrossRef]
- Chen, Q.; Kang, S.; Li, Z.; Tang, J.-G.; Deng, Y.; Chen, M.-A. Effect of changes in organo-silicon electrolyte concentration and composition on SiO2 ceramic coating prepared by plasma electrolytic oxidation on 6061 aluminum alloy. Ceram. Int. 2024, 50, 29920–29936. [Google Scholar] [CrossRef]
- Yin, P.; Wei, X.; Shang, L.; Lu, Z.; Zhang, G. Design of low-friction and anti-corrosion a-C:H:SiOx films. Diam. Relat. Mater. 2021, 118, 108512. [Google Scholar] [CrossRef]
Material | CVD Preparation Method | References |
---|---|---|
a-SiCN | Remote Hydrogen Microwave Plasma Chemical Vapor Deposition (RP-CVD) | [26] |
Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) | [27] | |
RP-CVD | [28] | |
a-SiC | PE-CVD | [29,30,31,32] |
a-Si:H | PE-CVD | [33,34] |
Electron Cyclotron Resonance (ECR) Plasma Chemical Vapor Deposition (ECR-CVD) | [35] | |
Inductively Coupled Plasma Chemical Vapor Deposition (ICP-CVD) | [36] | |
Atmospheric Pressure Chemical Vapor Deposition Technology (AP-CVD) | [37] | |
a-SiOC:H | RP-CVD | [38] |
Material | Gas Composition | Substrate Temperature/℃ | Deposition Pressure/torr | RF/W | References |
---|---|---|---|---|---|
a-Si:H | SiH4 | 250 | 0.5 | 3 | [48] |
SiH4, H2 | 180 | 0.7 | 13 | [49] | |
SiH4, B2H6 | 270 | 0.45 | [50] | ||
SiH4, CH4 | 250 | 1 | 20 | [51] | |
SiH4, H2 | 100–400 | 1 | 10 | [43] | |
SiH4, PH3/H2 | 140–250 | 0.55 | [52] | ||
SiH4 | 300 | 0.6 | 60 | [53] | |
a-Si | SiH4 | 250–350 | 1 | 8 | [54] |
SiH4 | 400 | 0.75 | 100–300 | [55] | |
a-SiC:H | CH4, SiH4 | 150 | 0.7 | 6–15 | [56] |
CH4, SiH4 | 200 | 0.45 | 100–180 | [57] | |
CH4, SiH4 | 100–300 | 0.45 | 120 | [46] | |
CH4, Si2H6 | 550 | 2.5 | 100–1600 | [58] | |
a-SiN | SiH4, NH3 | 300 | 1 | 20 | [59] |
a-SiC | SiH4, CH4 | 200–400 | 1.6 | 600 | [60] |
Parameter | HWCVD | PECVD | CCVD | Structural Implication |
---|---|---|---|---|
Activation Source | Thermal (1800–2000 °C) | Plasma (RF/microwave) | Catalytic surface | Determines bond dissociation energy |
Energy Transfer | Radiative heat | Ion bombardment | Chemical catalysis | Controls adatom mobility (0.1–1.2 eV) |
Temp. Range | 400–800 °C | 50–300 °C | 200–500 °C | Defines thermal budget for substrates |
Growth Rate | 0.2–0.5 μm/h | 1–5 μm/h | 0.5–2 μm/h | Affects defect density (1017–1020 cm−3) |
Key Advantage | High Si-Si bond density | Low-temperature nanocomposites | Atomic-level dopant control | Determines functional performance |
Limitation | Thermal stress | Plasma-induced defects | Catalyst contamination | Impacts long-term stability |
Reference | [39,40,41] | [48,50,51] | [61,62] |
Material | Corrosive Environment | Corrosion Time/h | Changes Between Uncoated and Coated Surfaces | References | |||
---|---|---|---|---|---|---|---|
Surface Morphology (mV vs. SCE) | Open-Circuit Potential Variation (V) | Corrosion Potential (V) | Corrosion Current Density (μA/cm2) | ||||
a-SiOx | 3 wt% NaCl | 40 | No Observable Change | −0.8–(−0.4) | −0.88–(−0.67) | 110–0.27 | [103] |
a-Si:H | 3 wt% NaCl | 1000 | No Observable Change | −0.05–(−0.23) | 0.039–7.9 × 10−4 | [104] | |
a-SiOC | Ringer’s Solution | 2 | No Observable Change | +100 to (−290) | 0.1–(−0.4) | 2.18–(0.001) | [105] |
a-SiOC | 3.5 wt% NaCl | - | No Observable Change | −767.69 to (−611.69) | 194.59 to 110.53 | [106] | |
a-Si:H | 3.5 wt% NaCl | 0.5 | Uniform, smooth, and dense, without particulate defects | 0.71 to 0.02 | - | [86] | |
a-SiCN | 3.5 wt% NaCl | 1 | No Observable Change | −186 to (−37) | No corrosion potential | 0.15196 to 4.2004 × 10−4 | [89] |
a-AlFeSi | 3.5 wt% NaCl | 720 | No Observable Change | −390 to (−260) | −0.70 to (−0.47) | 16.17 to 6.542 | [107] |
a-SiO2 | 3.5 wt% NaCl | 2815 | −0.742 to (−0.708) | 1.18 × 104 to 20.7 | [108] | ||
a-C:H:SiOx | 3.5 wt% NaCl | 2/3 | No Observable Change | −0.27 to (−0.33) | 44 to 1.1 × 10−3 | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, B.; Xiao, B.; Sun, R.; Zhao, W.; Cui, L.; Liaw, P.K. Review on Tribological and Corrosion Properties of Amorphous Silicon-Based Coatings Fabricated by Chemical Vapor Deposition. Coatings 2025, 15, 1016. https://doi.org/10.3390/coatings15091016
Wang X, Zhang B, Xiao B, Sun R, Zhao W, Cui L, Liaw PK. Review on Tribological and Corrosion Properties of Amorphous Silicon-Based Coatings Fabricated by Chemical Vapor Deposition. Coatings. 2025; 15(9):1016. https://doi.org/10.3390/coatings15091016
Chicago/Turabian StyleWang, Xin, Bo Zhang, Bingjie Xiao, Rongyu Sun, Wenqi Zhao, Li Cui, and Peter K. Liaw. 2025. "Review on Tribological and Corrosion Properties of Amorphous Silicon-Based Coatings Fabricated by Chemical Vapor Deposition" Coatings 15, no. 9: 1016. https://doi.org/10.3390/coatings15091016
APA StyleWang, X., Zhang, B., Xiao, B., Sun, R., Zhao, W., Cui, L., & Liaw, P. K. (2025). Review on Tribological and Corrosion Properties of Amorphous Silicon-Based Coatings Fabricated by Chemical Vapor Deposition. Coatings, 15(9), 1016. https://doi.org/10.3390/coatings15091016