The Microstructure and Mechanical Properties of Laser-Cladded CoCrFeNiAl/WC Coatings on H13 Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Preparation
2.2. Microstructural Characterization and Wear Testing
3. Analysis of Results and Discussion
3.1. Microstructure Composition
3.2. Hardness Analysis
3.3. Wear Behavior
4. Conclusions
- (1)
- The laser-cladded CoCrFeNiAl coating predominantly exhibits a body-centered cubic (BCC) phase, whereas the CoCrFeNiAl/WC composite coating shows a transition from the BCC phase to the face-centered cubic (FCC) phase. As the WC content increases, the volume fraction of precipitates (such as (Fe,Co)3W3C, Co4W2C, Cr7C3, etc.) gradually increases. When the WC content reaches 40%, the volume fraction of the precipitates is maximized.
- (2)
- An increase in WC content significantly enhances the hardness of the coating. At 40% WC, the coating hardness reaches 617 HV. This hardness improvement can be attributed to the following mechanisms: (a) Solid solution strengthening: W and C atoms enter the FCC phase, causing lattice distortion and producing solid solution strengthening effects. (b) Dislocation strengthening: the high thermal stresses induced during the laser cladding process increase the dislocation density, and the lattice distortion impedes dislocation motion during slip deformation. (c) Precipitation strengthening: W and C atoms react with the CoCrFeNiAl alloy to form precipitates such as M6C3 and Cr7C3, significantly improving hardness and inhibiting dislocation motion. (d) Grain refinement strengthening: the WC particles and newly formed carbide precipitates provide heterogeneous nucleation sites, promoting grain refinement.
- (3)
- As the WC content increases, the high-temperature wear resistance of the CoCrFeNiAl/WC composite coating becomes significantly improved. At 40% WC, the coating exhibits the best wear resistance, characterized by an average friction coefficient of 0.208 and a mass loss of 0.04 g.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guenther, E.; Kahlert, M.; Vollmer, M.; Niendorf, T.; Greiner, C. Tribological Performance of Additively Manufactured AISI H13 Steel in Different Surface Conditions. Materials 2021, 14, 928. [Google Scholar] [CrossRef] [PubMed]
- Telasang, G.; Dutta Majumdar, J.; Padmanabham, G.; Manna, I. Structure–Property Correlation in Laser Surface Treated AISI H13 Tool Steel for Improved Mechanical Properties. Mater. Sci. Eng. A 2014, 599, 255–267. [Google Scholar] [CrossRef]
- Åsberg, M.; Fredriksson, G.; Hatami, S.; Fredriksson, W.; Krakhmalev, P. Influence of Post Treatment on Microstructure, Porosity and Mechanical Properties of Additive Manufactured H13 Tool Steel. Mater. Sci. Eng. A 2019, 74, 584–589. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Li, M.; Wang, Y.; Li, C.; Dai, T.; Hao, M.; Ding, H. Thermal and Mechanical Properties of Selective Laser Melted and Heat Treated H13 Hot Work Tool Steel. Mater. Des. 2022, 224, 111295. [Google Scholar] [CrossRef]
- Balaško, T.; Vončina, M.; Medved, J. Simultaneous Thermal Analysis of the High-Temperature Oxidation Behaviour of Three Hot-Work Tool Steels. J. Therm. Anal. Calorim. 2023, 148, 1251–1264. [Google Scholar] [CrossRef]
- Pedroso, S.; Abrão, A.M.; Rodrigues, E.; Câmara, M.A. Surface Modification of AISI H13 Steel by Die-Sinking Electrical Discharge Machining and TiAlN Coating: A Promising Hybrid Technique to Improve Wear Resistance. Wear 2020, 462, 203509. [Google Scholar] [CrossRef]
