Stress Compensation in TiO2/SiO2 Optical Coatings by Manipulating the Thickness Modulation Ratio
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. SiO2 Single-Layer Coatings
3.2. TiO2 Single-Layer Coatings
3.3. Multilayer Coatings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hołyńska, M.; Tighe, A.; Semprimoschnig, C. Coatings and Thin Films for Spacecraft Thermo-Optical and Related Functional Applications. Adv. Mater. Interfaces 2018, 5, 1701644. [Google Scholar] [CrossRef]
- Sharme, R.K.; Quijada, M.; Terrones, M.; Rana, M.M. Thin Conducting Films: Preparation Methods, Optical and Electrical Properties, and Emerging Trends, Challenges, and Opportunities. Materials 2024, 17, 4559. [Google Scholar] [CrossRef]
- Huff, M. Review Paper: Residual Stresses in Deposited Thin-Film Material Layers for Micro- and Nano-Systems Manufacturing. Micromachines 2022, 13, 2084. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Jiang, H.; Dong, C.; Zhang, L.; Peng, G.; Zhang, T. Instrumented indentation methods for measurement of residual stresses in thin films/coatings: A review. J. Coat. Technol. Res. 2025, 22, 581–603. [Google Scholar] [CrossRef]
- Field, E.; Kletecka, D. Impact of contamination and aging effects on the long-term laser damage resistance of SiO2/HfO2/TiO2 high reflection coatings for 1054 nm. Opt. Eng. 2019, 58, 105105. [Google Scholar] [CrossRef]
- Tajima, N.; Murotani, H.; Matsumoto, S.; Honda, H. Stress control in optical thin films by sputtering and electron beam evaporation. Appl. Opt. 2017, 56, C131–C135. [Google Scholar] [CrossRef]
- Hlina, J.; Reboun, J.; Janda, M.; Hamacek, A. Study of Internal Stress in Conductive and Dielectric Thick Films. Materials 2022, 15, 8686. [Google Scholar] [CrossRef]
- Nishikawa, T.; Ono, H.; Murotani, H.; Iida, Y.; Okada, K. Analysis of long-term internal stress and film structure of SiO2 optical thin films. Appl. Opt. 2011, 50, C210–C216. [Google Scholar] [CrossRef]
- Robic, J.Y.; Leplan, H.; Pauleau, Y.; Rafin, B. Residual stress in silicon dioxide thin films produced by ion-assisted deposition. Thin Solid Film. 1996, 290–291, 34–39. [Google Scholar] [CrossRef]
- Gilo, M.; Croitoru, N. Properties of TiO2 films prepared by ion-assisted deposition using a gridless end-Hall ion source. Thin Solid Film. 1996, 283, 84–89. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, J.; Liu, H.; Yang, H.; Wang, Y.; Wang, H.; Pan, J.; Liu, Z.; Shen, Z.; Gao, W.; et al. Effect of Ion-Assisted Deposition Energy of RF Source on Optical Properties, Microstructure, and Residual Stress of HfO2 Thin Films. Coatings 2024, 14, 1616. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Ning, Y. Study of SiO2 Dielectric Film Stress Grown by The Method of Ion Assisted Deposition. Chin. J. Lumin. 2012, 33, 1304–1308. [Google Scholar] [CrossRef]
- Shao, S.; Fan, Z.; Fan, R.; Shao, J. Study of Residual Stress in ZrO2 Thin Films. Acta Phys. Sin. 2004, 24, 437–441. [Google Scholar]
- Shao, S.; Tian, G.; Fan, Z.; Shao, J. Influences of the Deposition Parameters and Aging Time on the Residual Stress of SiO2 Films. Acta Phys. Sin. 2005, 25, 126–130. [Google Scholar]
- Shen, Y.; Shao, S.; He, H.; Shao, J.; Fan, Z. Influences of thickness ratio of two materials on the residual stress of multilayers. Chin. Opt. Lett. 2007, 5, S272–S274. [Google Scholar]
