Mechanical, Structural, and Electrochemical Performance of Polyurethane Coatings for Corrosion Protection in Wind Energy Systems
Abstract
1. Introduction
2. Materials and Techniques
2.1. Substrate
2.2. Titanium Oxide
2.3. Coating Application
3. Results and Discussion
3.1. XRD Analysis
3.2. FTIR Spectroscopy for PU/TiO2
3.3. Electrochemical Impedance Spectroscopy (EIS) of PU/TiO2 Coatings
3.4. Hardness Test
3.5. Tension Test
3.6. Adhesion Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Liang, X.; Cai, A.; Zhang, L.; Lin, W.; Ge, M. Effects of Blade Extension on Power Production and Ultimate Loads of Wind Turbines. Appl. Sci. 2023, 13, 3538. [Google Scholar] [CrossRef]
- Godfrey, M.; Siederer, O.; Zekonyte, J.; Barbaros, I.; Wood, R. The effect of temperature on the erosion of polyurethane coatings for wind turbine leading edge protection. Wear 2021, 476, 203720. [Google Scholar] [CrossRef]
- Zheng, Z.; Sun, H.; Xue, W.; Duan, D.; Chen, G.; Zhou, X.; Sun, J. Preparation of protective coatings for the leading edge of wind turbine blades and investigation of their water droplet erosion behavior. Wear 2024, 558–559, 205568. [Google Scholar] [CrossRef]
- Wang, J.; Gao, J.; Zhang, Y.; Cui, H. Analysis of the Sand Erosion Effect and Wear Mechanism of Wind Turbine Blade Coating. Energies 2024, 17, 413. [Google Scholar] [CrossRef]
- Faccini, M.; Bautista, L.; Soldi, L.; Escobar, A.M.; Altavilla, M.; Calvet, M.; Domènech, A.; Domínguez, E. Environmentally friendly anticorrosive polymeric coatings. Appl. Sci. 2021, 11, 3446. [Google Scholar] [CrossRef]
- Bera, P.; Lakshmi, R.V.; Pathak, S.M.; Bonu, V.; Mishnaevsky, L.; Barshilia, H.C. Recent Progress in the Development and Evaluation of Rain and Solid Particle Erosion Resistant Coatings for Leading Edge Protection of Wind Turbine Blades. Polym. Rev. 2023, 64, 639–689. [Google Scholar] [CrossRef]
- Pathak, S.M.; Kumar, V.P.; Bonu, V.; Mishnaevsky, L., Jr.; Lakshmi, R.; Bera, P.; Barshilia, H.C. Enhancing wind turbine blade protection: Solid particle erosion resistant ceramic oxides-reinforced epoxy coatings. Renew. Energy 2024, 238, 121681. [Google Scholar] [CrossRef]
- Tempelis, A.; Mishnaevsky, L. Coating material loss and surface roughening due to leading edge erosion of wind turbine blades: Probabilistic analysis. Wear 2025, 566–567, 205755. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Tempelis, A.; Kuthe, N.; Mahajan, P. Recent developments in the protection of wind turbine blades against leading edge erosion: Materials solutions and predictive modelling. Renew. Energy 2023, 215, 118966. [Google Scholar] [CrossRef]
- Ansari, Q.M.; Sánchez, F.; Mishnaevsky, L.; Young, T.M. Evaluation of offshore wind turbine blades coating thickness effect on leading edge protection system subject to rain erosion. Renew. Energy 2024, 226, 120378. [Google Scholar] [CrossRef]
- Kuthe, N.; Mahajan, P.; Ahmad, S.; Mishnaevsky, L., Jr. Engineered anti-erosion coating for wind turbine blade protection: Computational analysis. Mater. Today Commun. 2022, 31, 103362. [Google Scholar] [CrossRef]
- Alajmi, A.F.; Ramulu, M. The Effectiveness of Graphene and Polyurethane Multilayer Coating on Minimizing the Leading-Edge Erosion of Wind Turbine Blades. Results Eng. 2025, 26, 104804. [Google Scholar] [CrossRef]
