Structure, Composition and Optical Properties of Thin Films of Copper Sulphide and Bismuth Sulphide Deposited on Various Textiles by the SILAR Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Deposition of the Cu–Bi–S Thin Films
2.3. Characterisation Methods
3. Results and Discussion
3.1. XRD Characterisation
3.2. SEM/EDX Characterisation
3.3. UV-Vis Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Graham, E.; Fulghum, N.; Altieri, K. Global Electricity Review 2025. Ember. 8 April 2025. Available online: https://ember-energy.org/latest-insights/global-electricity-review-2025 (accessed on 22 September 2025).
- Ojstršek, A.; Plohl, O.; Gorgjeva, S.; Kurečič, M.; Jančič, U.; Hribenik, S.; Fakin, D. Metallisation of textiles and protenction of conductive layers: An overview of application techniques. Sensors 2021, 21, 3508. [Google Scholar] [CrossRef]
- Choudhury, K.; Tsianou, M.; Alexandridis, P. Recycling of Blended Fabrics for a Circular Economy of Textiles: Separation of Cotton, Polyester, and Elastane Fibres. Sustainability 2024, 16, 6206. [Google Scholar] [CrossRef]
- Zhong, H.; Bai, S.; Zou, B. Tuning the luminescence properties of colloidal I-III-VI semiconductor nanocrystals for optoelectronics and biotechnology applications. J. Phys. Chem. Lett. 2012, 3, 3167–3175. [Google Scholar] [CrossRef]
- Talapin, D.V.; Lee, J.S.; Kovalenko, M.V.; Shevchenko, E.V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458. [Google Scholar] [CrossRef] [PubMed]
- Manimegalai, D.K.; Manikandan, A.; Moortheswaran, S.; Antony, S.A. One-pot microwave irradiation synthesis and characterization studies of nanocrystalline CdS photocatalysts. Adv. Sci. Eng. Med. 2015, 7, 722–727. [Google Scholar] [CrossRef]
- Manikandan, A.; Antony, S.A. A novel approach for the synthesis and characterization studies of Mn2+-Doped CdS nano-crystals by a facile microwave-assisted combustion method. J. Supercond. Nov. Magn. 2014, 27, 2725–2733. [Google Scholar] [CrossRef]
- Lou, Y.; Chen, X.; Samia, A.C.; Burda, C. Femtosecond Spectroscopic Investigation of the Carrier Lifetimes in Digenite Quantum Dots and Discrimination of the Electron and Hole Dynamics via Ultrafast Interfacial Electron Transfer. J. Phys. Chem. B 2003, 107, 12431–12437. [Google Scholar] [CrossRef]
- Chung, J.S.; Sohn, H.J. Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. J. Power Sources 2002, 108, 226–231. [Google Scholar] [CrossRef]
- Deb, S.; Kalita, P.K. Green synthesis of copper sulfide (CuS) nanostructures for heterojunction diode applications. J. Mater. Sci. Mater. Electron. 2021, 32, 24125–24137. [Google Scholar] [CrossRef]
- Chen, X.; Wang, T.; Shi, J.; Lv, W.; Han, Y.; Zeng, M.; Yang, J.; Hu, N.; Su, Y.; Wei, H.; et al. A Novel Artificial Neuron-Like Gas Sensor Constructed from CuS Quantum Dots/Bi2S3 Nanosheets. Nano-Micro Lett. 2022, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Heiba, Z.K.; Deyab, M.A.; Mohamed, M.B.; Farag, N.M.; El-naggar, A.M.; Plaisier, J.R. Electrochemical performance of CuCo2O4/CuS nanocomposite as a novel electrode material for supercapacitor. Appl. Phys. A 2021, 127, 853. [Google Scholar] [CrossRef]
- Liang, W.; Whangbo, M.H. Conductivity anisotropy and structural phase transition in Covellite CuS. Solid State Commun. 1993, 85, 405. [Google Scholar] [CrossRef]
