Electrodeposition of Fine-Grained Tungsten Coatings on CuCrZr Alloy Substrates from Relatively Low Temperature KF-KCl-WO3 Molten Salt System
Abstract
1. Introduction
2. Experiment and Parameters
2.1. Coating Deposition
2.2. Coating Characterization
3. Results and Discussions
3.1. Surface Morphology and Crystal Structure of Tungsten Coatings Under Direct Current
3.2. Surface Morphology and Crystal Structure of Tungsten Coatings Under Pulsed Current
3.3. The Microstructure, Crystal Structure, and Properties of the Tungsten Coating Obtained Through Long-Term (60-h) Electrodeposition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ongena, J.; Koch, R.; Wolf, R.; Zohm, H. Magnetic-confinement fusion. Nat. Phys. 2016, 12, 398–410. [Google Scholar] [CrossRef]
- Matthews, G.F.; Coad, P.; Greuner, H.; Hill, M.; Hitai, T.; Likonen, J. Development of divertor tungsten coatings for the JET ITER-like wall. J. Nucl. Mater. 2009, 390–391, 934–937. [Google Scholar] [CrossRef]
- Piip, K.; Paris, P.; Hakola, A. Influence of He/D2 Plasma Fluxes on the Morphology and Crystallinity of Tungsten Coatings. Phys. Scr. 2014, 89, 39–50. [Google Scholar] [CrossRef]
- Ribis, J.; Bordas, E.; Trocellier, P. Comparison of the neutron and ion irradiation response of nano-oxides in oxide dispersion strengthened materials. J. Mater. Res. 2015, 30, 2210–2221. [Google Scholar] [CrossRef]
- Sun, Q.L.; Mao, X.C.; Yao, Y.F.; Li, J.N.; Shen, Z.S.; Tu, K.N.; Liu, Y.X. Effect of WC thickness on the microstructure and properties of WC-C/DLC coated 304 steel. J. Appl. Surf. Sci. 2025, 704, 163418. [Google Scholar] [CrossRef]
- Xie, J.J.; Fang, H.J.; Wang, Y.X.; Wang, W.Q.; Yu, J.H.; Li, J.C.; He, X.D.; Pu, J.B. Controlling the porosity to enhance the high-temperature tribological performance of plasma-sprayed NiCr–Cr3C2-BaF2/CaF2 coating by adopting axial feeding. J. Mater. Res. Technol. 2025, 36, 2577–2588. [Google Scholar] [CrossRef]
- Ganne, T.; Crépin, J.; Serror, S.; Zaoui, A. Cracking behaviour of PVD tungsten coatings deposited on steel substrates. Acta Mater. 2002, 50, 4149–4163. [Google Scholar] [CrossRef]
- Liu, Y.H.; Zhang, Y.C.; Li, H.L.; Liu, D.J. Analysis on Composition of Binary Molten Salt Na2WO4-WO3 and Study of Electrodepositing Tungsten Coatings. J. Mater. Her. 2015, 29, 34–36+45. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, Y.C.; Li, X.L.; Sun, N.B.; Wang, L.L. Tungsten coating prepared on V-4Cr-4Ti alloy substrate by electrodeposition from molten salt in air atmosphere. Fusion Eng. Des. 2014, 89, 83–87. [Google Scholar] [CrossRef]
- Sun, N.B.; Zhang, Y.C.; Lang, S.T.; Jiang, F.; Wang, L.L. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt. J. Nucl. Mater. 2014, 455, 450–453. [Google Scholar] [CrossRef]
- Li, Y.S.; Dong, X.X.; Liu, Q.; You, Y.J.; Gao, Z.Y.; Zhang, Y.C. Preparation and Properties of Thick Tungsten Coating Electrodeposited from Na2W04-WO3-KCl-NaF Molten Salt System. J. Coat. 2024, 14, 1471. [Google Scholar] [CrossRef]
- Qi, Y.F.; Tang, Y.H.; Wang, B.; Zhang, M.; Ren, X.Q.; Li, Y.G.; Ma, Y.T. Characteristics of tungsten coatings deposited by molten salt electrodeposition and thermal fatigue properties of electrodeposited tungsten coatings. Int. J. Refract. Met. Hard Mater. 2019, 81, 183–188. [Google Scholar] [CrossRef]