- Nirmal, U.; Teo, J.J.; Chin, C.W.; Yousif, B.F. Review on Erosion Wear Subjected to Different Coating Materials on Leading Edge Protection for Cooling Towers and Wind Turbines. J. Bio- Tribo-Corros. 2025, 11, 20. [Google Scholar] [CrossRef]
- Gupta, A.; Verma, J.; Kumar, D. Mitigation of erosion and corrosion of steel using nano-composite coating: Polyurethane reinforced with SiO2-ZnO core-shell nanoparticles. Prog. Org. Coat. 2023, 183, 107733. [Google Scholar] [CrossRef]
- Singh, M.; Dodla, S.; Gautam, R. Effect of GO, CNTs, and hybrid nanoparticles coated carbon fiber reinforced epoxy composite on erosive wear properties using Taguchi orthogonal array. Diam. Relat. Mater. 2025, 155, 112284. [Google Scholar] [CrossRef]
- Budirohmi, A.; Mustari, Y.; Suriani, Y.; Adriana, V.; Natsir, H. The Effect of Concentration of Titanium Dioxide Nanoparticles on Their Antibacterial Activity in the Synthesis of Polyurethane Biopolymers. Hydrog. J. Kependidikan Kim. 2023, 11, 743. [Google Scholar] [CrossRef]
- Bao, L.; Tanasawa, Y.; Shi, J.; Sun, Y. Erosion resistant effects of protective films for wind turbine blades. Adv. Compos. Mater. 2023, 33, 603–617. [Google Scholar] [CrossRef]
- Alnassir, A.; Albinali, F.; Aljaroudi, F.; Alsaleem, N.; Rehman, S. A comprehensive review of existing erosion protective coatings and practices for wind turbine blade surfaces. FME Trans. 2025, 53, 510–523. [Google Scholar] [CrossRef]
- Pathak, S.M.; Kumar, V.P.; Bonu, V.; Latha, S.; Mishnaevsky, L.; Lakshmi, R.; Bera, P.; Barshilia, H.C. Solid particle erosion studies of ceramic oxides reinforced water-based PU nanocomposite coatings for wind turbine blade protection. Ceram. Int. 2022, 48, 35788–35798. [Google Scholar] [CrossRef]
- Rajendran, S.; Palani, G.; Babu, N.K.; Veerasimman, A.P.; Yang, Y.; Shanmugam, V. Solid particle erosion in fibre composites: A review. J. Reinf. Plast. Compos. 2024, 44, 2701–2720. [Google Scholar] [CrossRef]
- Zafar, S. Polyurethane-Base Multifunctional Coating for Corrosion Protection of Steel in the Oil & Gas Industry. Master’s Thesis, Qatar University, College of Engineering, Doha, Qatar, 2025. [Google Scholar]
- Pradhan, A.R.; Kumar, S.; Gupta, C.; Mandal, S.K. Erosion Wear Performance of HVOF Sprayed WC-10Co-4Cr + 2% TiO2 Coating on SS-409 Using Slurry Jet Erosion Tester. Results Surf. Interfaces 2024, 16, 100277. [Google Scholar] [CrossRef]
- Singh, V.; Singh, J.; Vasudev, H.; Chohan, J.S.; Akram, S.V. Review on tribo-erosion analysis in Ni, Al2O3, and TiO2 based thermal spray coatings. AIP Conf. Proc. 2024, 3007, 030098. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, W.; Du, C.; Kang, Q.; Mao, Z.; Chen, S. A novel noise-reducing and anti-corrosion polyurethane elastomer coating material modified by MXene/porous TiO2. Surf. Interfaces 2024, 48, 104256. [Google Scholar] [CrossRef]
- Xosocotla, O.; Campillo, B.; Martínez, H.; Del Pilar Rodríguez-Rojas, M.; Campos, R.; Bustos-Terrones, V. Modification of Polyurethane/Graphene Oxide with Dielectric Barrier Plasma Treatment for Proper Coating Adhesion on Fiberglass. Coatings 2025, 15, 411. [Google Scholar] [CrossRef]