- Telasang, G.; Dutta Majumdar, J.; Padmanabham, G.; Manna, I. Wear and Corrosion Behavior of Laser Surface Engineered AISI H13 Hot Working Tool Steel. Surf. Coat. Technol. 2015, 261, 69–78. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Dubey, A.K. Recent Trends in Laser Cladding and Surface Alloying. Opt. Laser Technol. 2021, 134, 106619. [Google Scholar] [CrossRef]
- Pei, Y.T.; Th, J.; De Hosson, M. Functionally Graded Materials Produced by Laser Cladding. Acta Mater. 2000, 48, 2617–2624. [Google Scholar] [CrossRef]
- Lu, J.Z.; Xue, K.N.; Lu, H.F.; Xing, F.; Luo, K.Y. Laser shock wave-induced wear property improvement and formation mechanism of laser cladding Ni25 coating on H13 tool steel. J. Mater. Process. Technol. 2021, 296, 117202. [Google Scholar] [CrossRef]
- Lu, H.F.; Xue, K.N.; Xu, X.; Luo, K.Y.; Xing, F.; Yao, J.H.; Lu, J.Z. Effects of laser shock peening on microstructural evolution and wear property of laser hybrid remanufactured Ni25/Fe104 coating on H13 tool steel. J. Mater. Process. Technol. 2021, 291, 117016. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Ding, Q.; Fu, X.; Chen, S.; Bei, H.; Li, J.; Zhang, Z.; Yu, Q.; Zhang, Y.; Chen, D.; Wen, M.; et al. Tuning Element Distribution, Structure and Properties by Composition in High-Entropy Alloys. Nature 2019, 574, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Rogachev, A.S. Structure, Stability, and Properties of High-Entropy Alloys. Phys. Met. Metallogr. 2020, 121, 733–764. [Google Scholar] [CrossRef]
- Shu, F.Y.; Zhang, B.L.; Liu, T.; Sui, S.H.; Liu, Y.X.; He, P.; Liu, B.; Xu, B.S. Effects of Laser Power on Microstructure and Properties of Laser Cladded CoCrBFeNiSi High-Entropy Alloy Amorphous Coatings. Surf. Coat. Technol. 2019, 358, 667–675. [Google Scholar] [CrossRef]
- Cai, Y.; Shan, M.; Manladan, S.M.; Zhu, L.; Gao, F.; Sun, D.; Han, J. Effect of High Temperature Heat Treatment on Microstructure and Properties of FeCoCrNiAl High-Entropy Alloy Laser Cladding Layer. Mater. Charact. 2022, 191, 112137. [Google Scholar] [CrossRef]
- Rong, T.; Gu, D.D.; Shi, Q.M.; Cao, S.N.; Xia, M.J. Effects of Tailored Gradient Interface on Wear Properties of WC/Inconel 718 Composites Using Selective Laser Melting. Surf. Coat. Technol. 2016, 307, 418–427. [Google Scholar] [CrossRef]
- Vyas, A.; Menghani, J.; Natu, H. Influence of WC Particle on the Metallurgical, Mechanical, and Corrosion Behavior of AlFeCuCrCoNi-WCx High-Entropy Alloy Coatings. J. Mater. Eng. Perform. 2021, 30, 2449–2461. [Google Scholar] [CrossRef]
- Peng, Y.B.; Zhang, W.; Li, T.C.; Zhang, M.Y.; Wang, L.; Song, Y.; Hu, S.H.; Hu, Y. Microstructures and Mechanical Properties of FeCoCrNi High Entropy Alloy/WC Reinforcing Particles Composite Coatings Prepared by Laser Cladding and Plasma Cladding. Int. J. Refract. Met. Hard Mater. 2019, 84, 105044. [Google Scholar] [CrossRef]
- Li, X.F.; Feng, Y.H.; Liu, B.; Yi, D.H.; Yang, X.H.; Zhang, W.D.; Chen, G.; Liu, Y.; Bai, P.K. Influence of NbC Particles on Microstructure and Mechanical Properties of AlCoCrFeNi High-Entropy Alloy Coatings Prepared by Laser Cladding. J. Alloys Compd. 2019, 788, 485–494. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, W.; Li, T.; Zhang, M.; Wang, L.; Hu, S. Microstructures and wear-resistance of WC-reinforced high entropy alloy composite coatings by plasma cladding: Effect of WC morphology. Surf. Eng. 2021, 37, 678–687. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, S.; Bai, S.; Jie, M.; Zhang, D.; Liu, Y. Microstructure and Mechanical Properties of FeCoCrNiAl + WC Composite Coating Formed by Laser Cladding on H13. Coatings 2024, 14, 1259. [Google Scholar] [CrossRef]