- Nohira, T.; Ide, T.; Meng, X.D.; Norikawa, Y.; Yasuda, K. Electrodeposition of Tungsten from Molten KF-KCl-WO3 and CsF-CsClWO3. J. Electrochem. Soc. 2021, 168, 046505. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, W.F.; Lei, W.N. Study on Refinig Grains of Nanocrystalline Materials Based on Electrodeposition. J. Synth. Cryst. 2021, 5, 765–769. [Google Scholar] [CrossRef]
- Pérez, H.D.; González, A.J.; Romo, R.M.; Hernández, R.S.; Mejía, E.A.; Gil, M.P.; Piñon, S.N.; Garrido, S.A.; Pardavé, P.M. Electrochemical Nucleation and Growth of Neodymium on Glassy Carbon Electrodes using Reline as a Deep Eutectic Solvent. J. Electrochim. Acta 2025, 535, 146643. [Google Scholar] [CrossRef]
- Wang, R.Q.; Li, G.Y.; Wu, F.; Wang, S.M.; Zhang, C.Z. Cycling performance of Li metal anode in localized high concentration electrolyte and dynamic mechanism analysis. J. Electroanal. Chem. 2024, 959, 118176. [Google Scholar] [CrossRef]
- Chen, W.T.; Wang, Q.W.; Yang, Y.F. Research on Parameter Regulation and Structural Properties of Pulse Electrodeposited Zn-Ni-PTFE Composite Coatings. J. Surf. Eng. Remanuf. 2025, 25, 1–18. [Google Scholar] [CrossRef]
Cu | Cr | Zr | Mg | Si |
---|---|---|---|---|
Balance | 0.4–1.0 | 0.02–0.1 | 0.01–0.03 | 0.02–0.04 |
W | O | C | Mo | Ni | Si |
---|---|---|---|---|---|
Balance | 0.03 | 0.02 | 0.05 | 0.01 | 0.01 |
No. | Current Density (mA/cm2) | Temperature (K) | Duty Cycle (%) | Frequency (Hz) | Deposition Time (h) |
---|---|---|---|---|---|
1 | 20 | 943 | 100 | 1000 | 2 |
2 | 30 | 943 | 100 | 1000 | 2 |
3 | 40 | 943 | 100 | 1000 | 2 |
4 | 50 | 943 | 100 | 1000 | 2 |
5 | 60 | 943 | 100 | 1000 | 2 |
6 | 40 | 943 | 30 | 1000 | 2 |
7 | 40 | 943 | 40 | 1000 | 2 |
8 | 40 | 943 | 50 | 1000 | 2 |
9 | 40 | 943 | 40 | 1000 | 60 |
Crystal Plane | Texture Coefficient |
---|---|
(110) | 27.89% |
(200) | 24.79% |
(211) | 26.65% |
(220) | 12.50% |
Sample | Density (g/cm3) | Porosity (%) | Hardness (HV) | Bonding Strength (MPa) |
---|---|---|---|---|
Electrodeposition for 60 h | 18.60 | 2.15 | 487.50 | 55 |
Sample | Porosity (%) | Surface Roughness/μm |
---|---|---|
1 (20 mA/cm2, 100%, 2 h) | 1.21 | 1.443 |
2 (30 mA/cm2, 100%, 2 h) | 1.24 | 1.736 |
3 (40 mA/cm2, 100%, 2 h) | 1.18 | 1.474 |
4 (50 mA/cm2, 100%, 2 h) | 1.19 | 3.358 |
5 (60 mA/cm2, 100%, 2 h) | 1.36 | 3.342 |
6 (40 mA/cm2, 30%, 2 h) | 1.16 | 1.375 |
7 (40 mA/cm2, 40%, 2 h) | 1.08 | 1.267 |
8 (40 mA/cm2, 50%, 2 h) | 1.19 | 2.642 |
9 (40 mA/cm2, 40%, 60 h) | 2.15 | 6.544 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Liu, W.; Li, Y.; Gao, Z.; Zhang, Y. Electrodeposition of Fine-Grained Tungsten Coatings on CuCrZr Alloy Substrates from Relatively Low Temperature KF-KCl-WO3 Molten Salt System. Coatings 2025, 15, 1219. https://doi.org/10.3390/coatings15101219
Dong X, Liu W, Li Y, Gao Z, Zhang Y. Electrodeposition of Fine-Grained Tungsten Coatings on CuCrZr Alloy Substrates from Relatively Low Temperature KF-KCl-WO3 Molten Salt System. Coatings. 2025; 15(10):1219. https://doi.org/10.3390/coatings15101219
Chicago/Turabian StyleDong, Xiaoxu, Wenqi Liu, Yusha Li, Zeyu Gao, and Yingchun Zhang. 2025. "Electrodeposition of Fine-Grained Tungsten Coatings on CuCrZr Alloy Substrates from Relatively Low Temperature KF-KCl-WO3 Molten Salt System" Coatings 15, no. 10: 1219. https://doi.org/10.3390/coatings15101219
APA StyleDong, X., Liu, W., Li, Y., Gao, Z., & Zhang, Y. (2025). Electrodeposition of Fine-Grained Tungsten Coatings on CuCrZr Alloy Substrates from Relatively Low Temperature KF-KCl-WO3 Molten Salt System. Coatings, 15(10), 1219. https://doi.org/10.3390/coatings15101219