Tunable Electronic and Optical Properties of MoGe2N4/AlN and MoSiGeN4/AlN van der Waals Heterostructures toward Optoelectronic and Photocatalytic Applications
Abstract
:1. Introduction
2. Computational Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kruitwagen, L.; Story, K.T.; Friedrich, J.; Byers, L.; Skillman, S.; Hepburn, C. A global inventory of photovoltaic solar energy generating units. Nature 2021, 598, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Gao, R.; Hu, N.; Chai, J.; Cheng, Y.; Zhang, L. The Prospective Two-Dimensional Graphene Nanosheets: Preparation, Functionalization and Applications. Nano-Micro Lett. 2012, 4, 1–9. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Yadav, R.M.; Verma, R.K.; Singh, D.P.; Tan, W.K.; Pérez del Pino, A.; Moshkalev, S.A.; et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655–2694. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, I.V.; Grigorieva, A.; Firsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ma, Y.; Zhang, X.; Abdolhosseinzadeh, S.; Sheng, H.; Lan, W.; Pakdel, A.; Heier, J.; Nüesch, F. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications. Energy Environ. Mater. 2020, 3, 29–55. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Aslam, M.; Wang, R.; Zhang, Y.; Mahmood, A.; Ouyang, Z.; Zhang, H.; Guo, Z. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440. [Google Scholar] [CrossRef]
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Tho, C.C.; Guo, S.D.; Liang, S.J.; Ong, W.L.; Lau, C.S.; Cao, L.; Wang, G.; Ang, Y.S. MA2Z4 family heterostructures: Promises and prospects. Appl. Phys. Rev. 2023, 10, 041307. [Google Scholar] [CrossRef]
- Wang, S.; Ren, C.; Tian, H.; Yu, J.; Sun, M. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study. J. Phys. Chem. Chem. Phys. 2018, 20, 13394–13399. [Google Scholar] [CrossRef]
- Meng, X.; Shen, Y.; Liu, J.; Lv, L.; Yang, X.; Gao, X.; Zhou, M.; Wang, X.; Zheng, Y.; Zhou, Z. The PtSe2/GaN van der Waals heterostructure photocatalyst with type-II alignment: A first-principles study. J. Appl. Catal. A 2021, 624, 118332. [Google Scholar] [CrossRef]
- Liang, S.J.; Cheng, B.; Cui, X.; Miao, F. Van der Waals heterostructures for high-performance device applications: Challenges and opportunities. J. Adv. Mater. 2020, 32, 1903800. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Grigorieva, I.V. Van der waals heterostructures. Nature 2013, 499, 419. [Google Scholar] [CrossRef]
- Xin, K.; Wang, X.; Grove-Rasmussen, K.; Wei, Z. Twist-angle two-dimensional superlattices and their application in (opto) electronics. J. Semicond. 2022, 43, 011001. [Google Scholar] [CrossRef]
- Pham, P.V.; Bodepudi, S.C.; Shehzad, K.Y.; Liu, Y.; Xu, Y.; Yu, B.; Duan, X. 2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges. Chem. Rev. 2022, 122, 6514. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H.S.J.; Steele, G.A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002. [Google Scholar] [CrossRef]
- Gurarslan, A.; Yu, Y.; Su, L.; Suarez, F.; Yao, S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 2014, 8, 11522–11528. [Google Scholar] [CrossRef]
- Cui, X.; Kong, Z.; Gao, E.; Huang, D.; Hao, Y.; Shen, H.; Di, C.A.; Xu, Z.; Zheng, J.; Zhu, D. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat. Commun. 2018, 9, 1301. [Google Scholar] [CrossRef]
- Zaretski, A.V.; Moetazedi, H.; Kong, C.; Sawyer, E.J.; Savagatrup, S.; Valle, E.; O’Connor, T.F.; Printz, A.D.; Lipomi, D.J. Metal-assisted exfoliation (MAE): Green, roll-to-roll compatible method for transferring graphene to flexible substrates. Nanotechnology 2015, 26, 045301. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.H.; Zhou, X.; Kim, S.; Lee, Y.S.; Cruz, S.S.; Kim, Y.; Hannon, J.B.; Yang, Y.; Sadana, D.K.; Ross, F.M.; et al. Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene. Proc. Natl. Acad. Sci. USA 2017, 114, 4082. [Google Scholar] [CrossRef]
- Zeng, J.; Xu, L.; Yang, Y.; Luo, X.; Li, H.J.; Xiong, S.; Wang, L.L. Boosting the photocatalytic hydrogen evolution performance of monolayer C2N coupled with MoSi2N4: Density-functional theory calculations. Phys. Chem. Chem. Phys. 2021, 23, 8318. [Google Scholar] [CrossRef] [PubMed]