- Gopi, C.V.V.M.; Sambasivam, S.; Vinodh, R.; Kim, H.J.; Obaidat, I.M. Nanostructured Ni-doped CuS thin film as an efficient counter electrode material for high–performance quantum dot–sensitized solar cells. J. Mater. Sci. Mater. Electron. 2020, 31, 975–982. [Google Scholar] [CrossRef]
- Huse, N.P.; Dive, A.S.; Gattu, K.P.; Sharma, R. An experimental and theoretical study on soft chemically grown CuS thin film for photosensor application. Mater. Sci. Semicond. Process. 2017, 67, 62–68. [Google Scholar] [CrossRef]
- Ain, N.; Nasir, J.A.; Khan, Z.; Butler, I.S.; Rehman, Z. Copper sulfide nanostructures: Synthesis and biological applications. RSC Adv. 2022, 12, 7550–7567. [Google Scholar] [CrossRef]
- Mao, G.; Dong, W.; Kurth, D.G.; Mohwald, H. Synthesis of Copper Sulfide Nanorod Arrays on Molecular Templates. Nano Lett. 2004, 4, 249–252. [Google Scholar] [CrossRef]
- Folmer, J.C.W.; Jellinek, F. The valence of copper in sulphides and selenides: An X-ray photoelectron spectroscopy study. J. Less Common Met. 1980, 76, 153–162. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.; Gao, W.; Wang, Y.; Jiao, L.; Yuan, H.; Liu, S. Synthesis of novel CuS with hierarchical structures and its application in lithium-ion batteries. Powder Technol. 2011, 212, 64–68. [Google Scholar] [CrossRef]
- Lai, C.H.; Huang, K.W.; Cheng, J.H.; Lee, C.Y.; Hwang, B.J.; Chen, L.J. Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium–ion batteries. J. Mater. Chem. 2010, 20, 6638–6645. [Google Scholar] [CrossRef]
- Mane, R.S.; Lokhande, C.D. Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys. 2000, 65, 1–31. [Google Scholar] [CrossRef]
- Saranya, M.; Santhosh, C.; Prathap Augustine, S.; Nirmala Grace, A. Synthesis and characterication of CuS nanomaterials using hydrothermal route. J. Exp. Nanosci. 2014, 9, 329–336. [Google Scholar] [CrossRef]
- Deady, E.; Moon, C.; Moore, K.; Goodenough, K.M.; Shail, R.K. Bismuth: Economic geology and value chains. Ore Geol. Rev. 2022, 143, 104722. [Google Scholar] [CrossRef]
- Onwudiwe, D.C.; Nkwe, V.M. Morphological variations in Bi2S3 nanoparticles synthesized by using single source precursor. Heliyon 2020, 6, e04505. [Google Scholar] [CrossRef]
- Renuka Devee, D.; Sivanesan, T.; Muthukrishnan, R.M.; Pourkodee, D.; Mohammed Yusuf Ansari, P.; Abdul Kader, S.M.; Raniani, R.A. A novel photocatalytic activity of Bi2S3 nanoparticles for pharmaceutical and organic pollution removal in water remediation. Chem. Phys. Impact 2024, 8, 100605. [Google Scholar] [CrossRef]
- Razavi, F.S.; Mahdi, M.A.; Ghanbari, D.; Dawi, E.A.; Abed, M.J.; Ganduh, S.H.; Jasmin, L.S.; Salavati-Niasari, M. Fabrication and design of four-component Bi2S3/CuFe2O4/Cu2O nanocomposite as new active materials for high performance electrochemical hydrogen storage application. J. Energy Storage 2024, 94, 113493. [Google Scholar] [CrossRef]
- Yu, Y.; Hu, Z.; Lien, S.Y.; Yu, Y.; Gao, P. Self-powered thermoelectric hydrogen sensors based on low-cost bismuth sulphide thin films: Quick response at room temperature. ACS Appl. Mater. Interfaces 2022, 14, 47696–47705. [Google Scholar] [CrossRef] [PubMed]
- Kan, H.; Yang, W.; Guo, Z.; Li, M. Highly sensitive room-temperature NO2 gas sensor based on Bi2S3 nanorods. J. Mater. Sci. Mater. Electron. 2024, 35, 331. [Google Scholar] [CrossRef]
- Rong, P.; Gao, S.; Ren, S.; Lu, H.; Yan, J.; Li, L.; Zhang, M.; Han, Y.; Jiao, S.; Wang, J. Large-area freestanding Bi2S3 nanofibrous membranes for fast photoresponse flexible IR imaging photodetector. Adv. Funct. Mater. 2023, 33, 2300159. [Google Scholar] [CrossRef]