- Zhou, P.L.; Xiao, D.H.; Zhou, P.F.; Yuan, T.C. Microstructure and Properties of Ultrafine Grained AlCrFeCoNi/WC Cemented Carbides. Ceram. Int. 2018, 44, 17160–17166. [Google Scholar] [CrossRef]
- Hui, J.; Qin, J.; Zhou, Y.; Sun, X.; Dong, W.; Zhu, S. Effect of Al Content in CoCrFeNiAlx HEA on Mechanical Properties and High Temperature Oxidation Resistance of WC-10%CoCrFeNiAlx Hard Alloy. Int. J. Refract. Met. Hard Mater. 2024, 122, 106712. [Google Scholar] [CrossRef]
- Dong, W. Effect of Phase Transformation of CoCrFeNiAl High-Entropy Alloy on Mechanical Properties of WC-CoCrFeNiAl Composites. Ceram. Int. 2023, 49, 32388–32398. [Google Scholar] [CrossRef]
- Xu, L.; Li, M.; Song, Z.; Li, F.; Guo, J.; Gao, M. WC-High Entropy Alloy Reinforced Long Life Self-Grinding Silage Knife Prepared by Laser Cladding. Nanomaterials 2022, 12, 1013. [Google Scholar] [CrossRef]
- Wang, Q.N.; Lu, Y.P.; Yu, Q.; Zhang, Z. The Exceptional Strong Face-centered Cubic Phase and Semi-coherent Phase Boundary in a Eutectic Dual-phase High Entropy Alloy AlCoCrFeNi. Sci. Rep. 2018, 8, 14910. [Google Scholar] [CrossRef]
Element | C | Si | Mn | Cr | Mo | V | S | P | Fe |
---|---|---|---|---|---|---|---|---|---|
Mass ratio | 0.32~0.45 | 0.80~1.20 | 0.20~0.50 | 4.75~5.50 | 1.10~1.75 | 0.80~1.20 | ≤0.03 | ≤0.03 | Bal. |
Powders | Mass Ratio of HEA | Mass Ratio of WC |
---|---|---|
CoCrFeNiAl + 10%WC | 90 | 10 |
CoCrFeNiAl + 20%WC | 80 | 20 |
CoCrFeNiAl + 30%WC | 70 | 30 |
CoCrFeNiAl + 40%WC | 60 | 40 |
Location | Co | Cr | Fe | Ni | Al | W | C | Nb |
---|---|---|---|---|---|---|---|---|
1 | 0.4 | 12.03 | 24.99 | 15.01 | 1.10 | 42.13 | 4.30 | 0.03 |
2 | 0.1 | 8.3 | 14.14 | 6.97 | 0.03 | 65.38 | 3.26 | 1.81 |
Location | Co | Cr | Fe | Ni | Al | W | C | Mo | Nb |
---|---|---|---|---|---|---|---|---|---|
1 | 1.56 | 13.61 | 14.49 | 7.81 | 0.17 | 49.61 | 3.97 | 4.43 | 4.34 |
2 | 3.29 | 11.45 | 35.39 | 24.98 | 3.35 | 18.86 | 1.78 | 0.87 | 0.02 |
Mixing Enthalpy | Fe | Al | C | Co | Ni | W | Cr |
---|---|---|---|---|---|---|---|
Fe | / | ||||||
Al | −11 | / | |||||
C | −50 | −36 | / | ||||
Co | −1 | −19 | −42 | / | |||
Ni | −2 | −22 | −39 | 0 | / | ||
W | 0 | 26 | −60 | −1 | −3 | / | |
Cr | −1 | −10 | −61 | −4 | −7 | 1 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Du, B.; Sun, F.; Li, Y.; Liu, Y. The Microstructure and Mechanical Properties of Laser-Cladded CoCrFeNiAl/WC Coatings on H13 Steel. Coatings 2025, 15, 52. https://doi.org/10.3390/coatings15010052
Zhang J, Du B, Sun F, Li Y, Liu Y. The Microstructure and Mechanical Properties of Laser-Cladded CoCrFeNiAl/WC Coatings on H13 Steel. Coatings. 2025; 15(1):52. https://doi.org/10.3390/coatings15010052
Chicago/Turabian StyleZhang, Junbo, Bing Du, Fuzhen Sun, Yan Li, and Yang Liu. 2025. "The Microstructure and Mechanical Properties of Laser-Cladded CoCrFeNiAl/WC Coatings on H13 Steel" Coatings 15, no. 1: 52. https://doi.org/10.3390/coatings15010052
APA StyleZhang, J., Du, B., Sun, F., Li, Y., & Liu, Y. (2025). The Microstructure and Mechanical Properties of Laser-Cladded CoCrFeNiAl/WC Coatings on H13 Steel. Coatings, 15(1), 52. https://doi.org/10.3390/coatings15010052