- Hussain, G.; Asghar, M.; Iqbal, M.W.; Ullah, H.; Autieri, C. Exploring the structural stability, electronic and thermal attributes of synthetic 2d materials and their heterostructures. Appl. Surf. Sci. 2022, 590, 153131. [Google Scholar] [CrossRef]
- Ren, Y.T.; Hu, L.; Chen, Y.T.; Hu, Y.J.; Wang, J.L.; Gong, P.L.; Zhang, H.; Huang, L.; Shi, X.Q. Two-dimensional MSi2N4 monolayers and van der waals heterostructures: Promising spintronic properties and band alignments. Phys. Rev. Mater. 2022, 6, 064006. [Google Scholar] [CrossRef]
- Wang, G.; Chang, J.; Tang, W.; Xie, W.; Ang, Y.S. 2D materials and heterostructures for photocatalytic water-splitting: A theoretical perspective. J. Phys. D 2022, 55, 293002. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts:design, construction, and photocatalytic performances. Chem. Soc. Rev 2014, 43, 5234–5244. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zheng, Y.; Li, X.; Li, Y.; Zhao, H.; Huang, L.; Yang, Z.; Zhang, X.; Li, G. 2D AlN layers sandwiched between graphene and Si substrates. Adv. Mater. 2019, 31, 1803448. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Dang, S.; Zhang, P.; Xiao, S.; Wang, C.; Zhong, M. Hybrid density functional study on the photocatalytic properties of AlN/MoSe2, AlN/WS2, and AlN/WSe2 heterostructures. J. Phys. D Appl. Phys. 2018, 51, 025109. [Google Scholar] [CrossRef]
- Yu, R.; Liu, G.; Wang, G.; Chen, C.; Xu, M.; Zhou, H. Ultrawide-bandgap semiconductor AlN crystals: Growth and applications. J. Mater. 2021, 9, 1852–1873. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, G.; Liu, X.; Wang, S.; Wang, T.; Zhang, S.; Zhang, L. Two-dimensional wide band-gap nitride semiconductor GaN and AlN materials: Properties, fabrication and applications. J. Mater. 2021, 9, 17201–17232. [Google Scholar] [CrossRef]
- Hong, Y.L.; Liu, Z.B.; Wang, L.; Zhou, T.Y.; Ma, W.; Xu, C.; Feng, S.; Chen, L.; Chen, M.L.; Sun, D.M.; et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 Materials. Science 2020, 369, 670–674. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Wei, X.; Guo, T.; Fan, J.; Ni, L.; Weng, Y.; Zha, Z.; Liu, J.; Tian, Y.; et al. Type-II band alignment AlN/InSe van der Waals heterostructure: Vertical strain and external electric field. Appl. Surf. Sci. 2020, 528, 146782. [Google Scholar] [CrossRef]
- Novoselov, K.S. Discovery of 2D van der Waals layered MoSi2N4 family. Natl. Sci. Rev. 2020, 7, 1842–1844. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.K. Electronic properties of a two-dimensional van der waals MoGe2N4/MoSi2N4 heterobilayer: Effect of the insertion of a graphene layer and interlayer coupling. RSC Adv. 2021, 11, 28659–28666. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Min, J.; Cai, X.; Zhang, L.; Liu, C.; Jia, Y. Two-dimensional type-II BP/MoSi2P4 vdw heterostructures for high-performance solar cells. J. Phys. Chem. C 2022, 126, 4677. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; Xiong, W.; Zhong, H.; Yuan, S. Effect of vertical strain and in-plane biaxial strain on type-ii MoSi2N4/Cs3Bi2I9 van der waals heterostructure. J. Appl. Phys. 2022, 131, 163102. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Ma, Z.; Chen, T.; Guo, C.; Wu, C.; Li, H.; Huang, X.; Tang, S.; Wang, L.L. Indirect Z-scheme hydrogen production photocatalyst based on two-dimensional GeC/MoSi2N4 van der Waals heterostructures. Int. J. Hydrogen Energy 2023, 48, 18301–18314. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Yang, J. Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light. Phys. Rev. Lett. 2014, 112, 018301. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.F.; Sun, J.; Luo, Q.; Li, X.; Hu, W.; Yang, J. Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting. Nano. Lett. 2018, 18, 6312. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, J.; Guo, Z.; Sun, Z. Novel two-dimensional janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 28090. [Google Scholar] [CrossRef]
- Binh, N.T.; Nguyen, C.Q.; Vu, T.V.; Nguyen, C.V. Interfacial Electronic Properties and Tunable Contact Types in Graphene/Janus MoGeSiN4 Heterostructures. J. Phys. Chem. Lett. 2021, 12, 3934–3940. [Google Scholar] [CrossRef]