- Singh, A.; Chauhan, P.; Verma, A.; Yadav, B.C. Interfacial engineering enables polyaniline-decorated bismuth sulphide nanorods towards ultrafast metal-semiconductor-metal UV-Vis broad spectra photodetector. Adv. Compos. Hybrid Mater. 2024, 7, 88. [Google Scholar] [CrossRef]
- Supekar, A.T.; Bhujbal, P.K.; Salunke, S.A.; Rathod, S.M.; Patole, S.P.; Pathan, H.M. Bismuth sulphide and antimony sulphide-based solar cells: A review. ES Energy Environ. 2023, 19, 848. [Google Scholar] [CrossRef]
- Yu, X.L.; Cao, C.B. Photoresponse and field-emission properties of bismuth sulphide nanoflowers. Cryst. Growth Des. 2008, 8, 3951–3955. [Google Scholar] [CrossRef]
- Yu, Y.; Jin, C.H.; Wang, R.H.; Chen, Q.; Peng, L.M. High-quality ultralong Bi2S3 nanowires: Structure, growth, and properties. J. Phys. Chem. B 2005, 109, 18772–18776. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Onwudiwe, D.C. Bismuth sulphide based compounds: Properties, synthesis and applications. Results Chem. 2021, 3, 100151. [Google Scholar] [CrossRef]
- Onwudiwe, D.C.; Ovewo, O.A.; Atamtürk, U.; Ojelere, O.; Mathur, S. Photocatalytic reduction of Cr(VI) using star-shaped Bi2S3 obtained from microwave irradiation of bismuth complex. J. Environ. Chem. Eng. 2020, 8, 103816. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, D.J.; Wang, R.Z.; Feng, J.J.; Bai, Z.; Wang, A.J. D-penicillanime assited hydrothermal synthesis of Bi2S3 nanoflowers and their electrochemical application. Mater. Sci. Eng. 2013, 33, 3980–3985. [Google Scholar] [CrossRef]
- Terdalkar, P.; Kumbhar, D.D.; Pawar, S.D.; Nirmal, K.A.; Kim, T.G.; Mukherjee, S.; Khot, K.V.; Dongale, T.D. Revealing switching statistics and artificial synaptic properties of Bi2S3 memristor. Solid State Electron. 2025, 225, 109076. [Google Scholar] [CrossRef]
- Zhao, Y.; Tao, Y.; Huang, Q.; Huang, J.; Kuang, J.; Gu, R.; Zeng, P.; Li, H.-Y.; Liang, H.; Liu, H. Electrochemical Biosensor Employing Bi2S3 Nanocrystals-Modified Electrode for Bladder Cancer Biomarker Detection. Chemosensors 2022, 10, 48. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, L.; Zhang, J.; Liu, J.; Yu, X. Application of bismuth sulphide based nanomaterials in cancer diagnosis and treatment. Nano Today 2023, 49, 101799. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, J.; Tang, Y.; Lu, Z.; Hu, J.; Wang, Y.; Cao, Y. Oxygen self-doping Bi2S3@C spheric successfully enhanced long-term performance in lithium-ion batteries. ACS Appl. Mater. Interfaces 2024, 16, 52423–52431. [Google Scholar] [CrossRef]
- Fang, Y.; Zhao, W.; Li, W.; Han, X. Effects of thiourea dosage on the structural, optical and electrical properties of one–step solution processed Cu3BiS3 film for photovoltaics. Appl. Phys. A 2021, 127, 9. [Google Scholar] [CrossRef]
- Deshmukh, S.G.; Kheraj, V. A comprehensive review on synthesis and characterizations of Cu3BiS3 thin films for solar photovoltaics. Nanotechnol. Environ. Eng. 2017, 2, 15. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, X.; Yin, H.; Zhao, M.; Han, J. Study of copper bismuth sulfide thin films for the photovoltaic application. J. Mater. Sci. Mater. Electron. 2018, 30, 1832–1837. [Google Scholar] [CrossRef]
- Shankar, E.G.; Ramulu, B.; Nagaraju, M.; Yu, J.S. Electrochemically triggered rational design of bismuth copper sulfide for wearable all–sulfide semi–solid–state supercapacitor with a wide operational potential window (1.8V) and ultra–long life. Inorg. Chem. Front. 2024, 11, 3270–3284. [Google Scholar] [CrossRef]