- Shen, Y.; Shao, S.; Deng, Z.; He, H.; Shao, J.; Fan, Z. Influences of Annealing on Residual Stress and Structure of HfO2 Films. Chin. Phy. Lett. 2007, 24, 2963–2966. [Google Scholar]
- Shen, Y.; Han, Z.; Shao, J.; Shao, S.; He, H. Annealing effects on residual stress of HfO2/SiO2 multilayers. Chin. Opt. Lett. 2008, 6, 225–227. [Google Scholar] [CrossRef]
- Phiri, R.R.; Oladijo, O.P.; Akinlabi, E.T. Influence of deposition parameters on the residual stresses of WC-Wo sputtered thin films. MRS Adv. 2020, 5, 1215–1223. [Google Scholar] [CrossRef]
- Liu, B.; Duan, W.; Li, D.; Yu, D.; Chen, G.; Wang, T.; Liu, D. Effect of annealing temperature on structure and stress properties of Ta2O5/SiO2 multilayer reflective coatings. Acta. Phys. Sin. 2019, 68, 114208. [Google Scholar] [CrossRef]
- Kičas, S.; Gimževskis, U.; Melnikas, S. Post deposition annealing of IBS mixture coatings for compensation of film induced stress. Opt. Mater. Express 2016, 6, 2236–2243. [Google Scholar] [CrossRef]
- Lv, Q.; Huang, M.; Zhang, S.; Deng, S.; Gong, F.; Wang, F.; Pan, Y.; Li, G.; Jin, Y. Effects of Annealing on Residual Stress in Ta2O5 Films Deposited by Dual Ion Beam Sputtering. Coatings 2018, 8, 150. [Google Scholar] [CrossRef]
- Chen, H.-C.; Huang, C.-Y. Modulating the Residual Stress of Ion-Assisted TiO2 Films during Annealing with Film Thickness and Substrate Temperature. Jpn. J. Appl. Phys. 2011, 50, 075501. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Wang, W.; Yu, Z.; Liu, H.; Jin, G. Effect of ion-beam assisted deposition on the film stresses of TiO2 and SiO2 and stress control. Acta Phys. Sin. 2012, 28, 1382–1388. [Google Scholar] [CrossRef]
- Bischoff, M.; Nowitzki, T.; Voß, O.; Wilbrandt, S.; Stenzel, O. Postdeposition treatment of IBS coatings for UV applications with optimized thin-film stress properties. Appl. Opt. 2014, 53, A212–A220. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Kong, M. Fabrication of Ultralow Stress TiO2/SiO2 Optical Coatings by Plasma Ion-Assisted Deposition. Coatings 2020, 10, 720. [Google Scholar] [CrossRef]
- Tang, C.-J.; Jaing, C.-C.; Lee, K.-S.; Lee, C.-C. Residual stress in Ta2O5-SiO2 composite thin-film rugate filters prepared by radio frequency ion-beam sputtering. Appl. Opt. 2008, 47, C167–C171. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.B.; Kupinski, P.; Rigatti, A.L.; Schmid, A.W.; Lambropoulos, J.C.; Papernov, S.; Kozlov, A.; Smith, C.; Hand, R.D. Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers. Opt. Express 2012, 20, 16596–16610. [Google Scholar] [CrossRef]
- Xiao, Q.; Guohang, H.; He, H.-B.; Shao, J. Evolution of Residual Stress and Structure in YSZ/SiO2 Multilayers with Different Modulation Ratios. Chin. Phys. Lett. 2013, 30, 024206. [Google Scholar] [CrossRef]
- Amotchkina, T.; Trubetskov, M.K.; Pervak, Y.; Veisz, L.; Pervak, V. Stress compensation with antireflection coatings for ultrafast laser applications: From theory to practice. Opt. Express 2014, 22, 30387–30393. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, K.; Ma, J.; Yu, Z.; Lan, Z. Design and Fabrication of Temperature-Compensated Film Bulk Acoustic Resonator Filter Based on the Stress Compensation Effect. Coatings 2022, 12, 1126. [Google Scholar] [CrossRef]