- Lv, X.; Huang, H.; Mao, B.; Liu, G.; Zhao, G.; Yang, J. Dipole-regulated bandgap and high electron mobility for bilayer janus MoSiGeN4. Appl. Phys. Lett. 2022, 120, 21. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, X.; Hu, G.; Ren, J.; Yuan, X. Manip-ulable electronic and optical properties of two-dimensional MoSTe/MoGe2N4 van der waals heterostructures. Nanomaterials 2021, 11, 3338. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, B.; Javvaji, B.; Shojaei, F.; Rabczuk, T.; Shapeev, A.V.; Zhuang, X. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy 2021, 82, 105716. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 15. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical Gga-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Tao, J.; Xu, L.; Li, C.; Xiong, S.; Xu, Z.; Shao, J.; Cao, L.; Zhang, Y.; Dong, K.; Wang, L.L. Two-dimensional AlN/TMO van der Waals heterojunction as a promising photocatalyst for water splitting driven by visible light. Phys. Chem. Chem. Phys. 2023, 25, 30924–30933. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.; Hoang, N.V.; Phuc, H.V.; Sin, A.Y.; Nguyen, C.V. Two-dimensional boron phosphide/MoGe2N4 van der Waals heterostructure: A promising tunable optoelectronic material. J. Phys. Chem. Lett. 2021, 12, 5076–5084. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.D.; Mu, W.Q.; Zhu, Y.T.; Han, R.Y.; Ren, W.C. Predicted septuple-atomic-layer Janus MSiGeN4 (M = Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities. J. Mater. Chem. 2021, 9, 2464–2473. [Google Scholar] [CrossRef]
- Li, X.; Li, T.; Wang, J.; Song, X. Adsorption behavior of Janus MoSiGeN4 monolayer for gas-sensing application with high sensitivity and reuse. Phys. E 2023, 153, 115777. [Google Scholar] [CrossRef]
- Zou, H.; Peng, M.; Zhou, W.; Pan, J.; Ouyang, F. Type II GaS/AlN van der Waals heterostructure: Vertical strain, in-plane biaxial strain and electric field effect. Phys. E Low-Dimens. Syst. Nanostructures 2021, 126, 114481. [Google Scholar] [CrossRef]
- Huang, X.; Xu, L.; Xiao, B.; Dong, K.; Yang, K.; Li, L. High-efficiency photocatalyst based on a MoSiGeN4/SiC heterojunction. J. Mater. Sci. 2022, 57, 16404. [Google Scholar] [CrossRef]
- Queen, J.D.; Irvankoski, S.; Fettinger, J.C.; Tuononen, H.M.; Power, P.P. A monomeric aluminum imide (iminoalane) with Al–N triple-bonding: Bonding analysis and dispersion energy stabilization. J. Am. Chem. Soc. 2021, 143, 6351–6356. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Xu, L.; Luo, X.; Chen, T.; Tang, S.; Huang, X.; Wang, L.L. Z-scheme systems of ASi2N4 (A = Mo or W) for photocatalytic water splitting and nanogenerators. Tungsten 2022, 4, 52–59. [Google Scholar] [CrossRef]
- Yin, Y.; Gong, Q.; Yi, M.; Guo, W. Emerging Versatile Two-Dimensional MoSi2N4 Family. J. Adv. Funct. Mater. 2023, 33, 2214050. [Google Scholar] [CrossRef]
Structure | a (Å) | d (Å) | Eb (eV) | EHSE06 (eV) |
---|---|---|---|---|
AlN | 3.120 | - | - | 3.783 |
MoGe2N4 | 3.021 | - | - | 1.273 |
MoSiGeN4 | 2.956 | - | - | 1.753 |
AB5 (MoGe2N4/AlN) | 3.006 | 2.852 | −0.016 | 1.382 |
AC5 (MoSiGeN4/AlN) | 3.055 | 2.637 | −0.196 | 0.886 |
Structure | AB5(MoGe2N4/AlN) | AC5(MoSiGeN4/AlN) | ||||||
---|---|---|---|---|---|---|---|---|
charge (e) | AlN | −0.0486 | Al | −2.3120 | AlN | −0.0187 | Al | −2.3095 |
N | +2.2634 | N | +2.2908 | |||||
MoGe2N4 | +0.0486 | Mo | −1.5126 | MoSiGeN4 | +0.0187 | Mo | −1.5062 | |
Ge | −1.8670 | Si | −2.9019 | |||||
N | +1.3238 | Ge | −1.8054 | |||||
N | +1.5580 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Zeng, J.; Xiao, B.; Jin, Z.; Wang, Q.; Li, Z.; Wang, L.-L.; Dong, K.; Xu, L. Tunable Electronic and Optical Properties of MoGe2N4/AlN and MoSiGeN4/AlN van der Waals Heterostructures toward Optoelectronic and Photocatalytic Applications. Coatings 2024, 14, 500. https://doi.org/10.3390/coatings14040500
Shao J, Zeng J, Xiao B, Jin Z, Wang Q, Li Z, Wang L-L, Dong K, Xu L. Tunable Electronic and Optical Properties of MoGe2N4/AlN and MoSiGeN4/AlN van der Waals Heterostructures toward Optoelectronic and Photocatalytic Applications. Coatings. 2024; 14(4):500. https://doi.org/10.3390/coatings14040500
Chicago/Turabian StyleShao, Jingyao, Jian Zeng, Bin Xiao, Zhenwu Jin, Qiyun Wang, Zhengquan Li, Ling-Ling Wang, Kejun Dong, and Liang Xu. 2024. "Tunable Electronic and Optical Properties of MoGe2N4/AlN and MoSiGeN4/AlN van der Waals Heterostructures toward Optoelectronic and Photocatalytic Applications" Coatings 14, no. 4: 500. https://doi.org/10.3390/coatings14040500