- Santos, D.R.; Shukla, S.; Vermang, B. Prospects of copper–bismuth chalcogenide absorbers for photovoltaics and photoelectrocatalysis. J. Mater. Chem. A 2023, 11, 22087–22104. [Google Scholar] [CrossRef]
- Parra-Arciniega, S.M.; Garcia-Gomez, N.A.; Garza-Toyar, L.L.; García-Gutiérrez, D.I.; Sánchez, E.M. Ultrasonic irradiation-assisted synthesis of Bi2S3 nanoparticles in aqueous ionic liquid at ambient condition. Ultrason. Sonochem. 2017, 36, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Ran, Y.; Song, Y.; Jia, X.; Gu, P.; Cheng, Z.; Zhu, Y.; Wang, Q.; Pan, Y.; Li, Y.; Gao, Y.; et al. Large-Scale Vertically Interconnected Complementary Field-Effect Transistors Based on Thermal Evaporation. Small 2024, 20, 2309953. [Google Scholar] [CrossRef]
- Bouachri, M.; Oubakalla, M.; El Farri, H.; Diaz-Guerra, C.; Mhalla, J.; Zimou, J.; El-Habib, A.; Beraich, M.; Nouneh, K.; Fahoume, M.; et al. Substrate temperature effects on the structural, morphological and optical properties of Bi2S3 thin films deposited by spray pyrolysis: An experimental and first-principles study. Opt. Mater. 2023, 135, 113215. [Google Scholar] [CrossRef]
- Rodriguez-Rosales, K.; Cruz-Gomez, J.; Cruz, J.S.; Guillen-Cervantes, A.; de Moure-Flores, F.; Villagran-Muniz, M. Plasma emission spectroscopy for studying Bi2S3 produced by pulsed laser deposition and effects of substrate temperature on structural, morphological, and optical properties of thin films. Mater. Sci. Eng. B 2025, 312, 117867. [Google Scholar] [CrossRef]
- Sruogaite, V.; Krylova, V. Formation and Study of Bismuth Sulphide Thin Films on Textiles of Different Compositions. Appl. Sci. 2025, 15, 9904. [Google Scholar] [CrossRef]
- Sartale, S.D.; Lokhande, C.D. Growth of copper sulphide thin films by successive ionic layer adsorption and reaction (SILAR) method. Mater. Chem. Phys. 2000, 65, 63–67. [Google Scholar] [CrossRef]
- Carillo, A.; Rivas-Valles, B.G.; Castillo, S.J.; Ramirez, M.M.; Luque-Morales, P.A. New formulation to synthesize semiconductor Bi2S3 thin films using chemical bath deposition for optoelectronic applications. Symmetry 2022, 14, 2487. [Google Scholar] [CrossRef]
- Nandihalli, N. Thermoelectric films and periodic structures and spin Seebeck effect systems: Facets of performance optimization. Mater. Today Energy 2022, 25, 100965. [Google Scholar] [CrossRef]
- Hobbs, P.V. Basic Physical Chemistry for the Atmospheric Sciences, 2nd ed.; Cambridge University Press: Cambridge, UK, 2000; ISBN 9780521785679. 222p. [Google Scholar]
- López, R.; Gómez, R. Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 2012, 61, 1–7. [Google Scholar] [CrossRef]
- Nasr, M.; Viter, R.; Eid, C.; Warmont, F.; Habchi, R.; Miele, P.; Bechelany, M. Synthesis of novel ZnO/ZnAl2O4 multi co-centric nanotubes and their long-term stability in photocatalytic application. RSC Adv. 2016, 6, 103692–103699. [Google Scholar] [CrossRef]
- Loste, J.; Lopez-Cuesta, J.-M.; Billon, L.; Garay, H.; Save, M. Transparent polymer nanocomposites: An overview on their synthesis and advanced properties. Prog. Polym. Sci. 2019, 89, 133–158. [Google Scholar] [CrossRef]
- Rashad, M. Tuning the optical properties of polyvinyl alcohol doped with different metal oxide nanoparticles. Opt. Mater. 2020, 105, 109857. [Google Scholar] [CrossRef]