- Mishra, B.; Varshney, S.; Gupta, M.K. Effect of Fillers on the Performance of Fibre Reinforced Polymer Hybrid Composites: A Comprehensive Review. Polym.-Plast. Technol. Mater. 2025, 64, 2179–2213. [Google Scholar] [CrossRef]
- Chandraraj, S.S.; Xavier, J.R. Electrochemical and mechanical investigation into the effects of polyacrylamide/TiO2 in polyurethane coatings on mild steel structures in chloride media. J. Mater. Sci. 2022, 57, 13362–13384. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, C.; Liao, W.; Peng, J. Mechanical and electrochemical properties of TiO2 modified polyurethane nanofibers. Appl. Phys. A 2023, 129, 162. [Google Scholar] [CrossRef]
- Mirzadeh, S.; Asefnejad, A.; Khonakdar, H.A.; Jafari, S.H. Improved surface properties in spray-coated PU/TiO2/graphene hybrid nanocomposites through nonsolvent-induced phase separation. Surf. Coat. Technol. 2020, 405, 126507. [Google Scholar] [CrossRef]
- Abil, E.; Arefinia, R. The influence of talc particles on corrosion protecting properties of polyurethane coating on carbon steel in 3.5% NaCl solution. Prog. Org. Coat. 2022, 172, 107067. [Google Scholar] [CrossRef]
- Sadeghi, M.; Afarani, H.T.; Tarashi, Z. Preparation and investigation of the gas separation properties of polyurethane-TiO2 nanocomposite membranes. Korean J. Chem. Eng. 2014, 32, 97–103. [Google Scholar] [CrossRef]
- Zaman, A.U.; Khan, M.A.; Waqas, M.; Junaid, T.B.; Siddiqui, W.; Ahmed, A.; Karim, M.R.A. Tape Casting and Characterization of h-BN/PU Composite Coatings for Corrosion Resistance Applications. Digit. Manuf. Technol. 2023, 3, 156–163. [Google Scholar] [CrossRef]
- Bian, D.; Ni, Z.; Qian, S.; Zhao, Y. Improving Corrosion Behavior of Chemically Bonded Phosphate Ceramic Coating Reinforce with GO-TiO2 Hybrid Material. ECS J. Solid State Sci. Technol. 2021, 10, 121002. [Google Scholar] [CrossRef]
- Barani, A.K.; Roudini, G.; Barahuie, F.; Masuri, S.U.B. Design of hydrophobic polyurethane–magnetite iron oxide-titanium dioxide nanocomposites for oil-water separation. Heliyon 2023, 9, e15580. [Google Scholar] [CrossRef]
- Stroe, M.; Burlanescu, T.; Paraschiv, M.; Lőrinczi, A.; Matei, E.; Ciobanu, R.; Baibarac, M. Optical and Structural Properties of Composites Based on Poly(urethane) and TiO2 Nanowires. Materials 2023, 16, 1742. [Google Scholar] [CrossRef] [PubMed]
- Bhaliya, J.; Kutcherlapati, S.N.R.; Dhore, N.; Punugupati, N.; Sunkara, K.L.; Misra, S.; Joshi, S.S.K. Soybean Oil-Derived, Non-Isocyanate Polyurethane-TiO2 Nanocomposites with Enhanced Thermal, Mechanical, Hydrophobic and Antimicrobial Properties. RSC Sustain. 2025, 3, 1434–1447. [Google Scholar] [CrossRef]
- Trentin, A.; Pakseresht, A.; Duran, A.; Castro, Y.; Galusek, D. Electrochemical Characterization of Polymeric Coatings for Corrosion Protection: A Review of Advances and Perspectives. Polymers 2022, 14, 2306. [Google Scholar] [CrossRef]
- Mohamed, A.; Alateyah, A.; Hasan, H.; Matli, P.; Seleman, M.E.; Ahmed, E.; El-Garaihy, W.; Golden, T. Enhanced Corrosion Resistance and Surface Wettability of PVDF/ZnO and PVDF/TiO2 Composite Coatings: A Comparative Study. Coating 2023, 13, 1729. [Google Scholar] [CrossRef]