- Massahi, S.; Vu, L.; Ferreira, D.D.; Christensen, F.; Gellert, N.; Henriksen, P.; Svendsen, S.; ’S Jegers, A.; Collon, M.; Landgraf, B.; et al. Balancing of residual stress in thin film iridium by utilizing chromium as an underlayer. Proc. SPIE 2020, 11444, 744–759. [Google Scholar]
- Chalifoux, B.D.; Yao, Y.; Woller, K.B.; Heilmann, R.K.; Schattenburg, M.L. Compensating film stress in thin silicon substrates using ion implantation. Opt. Express 2019, 27, 11182–11195. [Google Scholar] [CrossRef]
- Liu, H.; Jensen, L.; Ma, P.; Ristau, D. Stress compensated anti-reflection coating for high power laser deposited with IBS SiO2 and ALD Al2O3. Appl. Surf. Sci. 2019, 476, 521–527. [Google Scholar] [CrossRef]
- Tien, C.-L.; Su, S.-H.; Cheng, C.-Y.; Chang, Y.-M.; Mo, D.-H. Optical Interference Filters Combined with Thin Film Residual Stress Compensation for Image Contrast Enhancement. Coatings 2023, 13, 857. [Google Scholar] [CrossRef]
- Gross, M.; Dligatch, S.; Chtanov, A. Optimization of coating uniformity in an ion beam sputtering system using a modified planetary rotation method. Appl. Opt. 2011, 50, C316–C320. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Bai, Y.; Zhao, J.; Wang, L.; Zhang, J.; Zhou, Y. Optimization of Thickness Uniformity Distribution on a Large-Aperture Concave Reflective Mirror and Shadow Mask Design in a Planetary Rotation System. Coatings 2021, 11, 140. [Google Scholar] [CrossRef]
- Chiu, P.-K.; Lee, C.-T.; Chiang, D.; Cho, W.-H.; Hsiao, C.-N.; Chen, Y.-Y.; Huang, B.-M.; Yang, J.-R. Conductive and transparent multilayer films for low-temperature TiO2/Ag/SiO2 electrodes by E-beam evaporation with IAD. Nanoscale Res. Lett. 2014, 9, 35. [Google Scholar] [CrossRef]
- Qin, H.; Xiao, X.; Sui, X.; Qi, H. Influence of residual stress on the determination of Young’s modulus for SiO2 thin film by the surface acoustic waves. Jpn. J. Appl. Phys. 2019, 58, SHHG01. [Google Scholar] [CrossRef]
- Jena, S.; Tokas, R.B.; Thakur, S.; Udupa, D.V. Study of aging effects on optical properties and residual stress of HfO2 thin film. Optik 2019, 185, 71–81. [Google Scholar] [CrossRef]
- Martyniuk, M.; Musca, C.A.; Dell, J.M.; Faraone, L. Long-term environmental stability of residual stress of SiNx, SiOx, and Ge thin films prepared at low temperatures. Mater. Sci. Eng. B 2009, 163, 26–30. [Google Scholar] [CrossRef]
- Zeng, T.; Zhu, M.; Yin, C.; Cui, Y.; Zhao, J.; Wang, Y.; Hu, G.; Chai, Y.; Shao, J. Strategy to improve the long-term stability of low-stress e-beam coatings. Opt. Mater. Express 2020, 10, 2738–2748. [Google Scholar] [CrossRef]
- Liu, J.; Xu, B.; Wang, H.; Cui, X.; Zhu, L.; Jin, G. Effects of film thickness and microstructures on residual stress. Surf. Eng. 2016, 32, 178–184. [Google Scholar] [CrossRef]
- Ying, D.; Zhong, T. Effects of thickness and annealing on the residual stress of TiO2 film. Opt. Contin. 2024, 3, 287–295. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Yan, X.; Dou, S.; Li, Y.; Wang, L. Effects of Film Thickness on the Residual Stress of Vanadium Dioxide Thin Films Grown by Magnetron Sputtering. Materials 2023, 16, 5093. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Su, L.; Huang, C.; Huang, H.-X.; Castro, J.M.; Yi, A.Y. Effect of packing pressure on refractive index variation in injection molding of precision plastic optical lens. Adv. Polym. Technol. 2011, 30, 51–61. [Google Scholar] [CrossRef]