- Krylova, V.; Dukštienė, N.; Markevičiūtė, H. Ag-Se/Nylon Nanocomposites Grown by Template-Engaged Reaction: Microstructures, Composition, and Optical Properties. Nanomaterials 2022, 12, 2584. [Google Scholar] [CrossRef]
- Mina, M.S.; Kabir, H.; Rahman, M.M.; Kabir, M.A.; Rahaman, M.; Bashar, M.S.; Islam, M.S.; Sharmin, A.; Ahmed, F. Optical and Morphological Characterization of BaSe Thin Films Synthesized via Chemical Bath Deposition. IOSR J. Appl. Phys. 2013, 4, 30–35. [Google Scholar] [CrossRef]
- Rincón, M.E.; Campos, J.; Suárez, R. A comparison of the various thermal treatments of chemically deposited bismuth sulfide thin films and the effect on the structural and electrical properties. J. Phys. Chem. Solids 1999, 60, 385–392. [Google Scholar] [CrossRef]
- Si, J.; Ma, R.; Wu, Y.; Dong, Y. Microstructure and magnetic properties of novel powder cores composed of iron-based amorphous alloy and PTFE. J. Mater. Sci. 2022, 57, 8154–8166. [Google Scholar] [CrossRef]
- Goncalves, G.; Marques, P.A.; Pinto, R.J.; Trindade, T.; Neto, C.P. Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. Compos. Sci. Technol. 2009, 69, 7–8. [Google Scholar] [CrossRef]
- Mahuli, N.; Saha, D.; Sarkar, S.K. Atomic Layer Deposition of p-Type Bi2S3. Phys. Chem. C 2017, 121, 14–8136. [Google Scholar] [CrossRef]
- Nambiar, S.; Osei, E.K.; Yeow, J.T.W. Bismuth sulfide nanoflowers for detection of X-rays in the mammographic energy range. Sci. Rep. 2015, 5, 9440. [Google Scholar] [CrossRef]
- Xu, Q.; Huang, B.; Zhao, Y.; Yan, Y.; Noufi, R.; Wei, S.H. Crystal and electronic structures of CuxS solar cell absorbers. Appl. Phys. Lett. 2012, 100, 061906. [Google Scholar] [CrossRef]
- Oppong-Antwi, L.; Gunawan, D.; Toe, C.Y.; Yao, Y.; Valanoor, N.; Hart, J.N. CuxS films as photoelectrodes for visible-light water splitting. Mater. Sci. Semicond. Process. 2024, 184, 108833. [Google Scholar] [CrossRef]
- Mohammed, K.A.; Ahmed, S.M.; Mohammed, R.Y. Investigation of Structure, Optical, and Electrical Properties of CuS Thin Films by CBD Technique. Crystals 2020, 10, 684. [Google Scholar] [CrossRef]
- Fazal, T.; Iqbal, S.; Shah, M.; Elkaeed, E.B. Optoelectronic, structural and morphological analysis of Cu3BiS3 sulfosalt thin films. Res. Phys. 2022, 36, 105453. [Google Scholar] [CrossRef]
- Kumar, M.; Persson, C. Ternary Cu3BiY3 (Y = S, Se, and Te) for Thin-Film Solar Cells. MRS Online Proc. Libr. 2013, 1538, 235–240. [Google Scholar] [CrossRef]
- Hlapisi, N.; Ajibade, P.A. Preparation of pure phase silver nanoparticles: Morphological, optical, binding interactions with bovine serum albumin and antioxidant potential studies. J. Mol. Struct. 2025, 1322, 140219. [Google Scholar] [CrossRef]
- Fazal, T.; Ismail, B.; Wafee, S.; Kambooh, A.H.; Khan, A.R. Cu doped Bi2S3 as potential absorbers for thin film solar cells: Optical and structural properties. Chalcogenide Lett. 2016, 13, 225–231. [Google Scholar]
- Erken, O.; Gunes, M.; Kirmizigul, F.; Gumus, C. Investigation of properties the copper sulfide thin films prepared from different copper salts. Optik 2018, 168, 884–891. [Google Scholar] [CrossRef]
- Habiboglu, C.; Erken, O.; Gunes, M.; Yilmaz, O.; Cevlik, H.C.; Ulutas, C.; Gumus, C. Effect of molar concentration on the structural, linear and nonlinear optical properties of CuS (covellite) thin films. Solid State Commun. 2022, 352, 114823. [Google Scholar] [CrossRef]

