- Zafar, S.; Habib, S.; Shkoor, M.; Kahraman, R.; Khaled, M.; Hussein, I.A.; Dawoud, A.; Shakoor, R. Enhanced steel surface protection using TiO2/MS30 modified polyurethane coatings: Synthesis and performance evaluation. J. Mol. Liq. 2024, 417, 126669. [Google Scholar] [CrossRef]
- Habib, S.; Zafar, S.; Shkoor, M.; Khaled, M.; Hussein, I.A.; Ahmed, E.M.; Dawoud, A.; Shakoor, R. Improving corrosion inhibition of steel using polyurethane based composite coatings by incorporating zirconia nanoparticles and novel urea-based inhibitor. Surf. Coat. Technol. 2025, 511, 132316. [Google Scholar] [CrossRef]
- Stefanović, I.S.; Džunuzović, J.V.; Džunuzović, E.S.; Randjelović, D.V.; Pavlović, V.B.; Basagni, A.; Marega, C. Insight into the Morphology, Hydrophobicity and Swelling Behavior of TiO2-Reinforced Polyurethane. Coatings 2025, 15, 231. [Google Scholar] [CrossRef]
- Vijayan, A.S.; Joseph, A.; Nair, B.G.; Vandana, S. MoS2/Ag-TiO2/Polyurethane Nanocomposite as a Photocatalytic Coating for Antibiofouling Applications. ACS Appl. Nano Mater. 2024, 7, 19024–19042. [Google Scholar] [CrossRef]
- Tavana, S.M.; Hojjati, M.; Liberati, A.C.; Moreau, C. Erosion resistance enhancement of polymeric composites with air plasma sprayed coatings. Surf. Coat. Technol. 2023, 455, 129211. [Google Scholar] [CrossRef]
- Naguib, G.H.; Abuelenain, D.; Mazhar, J.; Alnowaiser, A.; Aljawi, R.; Hamed, M.T. Maximizing Dental Composite Performance: Strength and Hardness Enhanced by Innovative Polymer-Coated MgO Nanoparticles. J. Dent. 2024, 149, 105271. [Google Scholar] [CrossRef] [PubMed]
- Kaurani, P.; Hindocha, A.D.; Jayasinghe, R.M.; Pai, U.Y.; Batra, K.; Price, C. Effect of addition of titanium dioxide nanoparticles on the antimicrobial properties, surface roughness and surface hardness of polymethyl methacrylate: A Systematic Review. F1000Research 2023, 12, 577. [Google Scholar] [CrossRef] [PubMed]
- Kianpour, G.; Bagheri, R.; Pourjavadi, A.; Ghanbari, H. Synergy of titanium dioxide nanotubes and polyurethane properties for bypass graft application: Excellent flexibility and biocompatibility. Mater. Des. 2022, 215, 110523. [Google Scholar] [CrossRef]
- Xu, X.; Pei, F.; Lin, W.; Lei, J.; Yang, Y.; Xu, H.; Li, Z.; Huang, Y. Oxygen vacancies-rich TiO2−x enhanced composite polyurethane electrolytes for high-voltage solid-state lithium metal batteries. Nano Res. 2025, 18, 94907304. [Google Scholar] [CrossRef]
- Seenath, A.A.; Baig, M.M.A.; Katiyar, J.K.; Mohammed, A.S. A Comprehensive Review on the Tribological Evaluation of Polyether Ether Ketone Pristine and Composite Coatings. Polymer 2024, 16, 2994. [Google Scholar] [CrossRef]
- Tawfilas, M.; Torres, G.B.; Lorenzi, R.; Saibene, M.; Mauri, M.; Simonutti, R. Transparent and High-Refractive-Index Titanium Dioxide/Thermoplastic Polyurethane Nanocomposites. ACS Omega 2024, 9, 29339–29349. [Google Scholar] [CrossRef]
- Ridge, T.J., II. Characterization of TiO2/Polyurethane Composite Coatings. Master’s Thesis, Miami University, Oxford, OH, USA; OhioLINK Electronic Theses and Dissertations Center, 2022. Available online: https://rave.ohiolink.edu/etdc/view?acc_num=miami1650470214460894 (accessed on 12 April 2025).