- González-Benito, J.; Castillo, E.; Caldito, J.F. Coefficient of thermal expansion of TiO2 filled EVA based nanocomposites. A new insight about the influence of filler particle size in composites. Eur. Polym. J. 2013, 49, 1747–1752. [Google Scholar] [CrossRef]
- Jagannadham, K.; Watkins, T.R. A Comparative Study of Residual Stresses in Single and Multilayer Composite Diamond Coatings. MRS Proc. 1997, 505, 391–396. [Google Scholar] [CrossRef]
- Zobeiry, N.; Poursartip, A. The origins of residual stress and its evaluation in composite materials. In Structural Integrity and Durability of Advanced Composites; Woodhead Publishing: Cambridge, UK, 2015; pp. 43–72. [Google Scholar]
- Shugurov, A.R.; Panin, A.V. Mechanisms of Stress Generation in Thin Films and Coatings. Tech. Phys. 2020, 65, 1881–1904. [Google Scholar] [CrossRef]
- Ghasemi Nejhad, M.N.; Pan, C.; Feng, H. Intrinsic Strain Modeling and Residual Stress Analysis for Thin-Film Processing of Layered Structures. J. Electron. Packag. 2003, 125, 4–17. [Google Scholar] [CrossRef]
- Chen, H.-C.; Lu, Y.-R.; Chang, C.-H. Stress mechanism analysis by finite element method for different dielectric films deposited with ion-beam assisted deposition on flexible substrates. Thin Solid Film. 2024, 792, 140244. [Google Scholar] [CrossRef]
- Sun, K.; Sun, C.; Chen, J. A Theoretical Analysis for Arbitrary Residual Stress of Thin Film/Substrate System with Nonnegligible Film Thickness. J. Appl. Mech. 2023, 91, 051001. [Google Scholar] [CrossRef]
Sample | Temperature (℃) | Deposited Rate (Å/s) | O2 Flue (sccm) | Thickness (nm) |
---|---|---|---|---|
S1 | 100 | 2.0 | 28 | 108.8 |
S2 | 100 | 2.0 | 28 | 213.3 |
S3 | 100 | 2.0 | 28 | 422.3 |
S4 | 100 | 2.0 | 28 | 616.8 |
S5 | 100 | 2.0 | 28 | 826.3 |
S6 | 100 | 2.0 | 28 | 1035.7 |
S7 | 100 | 1.0 | 28 | 386.6 |
S8 | 100 | 3.0 | 28 | 442.4 |
S9 | 100 | 4.0 | 28 | 465.9 |
S10 | 150 | 2.0 | 28 | 405.1 |
S11 | 100 | 2.0 | 28 | 392.8 |
S12 | 230 | 2.0 | 28 | 374.1 |
Material | Substrate Temperature (°C) | Deposited Rate (Å/s) | Bias Voltage (V) | Neutralizer Current (mA) | Ar Flue (sccm) | O2 Flue (sccm) |
---|---|---|---|---|---|---|
SiO2 | 150 | 4.0 | 170 | 120 | 12 | 28 |
TiO2 | 150 | 3.0 | 170 | 120 | 12 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wu, T.; Gao, W.; Hu, G.; Wang, C. Stress Compensation in TiO2/SiO2 Optical Coatings by Manipulating the Thickness Modulation Ratio. Coatings 2025, 15, 848. https://doi.org/10.3390/coatings15070848
Wang B, Wu T, Gao W, Hu G, Wang C. Stress Compensation in TiO2/SiO2 Optical Coatings by Manipulating the Thickness Modulation Ratio. Coatings. 2025; 15(7):848. https://doi.org/10.3390/coatings15070848
Chicago/Turabian StyleWang, Bo, Taiqi Wu, Weidong Gao, Gang Hu, and Changjun Wang. 2025. "Stress Compensation in TiO2/SiO2 Optical Coatings by Manipulating the Thickness Modulation Ratio" Coatings 15, no. 7: 848. https://doi.org/10.3390/coatings15070848
APA StyleWang, B., Wu, T., Gao, W., Hu, G., & Wang, C. (2025). Stress Compensation in TiO2/SiO2 Optical Coatings by Manipulating the Thickness Modulation Ratio. Coatings, 15(7), 848. https://doi.org/10.3390/coatings15070848