| Textile Composition | Colour | Thickness, mm | Basis Weight, g/m2 | Heat Resistance, °C | Cold Resistance, °C | Surface Resistivity, Ω/sq | Manufacturer | |
|---|---|---|---|---|---|---|---|---|
| Yarn | Coating | |||||||
| PET * | PVC | white | 0.56 | 850 | +70 | −30 | – | Verseidag-Indutex GmbH, Krefeld, Germany |
| PA | Ag | metallic-grey | 0.10 | 34 ± 2 | +70 | −30 | 4.4 | Kufner Holding GmbH, Unterhaching, Germany |
| PA | Cu | red-brown | 0.05 | 52 ± 5 | +70 | −30 | 2.4 | Kufner Holding GmbH, Unterhaching, Germany |
| C/PES/S ** | − | green | 0.35 | 290 | +80 | −30 | – | Mianyang Jialian Printing and Dyeing Co., Ltd., Mianyang, China |
| Reagent | CAS No. | Purity, wt% | Supplier | |
|---|---|---|---|---|
| Name | Formula | |||
| Sulphuric acid | H2SO4 | 7664–93–9 | ≥96 | Eurochemicals * |
| Orthophosphoric acid | H3PO4 | 7664–38–2 | ≥60 | Eurochemicals * |
| Chromium trioxide | CrO3 | 1333–82–0 | ≥97 | Sigma–Aldrich ** |
| Bismuth nitrate pentahydrate | Bi(NO3)3 × 5H2O | 10035-06-0 | ≥99 | Sigma–Aldrich ** |
| Copper sulphate pentahydrate | CuSO4 × 5H2O | 7758-99-8 | ≥99 | Eurochemicals * |
| Sodium thiosulfate pentahydrate | Na2S2O3 × 5H2O | 7757–83–7 | ≥98 | Sigma–Aldrich ** |
| Semiconductor | Precursors Solution Concentration and Temperature | Number of Cycles | |||
|---|---|---|---|---|---|
| 0.05 M Na2S2O3 20 ± 1 °C | 0.1 M Bi(NO3)3 20 ± 1 °C | 0.1 M CuSO4 69 ± 1 °C | |||
| Exposure time for one cycle, h | Bi2S3 | 8 | 8 | – | 7 |
| CuS | 1 | – | 1 | 19 | |
| Code | Copper Bismuth Sulphide Is Deposited onto Textiles |
|---|---|
| S1 | mechanically roughened and thermo-oxidatively acid-treated polyethylene terephthalate fabric coated with polyvinyl chloride |
| S2 | 100% nylon, metallised with silver |
| S3 | 100% nylon, metallised with copper |
| S4 | 75% cotton, 24% polyester and 1% spandex |
| Sample | Composition from XRD | Composition, at. % from EDX | Eop, eV | nλ600 nm | |||
|---|---|---|---|---|---|---|---|
| Cu | Bi | S | Direct Transition | Indirect Transition | |||
| S1 | hexagonal CuS, orthorhombic Cu3BiS3, orthorhombic Bi2S3 | 58.7 | 5.0 | 36.3 | 2.2 ± 0.01 | 0.9 ± 0.015 | 1.76 |
| S2 | 68.75 | 1.19 | 30.06 | 1.3 ± 0.01 1.8 ± 0.02 | – | 1.39 | |
| S3 | 63.78 | 5.26 | 30.96 | 2.88 ± 0.01 | 2.25 ± 0.01 | 1.52 | |
| S4 | 57.66 | 3.71 | 38.63 | 1.45 ± 0.02 | 0.9 ± 0.01 | 1.34 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sruogaitė, V.; Krylova, V. Structure, Composition and Optical Properties of Thin Films of Copper Sulphide and Bismuth Sulphide Deposited on Various Textiles by the SILAR Method. Coatings 2025, 15, 1266. https://doi.org/10.3390/coatings15111266
Sruogaitė V, Krylova V. Structure, Composition and Optical Properties of Thin Films of Copper Sulphide and Bismuth Sulphide Deposited on Various Textiles by the SILAR Method. Coatings. 2025; 15(11):1266. https://doi.org/10.3390/coatings15111266
Chicago/Turabian StyleSruogaitė, Vėja, and Valentina Krylova. 2025. "Structure, Composition and Optical Properties of Thin Films of Copper Sulphide and Bismuth Sulphide Deposited on Various Textiles by the SILAR Method" Coatings 15, no. 11: 1266. https://doi.org/10.3390/coatings15111266
APA StyleSruogaitė, V., & Krylova, V. (2025). Structure, Composition and Optical Properties of Thin Films of Copper Sulphide and Bismuth Sulphide Deposited on Various Textiles by the SILAR Method. Coatings, 15(11), 1266. https://doi.org/10.3390/coatings15111266