- Abdellatif, A.S.; Shahien, M.; El-Saeed, A.M.; Zaki, A.H. Titanate–polyurethane–chitosan ternary nanocomposite as an efficient coating for steel against corrosion. Sci. Rep. 2024, 14, 30562. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Wang, H.; Li, B.; Hu, Q.; Shao, T.; Yang, R.; Wang, B.; Wan, Q.; Li, Z.; et al. Experimental Study on Neutral Salt Spray Accelerated Corrosion of Metal Protective Coatings for Power-Transmission and Transformation Equipment. Coatings 2023, 13, 480. [Google Scholar] [CrossRef]
- Jose, S.A.; Lapierre, Z.; Williams, T.; Hope, C.; Jardin, T.; Rodriguez, R.; Menezes, P.L. Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives. Coatings 2025, 15, 878. [Google Scholar] [CrossRef]
- Hao, Z.; Zhang, Z.; Zhou, W.; Zhang, S.; Ma, T.; Wei, H.; Wang, G.; Wang, Q.; Wang, L.; Li, R. Progress of material degradation: Metals and polymers in deep-sea environments. Corros. Rev. 2024, 43, 315–334. [Google Scholar] [CrossRef]
- Startsev, O.V.; Koval, T.V.; Veligodsky, I.M.; Dvirnaya, E.V. Long-Term Environmental Aging of Polymer Composite Coatings: Characterization and Evaluation by Dynamic Mechanical Analysis. J. Compos. Sci. 2025, 9, 645. [Google Scholar] [CrossRef]













| Sample | Hydrogen-Bonded NH Fraction |
|---|---|
| (%) | |
| PU | ~58.8 |
| PU/TiO2 1% | ~40.0 |
| PU/TiO2 3% | ~64.7 |
| PU/TiO2 5% | ~53.6 |
| Sample | Icorr [mA/cm2] | Ecorr [mV] |
|---|---|---|
| PU | 2.2 × 10−3 | −1451 |
| PU/TiO2 1% | 2.0 × 10−3 | −1433 |
| PU/TiO2 3% | 8.5 × 10−4 | −1497 |
| PU/TiO2 5% | 1.7 × 10−2 | −1327 |
| Sample | Rc [Ω.cm2] | CPE1 [F/cm2] |
|---|---|---|
| PU | 26 × 103 | 2.05 × 10−6 |
| PU/TiO2 1% | 37 × 103 | 7.78 × 10−6 |
| PU/TiO2 3% | 88 × 103 | 2.06 × 10−6 |
| PU/TiO2 5% | 45 × 101 | 3.23 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xosocotla, O.; Rodríguez-Rojas, M.d.P.; Campos-Amezcua, R.; Martínez, H.; Bustos-Terrones, V.; Guadarrama Pérez, O. Mechanical, Structural, and Electrochemical Performance of Polyurethane Coatings for Corrosion Protection in Wind Energy Systems. Coatings 2025, 15, 1476. https://doi.org/10.3390/coatings15121476
Xosocotla O, Rodríguez-Rojas MdP, Campos-Amezcua R, Martínez H, Bustos-Terrones V, Guadarrama Pérez O. Mechanical, Structural, and Electrochemical Performance of Polyurethane Coatings for Corrosion Protection in Wind Energy Systems. Coatings. 2025; 15(12):1476. https://doi.org/10.3390/coatings15121476
Chicago/Turabian StyleXosocotla, Oscar, María del Pilar Rodríguez-Rojas, Rafael Campos-Amezcua, Horacio Martínez, Victoria Bustos-Terrones, and Oscar Guadarrama Pérez. 2025. "Mechanical, Structural, and Electrochemical Performance of Polyurethane Coatings for Corrosion Protection in Wind Energy Systems" Coatings 15, no. 12: 1476. https://doi.org/10.3390/coatings15121476
APA StyleXosocotla, O., Rodríguez-Rojas, M. d. P., Campos-Amezcua, R., Martínez, H., Bustos-Terrones, V., & Guadarrama Pérez, O. (2025). Mechanical, Structural, and Electrochemical Performance of Polyurethane Coatings for Corrosion Protection in Wind Energy Systems. Coatings, 15(12), 1476. https://doi.org/10.3390/coatings15121476

